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ABSTRACT  

Purpose. In most current aberrometers  near infrared light is used to measure ocular 

aberrations, whereas in some applications optical aberration data in the visible range are 

required. 

We compared optical aberration measurements using infrared (787 nm) and visible light 

(543 nm) in a heterogeneous group of subjects in order to assess whether aberrations are 

similar in both wavelengths and to estimate experimentally the ocular chromatic focus 

shift. Methods. Ocular aberrations were measured in near infared and visible light using 

two different laboratory-developed systems: Laser Ray Tracing (LRT) and Shack-

Hartmann (S-H). Measurements were conducted on 36 eyes (25 and 11 eyes 

respectively), within a wide range of ages (20 to 71), refractive errors (-6.00 to +16.50) 

and optical quality (RMS, excluding defocus, from 0.40 to 9.89 microns).  In both 

systems, wave aberrations were computed from the ray aberrations, by modal fitting to a 

Zernike polynomial base (up to 7th order in LRT and 6th order in S-H). We compared 

the Zernike coefficients and the RMS corresponding to different terms between IR and 

green illumination Results. A Student t-test performed on the Zernike coefficients 

indicates that defocus was significantly different in all of the subjects but one. Average 

focus shift found between 787 nm and 543 nm was 0.72 D.  A very small percentage of 

the remaining coefficients was found to be significantly different: 4.7% of the 825 

coefficients (25 eyes × 33 terms) for LRT and 18.2% of the 275 coefficients (11 eyes × 

25 terms) for S-H. Astigmatism was statistically different in 8.3% of the eyes, RMS for 

3rd order aberrations in 16.6%, and spherical aberration (Z4
0) in 11.1%. Conclusions. 

Aerial images captured using IR and green light showed noticeable differences.  Apart 

from defocus, this did not affect centroid computations since, within the variability of 

the techniques, estimates of aberrations with IR were equivalent to those measured in 

green. In normal eyes, the Longitudinal Chromatic Aberration of the Indiana Chromatic 

Eye Model can predict the defocus term changes measured experimentally, although the 

intersubject variability could not be neglected.  The largest deviations from the 

prediction were found on an aphakic eye and on the oldest subject. 

 

Keywords: ocular aberrations; Shack Hartmann; Laser Ray Tracing; near infrared. 
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In the last few years there has been a renewed interest in the measurement and 

understanding of the aberrations of the human eye. Along with studies addressing 

important basic questions on physiological optics (i.e. change of aberrations with 

accommodation1,2, age3,4, retinal eccentricity5, refractive error6,7), clinical 

applications of aberrometry are rapidly increasing. For example it has been shown to be 

a useful tool in assessing keratoconus8,9 or corneal transplantation10,11. In particular, 

aberrometry is of great  use in refractive surgery, both as a tool to assess the outcomes 

of refractive surgery12-15, and as a guide to optimize ablation algorithms to eventually 

compensate for the ocular aberrations16. In addition, static17 or dynamic aberration 

correction18,19, with great potential for high-resolution ophthalmoscopy20, relies on 

the accurate measurement of aberrations. 

All aberrometers are based on the common principle of measuring the slopes of the 

wave aberration, either as a light enters the eye (i.e. Laser Ray Tracing21,22, Spatially 

Resolved refractometer23,24, Tscherning aberrometer25 or the crossed-cylinder 

aberroscope26) or as it emerges from the eye (Shack Hartmann ocular wavefront 

sensor27,28). Apart from the Spatially Resolved Refractometer, which is a 

psychophysical technique (and therefore visible light must be used) the rest of these 

techniques measure the light reflected by the retina. Most of the currently available 

wavefront sensing techniques use infrared (IR) illumination, which has several 

advantages over visible light. It is more comfortable for the patient, since the human eye 

is less sensitive to IR29; pupil dilation is not strictly required; the retina reflects a higher 

percentage of the incident light, compared to shorter wavelengths30; and backscatter by 

the anterior optics31 is reduced. Dynamic measurement of aberrations is then possible 

using IR illumination32, with natural accommodation, since mydriasis (and its 

associated cyclopegic effects) is not necessary. 

While current aberration measurements are done typically with IR light, in most 

applications data from visible light are required. For direct comparison between optical 

measurements (estimated from the wave aberration) and visual performance we need to 

make sure that the results obtained in IR light are equivalent to those obtained with 

visible light. This is particularly important if the measured wave aberration is planned to 

be used to guide ablation in refractive surgery procedures, where the aim is to improve 
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the patient's visual performance. Knowledge of the defocus shift between IR and visible 

wavelengths is essential if the results are to be used to predict refraction. 

Previous measurements of aberrations at different visible wavelengths using a Spatially 

Resolved Refractometer showed slight differences in some aberration terms as a 

function of wavelength33. The chromatic difference of focus agreed with previous 

psychophysical results from the literature; however, the Longitudinal Chromatic 

Aberration (LCA) based on reflectometric double-pass measurements34,35 has been 

reported to be lower than conventional psychophysical  estimates. These results promp 

to  revisiting the question whether reflections at different retinal layers may be the cause 

for the discrepancy . The following questions hence arise: 1) are the aberrations 

measured with IR and green light equivalent? 2) Is the focus difference between IR and 

green predictable by the LCA  (and therefore reasonably predictable across subjects) or 

can the relative differences in reflectance and scattering across wavelengths be affecting 

the aberration measurements?  

There are two previous studies which compare visible and near infrared optical quality 

in the human eye36,37. Double-pass measurements of modulation transfer functions in 

IR and green light appear to be similar. In this previous study, subtraction of 

background halos ( noticeably different between IR and green) was critical36. The other 

study used an objective crossed-cylinder aberroscope to measure aberrations, and 

reported that aberrations are virtually identical in near IR and green light37. However, 

the data analysis is mainly qualitative and limited to three eyes. 

In this paper we compare ocular aberrations between near IR (786 nm for LRT and 788 

nm for S-H) and visible illumination (543 nm) measured with two objective techniques, 

Laser Ray Tracing (LRT) and Shack-Hartmann (S-H). These are experimental systems 

developed at  Instituto de Optica (CSIC), Madrid, Spain and Imperial College, London, 

UK, respectively, but the conclusions drawn here can be extrapolated to recent unrelated 

commercially available instruments, based on similar principles. We performed 

measurements on 36 subjects, with a wide range of ages, refractions, and ocular 

conditions (including old and surgical eyes), thus covering a wide range of aberrations, 

and potentially ocular and retinal structural differences. 
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METHODS 

 

Laser Ray Tracing 

Set up and procedures.  

The Laser Ray Tracing technique (Fig.1A) has been described in detail 

elsewhere5,13,21,22,38.  A set of 37 parallel laser pencils sequentially scans a 6.51 mm 

pupil in a 1 mm step-hexagonal pattern. Aerial images formed by the light reflected off 

the retina are simultaneously recorded on a high resolution CCD camera. The centroid 

of each aerial image is estimated. The deviations of the centroids from the reference 

(which is the position of the centroid corresponding to the chief ray), is proportional to 

the local derivative of the wave aberration. The wave aberration is obtained from the 

sets of derivatives by means of a modal fitting to the Zernike polynomial basis (through 

7th order). In previous studies using this technique, measurements were obtained using a 

543 nm HeNe laser beam (Melles Griot, 5mW). For this study, light from an IR (786 

nm) laser diode, coupled to an optical fiber, (Schäfter+Kirchhoff, 15 mW) was inserted 

into the system using a pellicle beam splitter, and co-aligned to the green beam. Both 

lasers were attenuated, by means of neutral density filters, and light exposure was at 

least one order of magnitude below safety limits39. 

Setting and control experiment 

Measurements were conducted at  Instituto de Óptica, CSIC, Madrid, Spain. The system 

was calibrated to verify that it did not introduce chromatic aberration. For this purpose 

we placed a calibrated aberrated phase plate17 in front of a diffraction-limited artificial 

eye and measured its aberrations using green and IR light. Identical results were 

obtained for all aberration terms within the accuracy of the technique, including the 

defocus term, and replicated the nominal aberrations of the phase-plate. 

Subjects. 

We measured 25 eyes (#1-#25) from 16 subjects: 19 eyes were normal, one eye was 

aphakic (#8), and 5 eyes had undergone LASIK refractive surgery (#5, #6, #10, #12, 

#13). Ages ranged from 20 to 71 (mean=33, std=11) years, spherical error ranged from -

6.00 to +16.50 D (mean=-1.62, std=4.42), and astigmatism ranged from 3.78 to 0.07 D 

(mean=1.07, std=0.98). 
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Before the measurement, an informed consent form approved by institutional ethical 

committees was signed by each patient, in accordance with the tenets of the Declaration 

of Helsinki. Pupil was dilated with one drop of Tropicamide 1%.  

Measurements 

Subjects were stabilized with a dental impression and a forehead rest, and the eye was 

monitored with a CCD camera to ensure alignment of the pupil center to the optical axis 

of the instrument during the measurement. Spherical refractive errors were compensated 

with trial lenses when necessary. 

Each session consisted of ten runs, each run (37 images corresponding to the 37 rays 

sampling the pupil) lasted approximately four seconds. Five consecutive series were 

collected using green light (543 nm), and then five series using near IR light (786 nm) . 

 

Shack-Hartmann 

Set up and procedures. 

A schematic diagram of the Shack-Hartmann (S-H) wavefront sensor used in this study 

is shown in fig. 1B. A detailed description of a similar system can be found 

elsewhere38,40-42 without the minor modifications introduced for this study. Light 

from an IR (788 nm) Super Luminiscent Diode (SLD) (Anritsu, 10 µw) was introduced 

by means of a pellicle beam splitter and co-aligned to the green (543 nm) He Ne laser 

beam (Melles Griot, 1 mw) used in previous measurements. The He-Ne laser was 

spatially filtered and expanded prior to collimation, bringing the maximum power 

reaching the eye to less than 5µw over an 8mm diameter pupil. Further power reduction 

was achieved by reducing the beam diameter to 1.5 to 2mm and by the use of neutral 

density filters before spatial filtering. The SLD power was largely reduced after fiber 

coupling (to about 10% of its maximum nominal power), further power reduction was 

electronically controlled with its driver. In all cases the maximum power reaching the 

eye was at least one order of magnitude below the safety limits39. The principle of the 

S-H system has been described extensively in the literature. A narrow collimated laser 

beam forms a spot on the retina and the light reflected and emerging from the eye is 

sampled by a rectangular lenslet array placed on a plane conjugate to the eye pupil. A 

CCD camera, placed on the focal plane of the lenslet array and conjugate to the retina, is 

used to record the S-H spot pattern. Deviations from the ideal S-H spot pattern are 

proportional to the local slopes of the wave aberration.  
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For this study wave aberration was estimated from measured slopes using a least-mean 

square procedure. Wave aberration was fitted to a 6th order Zernike polynomial 

expansion (27 terms).  

The size of each lenslet was 0.8 mm × 0.8 mm over the pupil plane and the focal length 

was 35 mm. The pupil size was 6 mm.  

Setting and control experiment 

Measurements were conducted at Imperial College of Science Technology and 

Medicine, London, United Kingdom. 

The system was calibrated to ensure that it did not introduce chromatic aberration. Two 

reference S-H images using green and IR light were compared. The green reference was 

used to calculate the aberrations of the IR reference. The order of magnitude of every 

Zernike coefficient was always smaller than or equal to the standard deviations of any 

series of 10 measurements of ocular aberrations using only one wavelength. This 

procedure proves that no significant amount of chromatic aberration is introduced by the 

optics of the system.  

Subjects. 

We measured 11 normal eyes (#26-#36) (6 subjects). Ages ranged from 22 to 26 

(mean=23, std=1.47) years, spherical error ranged from –6.00 to +0.75 (mean=2.51, 

std=3.24) D and astigmatism ranged from 0.07 to 4.00 (mean=1.30, std=1.57) D.  

The institutional research and ethical committee approved the use of the wavefront 

sensor and experimental. Written consent was obtained from all subjects participating in 

the study, according to the tenets of the Declaration of Helsinki. Pupils were dilated 

using Tropicamide 1% and Phenylephrine 2.5% 30 minutes prior to the beginning of the 

measurements. 

Measurements 

Subjects were stabilized with the help of a dental impression and the  pupil of the eye 

was aligned to the optical axis of the instrument, while it was continuously monitored 

with a CCD camera. The illumination source was used as the fixation point. Sphero-

cylindrical refractive errors were compensated when necessary. 

At least six series of 10 S-H images were collected, three using green illumination (543 

nm) and the rest using IR illumination (788 nm). Images with the same wavelength 

were collected consecutively. 
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Equivalence of LRT and S-H 

The equivalence of the S-H and LRT wavefront sensors has been demonstrated in 

previous studies22,43. Control measurements on two subjects showed that the S-H and 

LRT systems used in this study (in Madrid and London respectively) provided similar 

aberrations in normal eyes.38 

  

 

RESULTS 

Raw Data 

Raw data obtained from both techniques consist of a set of aerial images (in different 

frames for the LRT, or a single frame for the S-H). Each image corresponds to a pupil 

position (entry pupil position for LRT  and exit pupil position for S-H). 

Figure 2 A and B show a set of aerial images obtained with LRT for eye #5, for green 

and IR light respectively. Each image has been placed at the corresponding entry pupil 

position. The intensity patterns differ significantly across wavelengths. Fig. 2 C shows 

the spot diagram (joint plot of the position of the centroids of the same set) 

corresponding to the average data of 3 consecutive runs with green light (crosses) and 4 

consecutive runs with IR light (circles) for eye #5. The error bars indicate the standard 

deviation of the positions of the centroid between runs.  Chromatic defocus is 

responsible for the consistent shift between wavelengths, which increases with entry 

pupil eccentricity. 

Figure 2D and 2E show S-H images for green and IR light respectively, for eye #29. 

The presence of a halo surrounding the centroid is more evident for the image with IR 

illumination than for that with green illumination. The spots at the upper right and the 

lower left corners of the image appear dimmer (particularly for green illumination) due 

to the use of crossed polarization between illumination and recording 38.  Fig 2 F shows 

the S-H centroids corresponding to D (crosses) and E (circles). As in LRT, the shift 

between the green and IR spots increases towards the periphery of the image. 

Wave aberration maps 

Figure 3 shows wave aberration maps from LRT measurements for both wavelengths, 

for 3rd and higher order aberrations. Eyes #9 and #22 were normal eyes, while #13 had 

undergone LASIK surgery. Each map is the average of at least three experimental runs. 

Contour lines have been plotted every 0.2 microns. Figure 4 shows wave aberration 
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maps for three normal eyes (#29, 30 and 31) measured with S-H for both wavelengths, 

excluding tilt and defocus. Contour lines have been plotted every 0.5 microns. 

For both systems, the wave aberration patterns corresponding to green and IR 

wavelengths for the same subject are very similar. 

Zernike Coefficients and RMS 

Figure 5 shows plots of sets of Zernike coefficients for green (crosses) and IR (circles) 

light for the same eyes as in fig. 3 and 4. The coefficient ordering and normalization 

follows the Optical Society of America standardization committee recommendations44. 

First and second order terms have been cancelled to allow a higher resolution view of 

higher order terms.  

Error bars represent the standard deviation of the measurement. Mean variability 

(standard deviation), averaged across Zernike coefficients and subjects, was 0.10±0.06  

(mean±std) for green light and 0.07±0.04 for IR light, for the measurements performed 

with LRT, and 0.019±0.009 (mean±std) for green light and 0.015±0.009 for IR light, for 

the measurements performed with S-H. The differences between the Zernike 

coefficients measured with green or IR light shown in Fig. 6 are within the inherent 

variability of the techniques.  

We performed a univariate statistical analysis (Student t-test) on each Zernike 

coefficient for each eye to detect which subjects and particular terms showed significant 

differences (p<0.01) when measured in green and IR light. For the 25 eyes measured 

with LRT only 39 coefficients (excluding defocus) out of 825 (25 x 33 terms), i.e. 4.7 

%, were statistically different. The defocus term (Z0
2) was statistically different in 24 of 

the 25 eyes (96% of the subjects).  All the other statistically different terms were 

randomly distributed.  

For the 11 eyes measured with S-H 22% (61 out of 275 (25 coef × 11 eyes)) of the 

coefficients were statistically different. The defocus term (Z0
2) was statistically different 

in all of the eyes. Among terms other than defocus, 50 out of 275 (18%) were found to 

be significantly different.  
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Figure 6 shows defocus for IR wavelength versus defocus for green wavelength in 

diopters for all subjects. There is a good linear correlation (R2=0.976), and the slope of 

the linear fit is close to one (0.9615). The focus shift between IR and green, given by 

the fitting equation is 0.722. The experimental focus shift was 0.78±0.29 D. 

Bar diagrams in Fig. 7 compare individual terms (astigmatism and spherical 

aberrations) and the Root-Mean-Square wavefront error (RMS) including different 

terms, obtained with green (black bars) and IR (grey bars) for all subjects. Eyes #1 to 

#25 were measured with LRT, and #26 to #36 with S-H. Asterisks indicate those eyes 

showing statistically significant differences (p<0.01). Astigmatism (6A) was 

statistically different in 3 of the 36 subjects (8.3 %). RMS for 3rd order aberrations (6B) 

was statistically different in 6 of the 36 subjects (16.6 %). RMS for 3rd and higher order 

aberrations (6C) was statistically different in 5 of the 36 subjects (13.5 %). Spherical 

aberration (Z4
0) (6D) was statistically different in 4 of the 36 subjects (11.1%) 

Only one eye (#35) came out significantly different for all the terms or orders reported 

above (RMS for 3rd and higher order aberrations, 3rd order aberrations, spherical 

aberration and astigmatism). 

 

 

DISCUSSION 

This study shows that while the intensity distribution of LRT aerial images or S-H 

images is notably different between green and IR illumination, both wavelengths 

provide aberration estimates within the experimental error (except for defocus). Our 

sample includes eyes with large differences in optical quality (from normal eyes to  

surgical eyes) and ages (20 through 71), suggesting that this conclusion holds for most 

of the population. 

 

Differences in image intensity profiles.  

Figure 2 shows relevant intensity differences between the aerial images obtained with 

IR and those obtained with green illumination. IR images are typically more spread and 

are surrounded by a broad halo. It has been suggested that most of the light contributing 

to the core of double-pass aerial images is probably due to the light captured and guided 

back from the photoreceptors 36,45. The halo is probably produced by effects other than 

aberrations, such as retinal stray light scattered at the choroid46,47. Retinal scattering 
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increases for longer wavelengths due to their deeper penetration within the retina and 

the choroid48,49. 

Some previous comparisons of optical quality in IR and green light were based on 

estimates from double-pass aerial images. We performed a computer simulation to 

evaluate the contribution to the aerial image spread caused by degradation other than the 

ocular aberrations, and the influence of wavelength on this additional contribution. We 

simulated LRT double-pass aerial images from the estimated wave aberration function. 

LRT aerial images are the autocorrelation of the entry (1st pass) and exit (2nd pass) 

point-spread-function (PSF). The entry pupil is a narrow incoming Gaussian beam 

(variance=0.1034 mm and = 0.1332 mm respectively, for green and IR illumination) 

and the exit pupil is a 3-mm circular pupil. The entry and exit pupil sizes correspond to 

the experimental values in the LRT set-up. Insets in Fig. 8 show real images and 

simulated images, corresponding to an entry pupil centered at coordinates (+1.5, -2.6 

mm). Fig. 8A and 8B shows experimental and simulated results for green and IR light 

respectively, for eye #22. The plots represent the normalized radial intensity profile of 

the corresponding real (solid) and simulated (dashed) aerial images.  The distance from 

the peak position to the zero position represents the centroid deviation from the chief 

ray (which is practically the same for the simulated and real images). The width of the 

simulated images accounts for the spread caused exclusively by the measured 

aberrations, while the real images are further enlarged by scattering and non-measured 

higher order aberrations.  

The S-H images in Fig. 2C also suggest a larger contribution of scattered light in IR. A 

crossed polarization configuration was used, which explains the "polarization-cross" 

pattern observed in green light illumination38. Green illumination maximizes the light 

reflected by the photoreceptor outer segments50, which are thought to partly retain 

polarization51. Light multiply scattered by deeper layers (probably a significant 

component of the IR images49) does not retain polarization, and therefore the S-H spots 

will show little polarization-related intensity differences across the image 38. 

The effects mentioned above affect the shape and intensity distribution of the aerial 

image and  are critical in double-pass measurements of  the optical quality of the eye. In 

this technique, Modulation Transfer Function (MTF) estimates are directly obtained 

from double-pass aerial images. An appropriate halo subtraction is critical to obtain 

MTFs in IR consistent to those measured in green light36. However, reflectometric 
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techniques for wave aberration measurements only rely on centroid deviation 

computations, which as we have shown, are not significantly affected by wavelength.   

 

Chromatic difference of focus 

 

The defocus term was significantly different across wavelengths in all but one subject. 

The mean focus difference between green and IR across subjects was 0.78±0.29 D,  

close to the shift estimated by the linear fitting shown in Fig. 7 (0.72 D). This value 

agrees well, within the inherent variability, with the chromatic focus shift predicted by 

the Indiana chromatic reduced eye model 52 . 

(1) 

 

where λG=543 nm and λIR=787 nm (mean between IR wavelength used for LRT, 786 

nm, and SH, 788 nm). 

Thibos et al.52 obtained the parameters of the eye model by fitting experimental data 

for a range of wavelengths between 400 nm and 700 nm, and using Cornu's expression 

for the dependence of the index of refraction with wavelength. Equation (1) agrees well 

with experimental data in the literature for wavelengths up to 760 nm (close to the 

wavelength used in this study), with variations close to the intersubject variability in our 

sample52. Whether this expression for the LCA still holds for longer wavelengths used 

in some commercial S-H systems (i.e. 830 nm) remains to be studied.  Typically, 

Cornu's equation fails beyond the visible, and other expressions53 should be used.   

It has been frequently argued that differences in the retinal layer where light is reflected 

may cause differences between manifest refraction and retinoscopy54,55. Charman et 

al.56, and Williams et al.45 for red light, and later López-Gil and Artal36 for near IR 

light showed the differences between subjective and reflectometric focus were 

negligible, and concluded that reflection contributing to the central core of the PSF 

occurred within the photoreceptor layer. Our results, based on the Zernike defocus term 

of wave aberration reflectometric estimates also support this conclusion. The focus shift 

that we found is slightly lower than the chromatic shift prediction (by 0.10 D), 
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consistent with a reflection plane behind the photoreceptor layer. However, this shift is 

of the order of the measurement error (0.12 D for green light and 0.08 D for IR light on 

average), and lower than the intersubject variability (0.29 D). We did not find any 

particular trend for the focus shift in normal, young subjects as a function of refractive 

error (coefficient of correlation, r=0.166, p=0.44). In addition, we did not find any 

particular difference for the focus shift in eyes with abnormal corneas by LASIK 

surgery.  However, we found that the focus shift for the aphakic eye was much higher 

than the average (1.7 D). Our population did not sample different age groups 

homogeneously. However, we found a slight increase of focus shift with age (r=0.45, 

p=0.022). The majority of subjects were young or middle-aged (20-43 years old) and we 

could not find an aged-related trend (r=0.26, p=0.2). 

Conclusion 

We have shown the equivalence of high order aberrations measured in visible or near 

infrared illumination with LRT and S-H, at least within the accuracy of the techniques. 

The shift in the defocus term was consistent with the shift predicted by chromatic 

aberration  

These results are relevant because typical commercial wavefront sensing devices use 

infrared illumination. This wavelength has several advantages over visible illumination: 

it is more comfortable for the subject,  pupil dilation is not essential,  and light exposure 

can be lower due to the higher reflectance of the eye fundus and the better sensitivity of 

most of the photodetectors at this wavelength. We have shown that despite the longer 

tails of the aerial images at this wavelength, it can be successfully used in all the tested 

conditions, including old and surgical eyes. 

We also provide an experimental value for the focus shift between near infrared (786-

788 nm) and green (543 nm) illumination in two reflectometric aberrometers (LRT and 

SH). One of the most promising applications of wavefront sensing devices is their use 

as sophisticated autorefractometers. They are now being applied for use in refractive 

surgery to guide ablation with the aim of compensating both low (2nd order) and high 

order (3rd and higher) aberrations.  An accurate transformation of the IR estimates of 

spherical error into visible wavelengths is crucial to determine the actual correction that 

should be applied.  We have shown that Thibos’s chromatic reduced eye model 

equation is a valid expression to predict focus shift for our wavelength. However, for 

longer wavelengths there is no evidence of the validity of this equation, and new 

expressions for the refractive index and chromatic difference of refraction may need to 
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be developed. In addition, we found that discrepancies can occur in aphakic eyes, and 

that there might be age-dependent corrections to Eq. 1. Several reports in the literature 

found differences in the LCAs of aphakic eyes57 and pseudoaphakic eyes58 with 

respect to normal eyes. Possible age-related changes of LCA have been a matter of 

controversy59-62. Although much of these refractive discrepancies are small, their 

magnitude can be comparable to the higher order aberrations, and therefore accurate 

predictions of spherical errors for visible light from IR measurements are important.  
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FIGURE CAPTIONS 

Figure 1. Schematic diagrams of the laser ray tracing (LRT) (A) and Shack-Hartmann 

wave front sensor (S-H) (B) set ups. In LRT (A) a laser beam from a He-Ne (543 nm) 

laser or a diode laser (786 nm) samples the pupil plane by means of an XY scanner and 

collimating lens L1. Light reflected off the retina forms an aerial image onto a cooled 

CCD camera by means of the lens L3 and camera objective L6. A red He-Ne laser (633 

nm) acts as a fixation point. A video camera, conjugate to the pupil by means of lens L4 

and video camera objective L5 monitors pupil centration.  BS1 and BS2 are pellicle 

beam splitters, BS3 is a glass beam splitter,  CBS is a cube beam splitter and M is a 

mirror. In S-H (B), light coming from an expanded He-Ne (543 nm) laser or from a 

super luminiscent diode (SLD) forms a point on the retina. SF is a spatial filter, and L1 

and L2 are collimating lenses. L3-L4 and L5-L6 are relay systems in the illumination 

and imaging channels respectively. EP is an entry pupil aperture (pupil diameter= 1.5 

mm) and FA is a field aperture.  Light reflected off the retina is imaged by a Shack 

Hartmann Sensor (S-H Sensor) on a cooled CCD camera. Images of the pupil are 

projected onto a CCD camera by objective lens L7 and monitors pupil centration. BS1 

and BS2 are pellicle beam splitters and PCBS is a polarizing cube beam splitter. M is a 

mirror that serves in reference image capture. 

Figure 2. Raw data as obtained from LRT (panels A-C) and S-H (panels D-F). In LRT 

a series of  retinal images is captured sequentially as a function of the entry pupil 

position. Aerial images obtained for eye #5 using green and infrared (IR) light are 

shown in panels A and B respectively. Panel C shows the corresponding spot diagram. 

Crosses stand for green illumination and circles for IR illumination. Panels D and E 

show S-H images for eye #29 for green and IR light respectively. Panel C plots the 

corresponding centroids of the S-H images. Symbol notation is the same as for panel C. 

Figure 3. Wave aberration maps from LRT measurements for green and IR. 1st and 2nd 

order terms have been excluded. Eyes #9 and #22 were normal eyes, while #13 had 

undergone LASIK surgery. Each map is the average of at least three experimental runs. 

Contour lines have been plotted every 0.2 microns. 

Figure 4. Wave aberration maps for three normal eyes (#29, 30 and 31) measured with 

S-H for both wavelengths. Tilts and defocus have been excluded. Contour lines  have 

been plotted every 0.5 microns. 

Figure 5. Plots of sets of the Zernike coefficients for green (crosses) and IR (circles) 

light for the same eyes as in fig. 3 and 4. The coefficient ordering and normalization 
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follows the Optical Society of America standardization committee recommendations44. 

First and second order terms have been cancelled. Error bars represent the standard 

deviation of the measurement. 

Figure 6. Defocus for IR wavelength versus defocus for green wavelength in diopters 

for all subjects. The solid line represents the best linear fit to the data (R2=0.976). The 

focus shift between IR and green given by the fitting equation is 0.722 D. The slope of 

the linear fit is close to one (0.9615). The dashed line corresponds to a fitting line with 

slope equal to one, and falls within the data variability. 

Figure 7. Bar diagrams comparing individual terms (astigmatism and spherical 

aberrations) and the Root-Mean-Square wavefront error (RMS) for different orders, 

obtained with green (black bars) and IR (grey bars) for all subjects. Eyes #1 to #25 were 

measured with LRT, and #26 to #36 with S-H. Asterisks indicate those eyes showing 

statistically significant differences (p<0.01).  

Figure 8. Experimental and simulated aerial images for green (A) and IR (B) light 

respectively, for eye #22 and entry pupil at coordinates (+1.5, -2.6 mm). The image on 

the upper left corner of the plot is the aerial image obtained experimentally, and the 

image below is the aerial image simulated from measured aberrations as the 

autocorrelation of 1st and 2nd pass PSFs. The plots represent the normalized radial 

intensity profile of the corresponding real (solid) and simulated (dashed) aerial images.  

The distance to zero position represents the centroid deviation from the chief ray. The 

width of the simulated images accounts for the spread caused exclusively by the 

measured aberrations, while that of the real images also includes other effects, such as 

scattering and non-measured higher order aberrations, together with the measured 

aberrations. 
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