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Abeta is targeted to the vasculature in a mouse model of
hereditary cerebral hemorrhage with amyloidosis

Abstract

The E693Q mutation in the amyloid beta precursor protein (APP) leads to cerebral amyloid angiopathy
(CAA), with recurrent cerebral hemorrhagic strokes and dementia. In contrast to Alzheimer disease
(AD), the brains of those affected by hereditary cerebral hemorrhage with amyloidosis-Dutch type
(HCHWA-D) show few parenchymal amyloid plaques. We found that neuronal overexpression of
human E693Q APP in mice (APPDutch mice) caused extensive CAA, smooth muscle cell degeneration,
hemorrhages and neuroinflammation. In contrast, overexpression of human wild-type APP (APPwt
mice) resulted in predominantly parenchymal amyloidosis, similar to that seen in AD. In APPDutch
mice and HCHWA-D human brain, the ratio of the amyloid-beta40 peptide (Abeta40) to Abeta42 was
significantly higher than that seen in APPwt mice or AD human brain. Genetically shifting the ratio of
AbetaDutch40/AbetaDutch42 toward AbetaDutch42 by crossing APPDutch mice with transgenic mice
producing mutated presenilin-1 redistributed the amyloid pathology from the vasculature to the
parenchyma. The understanding that different Abeta species can drive amyloid pathology in different
cerebral compartments has implications for current anti-amyloid therapeutic strategies. This HCHWA-D
mouse model is the first to develop robust CAA in the absence of parenchymal amyloid, highlighting
the key role of neuronally produced Abeta to vascular amyloid pathology and emphasizing the differing
roles of Abeta40 and Abeta42 in vascular and parenchymal amyloid pathology.



Mutations in APP at the β- and γ-secretase sites have been shown to

cause familial forms of early-onset AD. These mutations increase the

production of either total amyloid-β peptides (Aβ) or the more amy-

loidogenic Aβ1–42 species. In contrast, most mutations within the Aβ
domain do not result in a full range of AD pathology but characteris-

tically result in cerebrovascular pathology1–3. For example, the E693Q

point mutation in APP (affecting residue 22 of Aβ) results in

HCHWA-D, an autosomal-dominant form of CAA4,5. Those afflicted

with HCHWA-D suffer from recurrent lobar cerebral hemorrhages,

with an onset in the fifth decade of life6. At autopsy, extensive CAA is

typically found in leptomeningeal arteries and cortical arterioles, and

to a lesser extent in meningocortical veins. Unlike in AD, parenchymal

amyloid plaques are not prominent in HCHWA-D, although diffuse

parenchymal Aβ is found7. Because of these features of the disease,

HCHWA-D has become the human genetic archetype of the Aβ con-

gophilic angiopathy seen sporadically in many of the elderly and in

the majority of those with AD8,9.

Previous in vitro findings have shown that Aβ harboring the Dutch

E693Q mutation (AβDutch) has been associated with enhanced

aggregation properties, reduced clearance from the brain and greater

toxicity in smooth muscle cells, as compared to wild-type Aβ

(Aβwt)10–14. However, the reasons for the predominant cerebral vas-

cular amyloid deposition in HCHWA-D are unclear. In the present

study, we generated human APP E693Q transgenic mice (APPDutch

mice) to study the mechanisms underlying vascular amyloidosis and

the consequences of CAA using an in vivo model system.

RESULTS

Aβ1–40 predominates in vascular amyloid in HCHWA-D

Cerebrovascular amyloid in human HCHWA-D postmortem brain

tissue was found predominantly in the leptomeningeal and cortical

vessel walls, often with limited labeling of diffuse parenchymal Aβ
deposits (Fig. 1a). Immunohistochemical staining with C termi-

nus–specific antibodies to Aβ suggest that Aβ40 predominates over

Aβ42 in the cerebrovascular amyloid (Fig. 1b,c). To confirm this and

to determine whether AβDutch is the predominant Aβ species

deposited in the vessel wall, we used bicine/Tris/urea SDS-PAGE15

to separate various Aβ species. Both HCHWA-D cortical tissue and

isolated leptomeningeal vessels contained abundant AβDutch1–40

as well as substantial amounts of Aβwt1–40 (Fig. 1d). In contrast, in

the brains of individuals with sporadic AD, both Aβ1–40 and

Aβ1–42 were present (Fig. 1d). These observations were confirmed
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The E693Q mutation in the amyloid beta precursor protein (APP) leads to cerebral amyloid angiopathy (CAA), with recurrent

cerebral hemorrhagic strokes and dementia. In contrast to Alzheimer disease (AD), the brains of those affected by hereditary

cerebral hemorrhage with amyloidosis–Dutch type (HCHWA-D) show few parenchymal amyloid plaques. We found that neuronal

overexpression of human E693Q APP in mice (APPDutch mice) caused extensive CAA, smooth muscle cell degeneration,

hemorrhages and neuroinflammation. In contrast, overexpression of human wild-type APP (APPwt mice) resulted in

predominantly parenchymal amyloidosis, similar to that seen in AD. In APPDutch mice and HCHWA-D human brain, the ratio of

the amyloid-β40 peptide (Aβ40) to Aβ42 was significantly higher than that seen in APPwt mice or AD human brain. Genetically

shifting the AβDutch40/AβDutch42 ratio toward AβDutch42 by crossing APPDutch mice with transgenic mice producing

mutated presenilin-1 redistributed the amyloid pathology from the vasculature to the parenchyma. The understanding that

different Aβ species can drive amyloid pathology in different cerebral compartments has implications for current anti-amyloid

therapeutic strategies. This HCHWA-D mouse model is the first to develop robust CAA in the absence of parenchymal amyloid,

highlighting the key role of neuronally produced Aβ to vascular amyloid pathology and emphasizing the differing roles of Aβ40

and Aβ42 in vascular and parenchymal amyloid pathology.
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by ELISA, which showed only half as much Aβ40 as Aβ42 in AD

brain tissue, and 18 times more Aβ40 than Aβ42 in HCHWA-D

brain tissue (Table 1).

Neuronal overexpression of human E693Q APP leads to CAA 

To understand the pathogenesis of HCHWA-D and the mechanisms

leading to cerebrovascular amyloid, we generated transgenic mice

(APPDutch mice) overexpressing E693Q-mutated human APP (hAPP)

under the control of the neuron-specific Thy1 promoter element. High

levels of hAPP mRNA were detected in neocortex, hippocampus and

brain stem by in situ hybridization (Fig. 2a). Consistently, immunohisto-

chemistry revealed robust hAPP expression in the same brain regions,

exclusively within neurons and neuronal processes. No hAPP mRNA or

protein was detected in vessel walls (Fig. 2b). We selected two transgenic

lines with high hAPP expression levels that remained constant with aging

(Fig. 2c). By direct western blot analysis, AβDutch could not be detected

in young APPDutch mice.AβDutch1–40, however, was readily detectable

in a 23-month-old mouse, consistent with amyloid deposition at this age

(Fig. 2c). Morphological analysis of APPDutch mice between 22 and 30

months of age (n = 30) showed an onset of vascular amyloid deposition

at approximately 22–25 months for both lines.Amyloid deposition in the

brain was largely confined to the cerebral vasculature (Fig. 2d), appearing

first in leptomeningeal vessels followed by cortical vessels. Female mice

seemed to have an earlier onset than males. Similar to human HCHWA-

D brain tissue and consistent with the western blot analysis, immunore-

activity for Aβ40 was much more intense than for Aβ42 (Fig. 2e,f).

Congo red (Fig. 2g) and Thioflavin S staining (data not shown) demon-

strated that much of the cerebrovascular amyloid was in a compact β-

pleated sheet conformation. Some amyloid-laden vessels showed a

vessel-within-vessel configuration (Fig. 2h). With an electron micro-

scope, we observed an irregular thickening of the basement membrane

with amorphous material in some vessels, whereas others contained

amyloid fibrils within the basement membrane—predominantly on the

adventitial side—and the endothelial cell layer appeared to be intact. At a

more advanced stage, amyloid fibrils were observed in a radial pattern

between the smooth muscle cells, with some fibrils invading the

parenchyma (Fig. 2i). Despite a substantial vascular amyloid burden,

APPDutch mice did not develop compact parenchymal amyloid plaques

and only rarely were diffuse parenchymal Aβ deposits observed.

CAA induces hemorrhages and neuroinflammation

Amyloid-laden vessels in APPDutch mice show a severe loss of smooth

muscle cells (Fig. 3a,b). Consistent with the loss of smooth muscle cells

and a concomitant weakening of the vessel walls, fresh hemorrhages

(Fig. 3c,d), as well as indications of previous hemorrhages (Fig. 3e,f),

were found in three of the oldest APPDutch mice. No bleeding was

found in age-matched, nontransgenic mice (data not shown).

In APPDutch mice with CAA, a strong, perivascular microglial

inflammatory reaction was observed (Fig. 3g). This microgliosis was

confined to the immediate vicinity of amyloid-laden vessels and was

absent in locations adjacent to unaffected vessels (Fig. 3h). In addition,

an activation of astrocytes was observed throughout all neocortical

areas affected by CAA (Fig. 3i) but not in brain areas devoid of vascular

amyloid and in nontransgenic control mice (Fig. 3j). The widespread

astrocytosis in areas affected with CAA may be the result of partial

ischemia and a perfusion deficit associated with amyloid-laden vessels.

Increased Aβ40/Aβ42 ratio in APPDutch versus APPwt mice

To examine the determinants that lead to vascular versus parenchy-

mal amyloid deposition, we compared the pattern of amyloid depo-

sition in APPDutch mice with that of transgenic mice

overexpressing wild-type hAPP at levels similar to the APPDutch

mice, under the control of the same Thy1 promoter element and in

the same C57BL/6J genetic background (APPwt mice). Aged APPwt

mice developed parenchymal plaques with limited vascular deposits

(Fig. 4a). Western blot analysis of APPwt mice with amyloid

A R T I C L E S

NATURE NEUROSCIENCE VOLUME 7 | NUMBER 9 | SEPTEMBER 2004 955

Figure 1  Vascular amyloid in HCHWA-D brain consists of both AβDutch and

Aβwt, with Aβ1–40 being the predominant peptide. (a) Frontal cortex of the

brain of an individual (50 years of age) with HCHWA-D immunostained with

antibody NT12 to Aβ. Massive amyloid deposition within leptomeningeal and

cortical vessel walls is observed. Only few and diffuse parenchymal Aβ deposits

are visible (arrowhead), although pretreatment may increase parenchymal

staining50. (b,c) Immunolabeling of vascular amyloid with antibodies specific to

Aβx–40 (R208 in b) and Aβx–42 (R306 in c) reveals that the majority of

vascular amyloid ends at amino acid 40. (d) Western blotting of brain

homogenates. Synthetic Aβ is shown in lanes 1–3. Homogenates of frontal

cortex (lanes 4 and 5) and pia (lanes 6 and 7) of  HCHWA-D patients contain

both Aβwt1–40 and AβDutch1–40, but no detectable Aβwt1–42 or

AβDutch1–42. This observation suggests that cerebrovascular amyloid in

HCHWA-D patients consists of both Aβwt and AβDutch and is predominantly of

the Aβ1–40 isoform. Control individuals showed no detectable Aβ (lane 8),

whereas both Aβwt1–40 and 1–42 were found in patients with sporadic AD

patients (lane 9). Scale bars are 100 µm (a) and 50 µm (b,c).

Table 1 Aβ40/Aβ42 ratios in brains of transgenic mice and

humans with HCHWA-D and AD

Human Aβ40/Aβ42 Murine Aβ40/Aβ42

Predepositing Depositing Depositing

APPwt 4.3 ± 0.3 2.8 ± 0.4 1.1 ± 0.1

APPDutch 7.8 ± 0.9** 12.1 ± 1.4*** 3.0 ± 0.5**

APPDutch/PS45 0.4 ± 0.9 0.4 ± 0.02

HCHWA-D 18.6 ± 7.0

AD 0.5 ± 0.19

Levels of human and murine Aβ40 and Aβ42 were determined by ELISA in Aβ-

depositing 18-month-old APPwt mice and 28-month-old APPDutch mice (n = 5–11).

Human Aβ was measured in predepositing 7-month-old APPwt and APPDutch mice (n =

6–9), in predepositing 3-month-old and Aβ-depositing 9-month-old APPDutch/PS45

mice, and in AD and HCHWA-D patients (n = 3–9). Data are the means of the individual

Aβ40/Aβ42 ratios ± s.e.m. **P < 0.01, ***P < 0.001 (comparison with APPwt).

Absolute Aβ values are reported in Supplementary Table 1 online.

©
2
0
0
4
 N

a
tu

re
 P

u
b

li
s
h

in
g

 G
ro

u
p

  
h

tt
p

:/
/w

w
w

.n
a
tu

re
.c

o
m

/n
a
tu

re
n

e
u

ro
s
c
ie

n
c
e



deposits revealed the presence of both Aβwt1–40 and Aβwt1–42,

whereas in APPDutch mice, AβDutch1–40 was seen but

AβDutch1–42 was below detection level (Fig. 4b). This was con-

firmed by ELISA, which revealed a more than fourfold higher

human Aβ40/Aβ42 ratio in APPDutch mice than in APPwt mice

(Table 1; for absolute values, see Supplementary Table 1 online). We

also analyzed steady-state levels of Aβ40 and Aβ42 in APPDutch

and APPwt mice at 7 months, before detectable amyloid deposition,

to determine whether this difference in the ratio of Aβ40 to Aβ42 is

an early event or is only seen after the accumulation of amyloid. An

almost twofold greater Aβ40/Aβ42 ratio was seen in young

APPDutch mice than in APPwt mice of similar age (Table 1 and

Supplementary Table 1).

Massive parenchymal amyloid in APPDutch/PS45 mice

Examining our hypothesis that a high ratio of AβDutch1–40 to

AβDutch1–42 is linked to and potentially necessary for the predomi-

nant vascular amyloid deposition in APPDutch mice, we crossed

APPDutch mice with mice that overexpress human presenilin-1

(PS1) bearing the G384A mutation (PS45 mice). This mutation is

known to increase Aβ1–42 production16,17. Notably, starting at 12

weeks of age, APPDutch/PS45 double-transgenic mice developed

parenchymal amyloid in the neocortex and hippocampus. At 10

months, massive diffuse and compact parenchymal amyloid was

found in virtually all brain regions. Unlike in the APPDutch mice,

vascular amyloid, although present, was a much less prominent fea-

ture in the APPDutch/PS45 mice (Fig. 5a).

Western blot analysis of APPDutch/PS45 brain homogenates revealed

abundant AβDutch1–42 in addition to AβDutch1–40 (Fig. 5b). ELISA

measurements confirmed this observation, with AβDutch42 at least

twice as abundant as AβDutch40 in double-transgenic mice, both before

(predepositing) and after (depositing) the onset of amyloid deposition

(Table 1 and Supplementary Table 1). These results demonstrate that

AβDutch is capable of forming parenchymal amyloid deposits and that
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Figure 2  APPDutch mice develop cerebral

amyloid angiopathy. (a) In situ hybridization

reveals high transgene-derived mRNA levels in

neocortex (ctx) and hippocampus (hi) and brain

stem. (b) Immunostaining for hAPP in neocortex

shows punctate labeling of neuronal perikarya

(arrowhead) and weaker labeling of axonal

processes. Consistent with the neuron-specific

promoter, there was no hAPP expression in the

vessel wall (the lumen of the vessel is indicated

by an asterisk). (c) Western blot analysis of hAPP

and hAβ in mouse brain using an antibody

specific to human APP/Aβ. Upper panel:

APPDutch expression in APPDutch mouse lines

23 (lane 4) and 33 (lanes 5 and 7) and a

nontransgenic control littermate (lane 6). Bands

demonstrate immature and mature forms of

hAPP. Lower panel: synthetic human Aβwt1–40

mixed with human Aβwt1–42, AβDutch1–40 and

AβDutch1–42 peptides were used as markers

(lanes 1–3). Aβ levels did not reach detection

levels in predepositing APPDutch mice without

immunoprecipitation (shown are 13-month-old

mice). In contrast, in a 23-month-old amyloid

depositing APPDutch mouse, AβDutch1–40, but

not AβDutch1–42, was readily detected (lane 7).

(d) Immunohistochemical analysis of a 29-

month-old APPDutch mouse shows Aβ deposition

largely confined to leptomeningeal and

neocortical vessels (NT12 antibody). No compact

parenchymal deposits were seen. (e,f)

Immunolabeling of vascular amyloid with

antibodies specific to Aβ40 (R208 in e) and

Aβ42 (R306 in f) reveals that the majority of

vascular amyloid ends at amino acid 40.

(g) Congo red staining of amyloid-laden vessels

demonstrates that the vast majority of the

amyloid is of compact nature and congophilic.

(h) High-magnification view of amyloid-

containing cortical vessels that shows a vessel-

within-vessel configuration. (i) Electron

micrograph demonstrating abundant amyloid

fibrils (asterisk) between the smooth muscle

cells (SMC) in a 30-month-old APPDutch mouse.

Scale bars are 1 mm (a), 10 µm (b, e–h), 200

µm (d) and 1 µm (i). 
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such deposits can be induced in APPDutch mice by increasing the pro-

duction of AβDutch42 via the expression of mutant presenilin.

Endogenous murine Aβ is codeposited with human Aβ
To determine whether endogenous murine Aβ, the counterpart of Aβwt

derived from the wild-type allele in individuals with HCHWA-D, is

codeposited with transgene-derived human Aβ in APPDutch mice, we

used ELISA specific for murine Aβ40 and Aβ42. The amount of murine

Aβ was 4.4 ± 0.1% of the human Aβ detected in APPwt mice and 8.0 ±
1.0% of that detected in APPDutch mice. Notably, depositing APPDutch

mice showed a roughly threefold higher ratio of murine Aβ40 to Aβ42

than was seen in APPwt mice (Table 1 and Supplementary Table 1).

DISCUSSION

Although the APP mutation that causes HCHWA-D was identified

more than a decade ago4, progress toward understanding the pathogen-

esis of HCHWA-D has been hampered by the absence of an animal

model. Here we describe a transgenic mouse model that develops

extensive cerebrovascular amyloid deposits in leptomeningeal and cor-

tical vessels, similar to those found in affected people5,7. Parenchymal

amyloid is nearly absent in these transgenic mice, and the few

parenchymal plaques found are diffuse. The observation that neuronal

expression of APPDutch is sufficient for cerebrovascular amyloidosis,

smooth muscle cell degeneration and hemorrhage in a mouse model

strongly suggests that neurons are the source of the cerebrovascular

amyloid in HCHWA-D. Moreover, these results demonstrate that

smooth muscle cell degeneration does not require intracellular Aβ pro-

duction but can be initiated by extracellular, neuron-derived Aβ that is

transported to and accumulates at the vasculature.

Expanding on previous research18,19, we

found that amyloid deposits in human

HCHWA-D brains contain not only

AβDutch40 but also abundant Aβwt40, with

only little Aβ42. In the APPDutch mice, as in

human HCHWA-D, the vast majority of the deposited Aβ is Aβ40, with

roughly 12 times more AβDutch40 than AβDutch42. This is in contrast

to the peptide ratios found in human AD and in APPwt mice or other

transgenic mice expressing Swedish APP, where significantly more

Aβ42 relative to Aβ40 is deposited20–23. In both HCHWA-D brain tis-

sue and APPDutch mice, Aβwt derived from the wild-type allele in

HCHWA-D and from the endogenous murine APP in the APPDutch

mice followed the deposition pattern of the mutated AβDutch species.

The two other mouse models we have examined in this study further

highlight the important role of the Aβ40/Aβ42 ratio in determining

vascular versus parenchymal amyloid deposition. APPwt mice overex-

pressed APP at levels comparable to APPDutch mice, but the former

developed abundant parenchymal plaques and only sparse vascular

amyloidosis, suggesting that the single E693Q amino acid substitution

is sufficient to target neuron-derived Aβ to the vessel wall. Notably, the

Aβ40/Aβ42 ratio was significantly lower in APPwt mice than in

APPDutch mice. Thus, a straightforward explanation for why the

Dutch mutation leads to CAA could be that it favors the production of

Aβ40, which in turn is vasculotropic. To examine this hypothesis, we

determined the Aβ40/Aβ42 ratio in young transgenic mice before the

onset of amyloid deposition, where a twofold higher ratio of

Aβ40/Aβ42 was seen in APPDutch mice than in APPwt mice. In condi-

tioned media of E693Q transfected cells, a similar, albeit somewhat

smaller, increase in the Aβ40/Aβ42 ratio has been reported11,24. This

suggests that the Dutch mutation affects Aβ40/Aβ42 ratios at the level

of Aβ production or clearance. Recent results show that AβDutch40 is

more resistant to proteolysis by both neprilysin and insulin-degrading

enzyme25,26 and is less efficiently cleared into the blood13 than Aβwt40.

Similar studies with AβDutch42, however, have not been reported.
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Figure 3  Hemorrhages and neuroinflammation in

APPDutch mice. (a) Double labeling for smooth

muscle cell actin (green) and Aβ (red) in a

leptomeningeal vessel of a 29-month-old

APPDutch mouse reveals displacement of

smooth muscle cells by vascular amyloid

(arrowheads).(b) Vessels that are not affected by

Aβ show a continuous rim of smooth muscle

cells. Shown are superpositions of optical

sections. (c) A fresh hemorrhage is shown that

occurred at the surface of the brain of a 29-

month-old APPDutch mouse. (d) Hematoxylin

and eosin (H&E) staining on a cross-section

through the bleeding shown in c. (e)

Microhemorrhage associated with amyloid-laden

vessels visualized by Perls’ Prussian blue

staining for ferric iron. (f) High magnification of

such microbleeds reveal hemosiderin-positive

microglia. (g) Activated perivascular microglia

(blue) in the immediate vicinity of amyloid-laden

vessels (Congo red) in the neocortex of a 29-

month-old APPDutch mouse. (h) Such

microgliosis was absent in the same mouse

around unaffected vessels (arrowheads). 

(i) Reactive astrocytes (blue) in neocortical areas

with CAA (Congo red). (j) In neocortical regions

with no vascular amyloid, no reactive astrocytes

were observed. Scale bars are 20 µm (a,b,e),

100 µm (c,g–j), 50 µm (d) and 5 µm (f).
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Familial AD-causing PS1 mutations shift the generation of Aβ to

favor Aβ42, which results in early and robust parenchymal amyloid

deposition in transgenic mice that produce human wild-type

Aβ16,27,28. Crossing the APPDutch mouse with the PS45 line resulted

in abundant parenchymal plaque formation at a young age, with lim-

ited CAA pathology. Thus, although AβDutch preferentially accumu-

lates around cerebral vessels, genetically shifting the AβDutch40/

AβDutch42 ratio to favor AβDutch42 was sufficient to alter the distri-

bution of the resulting amyloid pathology from the vasculature to the

parenchyma. Moreover, this demonstrates that AβDutch can form

dense and congophilic plaques within the parenchyma. Therefore,

parenchymal amyloid formation in APPDutch mice and humans with

HCHWA-D is likely to be limited by the absence of Aβ42-driven

parenchymal amyloid seeding. The present data do not rule out a role

for Aβ42 as seed for vascular amyloid29.

We have previously shown that cerebral amyloidosis is not a local

process and that Aβ can be transported extracellularly and accumu-

late distant to its site of production30, as must also occur in the

APPDutch mouse. This observation, together with the finding of sim-

ilar intraneuronal Aβ accumulation in APPDutch and APPwt trans-

genic mice (Supplementary Fig. 1 online), indicate that different Aβ
species interact differently with the extracellular environment, mak-

ing Aβ movement through the different local environments in the

CNS an important determinant of amyloid pathology. For instance,

when Aβ42 concentration is insufficient to form and maintain

parenchymal amyloid seeds, soluble Aβ is transported from neurons

to the vasculature, where it is cleared into the blood or drained along

perivascular spaces31,32. Coupled with the observation that

AβDutch40 is less efficiently cleared than Aβwt40 is13, this may in

part explain why AβDutch40 accumulates at the vessel wall in

APPDutch mice, whereas it can accumulate within the parenchyma

when these mice are crossed with PS45 mice.

The knowledge that both Aβ40 and Aβ42 have the potential to drive

amyloid pathology, albeit within different compartments, will

undoubtedly have further implications as anti-Aβ therapies are devel-

oped. For example, anti-Aβ immunotherapy has been shown to pref-

erentially clear Aβ42 from mice with preexisting amyloid

pathology33,34. Although selective clearance of Aβ42 would benefi-

cially reduce parenchymal amyloid burden, this might potentiate vas-

cular amyloid pathology, as has been alluded to in Aβ-immunotherapy

studies done in mice and may also have been the case for the two

Aβ42-immunized human patients who have gone to autopsy33,35–37.

Given this complexity, further studies of anti-Aβ therapies will need to

follow alterations in the Aβ40/Aβ42 ratio, while addressing the result-

ing balance of vascular and parenchymal amyloid pathology.

Most individuals with HCHWA-D die early due to recurrent

strokes6, but some with relatively restricted stroke pathology reach a

considerable age. Nevertheless, these individuals show a continuous

cognitive decline similar to that seen in persons with AD38. This sup-

ports recent studies suggesting that CAA is not only a significant cause

of intracerebral hemorrhage in the elderly but also an important con-

tributing factor to cognitive impairment and AD dementia39. CAA may

interfere with the anatomical integrity of the vessel wall and the physio-
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Figure 4 Parenchymal and vascular amyloid deposition in APPwt mice. 

(a) Aβ-immunostaining of an 18-month-old APPwt mouse reveals

parenchymal amyloid deposits with only scattered CAA. (b) Western blot

analysis of human Aβ in APPwt brain in comparison to APPDutch brain.

Lanes 1–3, synthetic human Aβ. In amyloid-depositing APPwt mice (18

months), a substantial Aβwt1–40 and a somewhat weaker Aβwt1–42 band

were observed (lane 5), whereas in amyloid-depositing APPDutch mice (23

months), only AβDutch1–40 was detected (lane 4). Scale bar is 100 µm.

Figure 5 Predominant parenchymal amyloid deposition in APPDutch/PS45

double-transgenic mice. (a) Aβ-immunostaining of a 10-month-old

APPDutch/PS45 mouse shows extensive, predominantly diffuse, but also

some congophilic, parenchymal amyloid deposits with only scattered CAA. (b)

Western blot analysis of human Aβ in mouse brain immunoprecipitates. Lanes

1–3, synthetic human Aβ. Predepositing (4-month-old) APPDutch mouse

reveals only AβDutch1–40 (lane 4). In contrast, both AβDutch1–40 and

1–42 were detectable in a predepositing 2.5-month-old  APPDutch/PS45

mouse (lane 5) and a depositing 10-month-old APPDutch/PS45 mouse (lane

6). In order to show AβDutch1–40 and 1–42 as distinct bands, the sample

shown in lane 6 was highly diluted. Scale bar is 100 µm.
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logical response to vasodilation, and it can occlude affected vessels and

thus induce perivascular ischemia8,40,41. However, previous studies

have been limited by their reliance on end-stage human autopsy cases

and transgenic models that have severe parenchymal amyloidosis in

addition to CAA40–43. Our APPDutch model, which recapitulates well

human HCHWA-D, is likely to be a useful tool for the further study of

the pathogenic mechanisms by which CAA affects cognition and neu-

rodegeneration, as well as for the development of therapeutic strategies.

METHODS
Human patients. Tissue of frontal cortex and pial vessels was obtained at

autopsy from five HCHWA-D patients (50–76 years of age; postmortem delay

5–48 h). For comparison, cortical tissue from nine individuals with autopsy-

confirmed AD (61–93 years of age, postmortem delay 4–26 h) and two control

individuals (78 and 87 years of age, postmortem delay 4–11 h) was used.

Generation of transgenic mice. To generate Dutch-mutant APP transgenic

mice, human APP751 cDNA with the E693Q mutation was inserted into the

blunt-ended XhoI site of the vector pTSCα1 containing the murine Thy1.2

minigene44. After removal of vector sequences by NotI/PvuI digestion, linear

Thy1-APPconstructs were injected into C57BL/6J oocytes. Five positive trans-

genic founder mice (C57BL/6J-TgN(Thy1-APPE693Q)) were identified and

expression of human APP was assessed by western blot and immunohistochem-

istry. The two lines with the highest transgene expression (lines 23 and 33) were

used in this study (APPDutch mice). Expression levels in these lines are about

five times greater than endogenous APP levels (data not shown). The generation

of the wild-type human APP751 transgenic mice (C57BL/6J-TgN(Thy1-

APP)51) has been described previously45. Line 16 (APPwt mice), which has a

similar or slightly higher APP expression level than the APPDutch mice, was

used in this study. APPDutch/PS45 double-transgenic mice were obtained by

crossing APPDutch mice with mice overexpressing human G384A-mutated pre-

senilin-1 (PS1) under the control of the murine Thy1 promoter (B6,D2-

TgN(Thy1-PS1G384A)45). These PS45 mice were backcrossed to C57BL/6J for

more than seven generations prior to use. All mice analyzed were hemizygous

for the transgene(s) of interest. All animal experiments were in compliance with

protocols approved by the local Animal Care and Use Committees.

Histology and immunohistochemistry. Tissue was immersion-fixed in 4%

paraformaldehyde. Histology and immunohistochemistry were done on

either 4-µm-thick paraffin-embedded sections or 25-µm-thick free-floating

frozen sections. Aβ was immunostained with rabbit polyclonal antibody

NT12 (NT11), gifts of P .Paganetti (Basel, Switzerland)44 using standard

immunoperoxidase procedures with Elite ABC kits (Vector Laboratories),

with 3,3′-diaminobenzidine (Sigma) or Vector SG (Vector Laboratories) as

substrates. For specific staining of Aβx–40 or Aβx–42, we used rabbit antisera

R208 (R163) or R306 (R165), respectively46 (gift of P. Mehta, New York). All

Aβ antibodies recognized both Aβwt and AβDutch. Human APP (hAPP) was

visualized with polyclonal antibody A4CT (specific to the C-terminal 100

amino acids of APP; courtesy of K. Beyreuther, Heidelberg, Germany).

Microglia and astroglia were stained with rabbit polyclonal antibody to ion-

ized calcium binding adaptor molecule-1 (Iba-1)47 (courtesy of Y. Imai,

Tokyo) and rabbit polyclonal antibody to glial fibrillary acidic protein

(Dako), respectively. Double immunofluorescence labeling of Aβ and smooth

muscle cells was done for confocal microscopy. NT12 and mouse monoclonal

antibody to α-smooth muscle actin (A-2547, Sigma) followed by goat

anti–rabbit Alexa 568 and goat anti–mouse Alexa 488 (Molecular Probes)

were used. Staining with Congo red, Thioflavin S and Perls’ Prussian blue

reaction for ferric iron was done according to standard protocols41.

Electron microscopy. Mice were perfused with ice-cold PBS for 5 min.

Neocortical tissue pieces were removed and immersion-fixed in

4% paraformaldehyde and 0.5% glutaraldehyde at 4 °C. The tissue was then

postfixed in 1% osmium tetroxide in 0.1 M cacodylate buffer, dehydrated, and

then processed for Spurr embedding. Ultrathin sections were cut from selected

areas, stained with uranyl acetate and lead citrate, and then examined and

photographed with a Jeol JEM1011 electron microscope.

In situ hybridization. In situ hybridization for human APP was done as previ-

ously described44. In brief, a 33P-labeled oligonucleotide probe, 5′-AGC-

CTCTTCCTCTACCTCATCACCATCCTCATCGTCCTCG-3′, complementary

to the coding sequence of hAPP between nucleotides 859 and 898, was used at

a final concentration of 2 pmol/ml.

Western blot analysis. APP expression levels in transgenic mice were analyzed

using standard 8% SDS-polyacrylamide minigels followed by blotting and

antibody binding as described below. For analysis of Aβ, we used western blots

as previously described15. Briefly, samples of homogenized brain hemispheres

were subjected to SDS-PAGE using 10% T, 5% C bicine/Tris minigels contain-

ing 8 M urea in the separation gel. To detect Aβ in brains of predepositing

mice, we used immunoprecipitation with antibody 6E10. Proteins were trans-

ferred to a PVDF Immobilon-P membrane (Millipore) by semi-dry blotting,

incubated with antibody 6E10 (Signet) and visualized by chemiluminescence

(ECL, Amersham). Antibody 6E10 recognizes residues 1–17 of Aβ, and the

Dutch mutation at position 22 does not interfere with its binding. Synthetic

Aβwt1–40 and Aβw1–42 peptides were purchased from Bachem. Synthetic

AβDutch species were gifts ofJ. Ghiso (New York), G. Labeur (Ghent, Belgium)

and W. E. Van Nostrand (Stony Brook, New York, USA).

ELISA. Cerebral Aβ levels of patients and Aβ-depositing mice were assayed by

sandwich ELISA from formic acid–extracted sucrose homogenates prepared

from postmortem human cortical tissue or mouse hemi-brains lacking the

cerebellum, as previously described48. Aβ was captured with Aβ C-terminal

monoclonal antibodies that recognize exclusively either Aβx–40

(JRF/cAβ40/10) or Aβx–42 (JRF/cAβ42/26) and are detected with horseradish

peroxidase-conjugated JRF/Aβtot/17, which is specific to the N-terminal 16

residues of human Aβ48. Aβ levels in mice prior to amyloid deposition were

determined by preparing a sucrose homogenate from each hemibrain (with-

out cerebellum) and then extracting this in diethylamine (DEA), as previously

described49. Endogenous murine Aβ was similarly detected using DEA extrac-

tion and a murine-specific monoclonal antibody for detection (JRF/rAβ1-

15/2)49. ELISA results are reported as the mean ± s.e.m. in pmol Aβ per gram

of wet brain, based on standard curves using synthetic Aβ1–40 and Aβ1–42

peptide standards (American Peptide). The values were compared by non-

parametric Mann-Whitney U tests. All capture and detection antibodies were

a gift from M. Mercken (Johnson and Johnson Pharmaceutical Research and

Development/Janssen Pharmaceutica).

Note: Supplementary information is available on the Nature Neuroscience website.
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