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ABSTRACT 27 

Plant survival under environmental stress requires the integration of multiple signaling 28 

pathways into a coordinated response, but the molecular mechanisms underlying this 29 

integration are poorly understood. Stress-derived energy deprivation activates the Snf1-30 

Related protein kinases 1 (SnRK1s), triggering a vast transcriptional and metabolic 31 

reprogramming that restores homeostasis and promotes tolerance to adverse conditions. 32 

Here, we show that clade A type 2C protein phosphatases (PP2Cs), established 33 

repressors of the abscisic acid (ABA) hormonal pathway, interact with the SnRK1 34 

catalytic subunit causing its dephosphorylation and inactivation. Accordingly, SnRK1 35 

repression is abrogated in double and quadruple pp2c knockout mutants, provoking, 36 

likewise SnRK1 overexpression, sugar hypersensitivity during early seedling 37 

development. Reporter gene assays and SnRK1 target gene expression analyses further 38 

demonstrate that PP2C inhibition by ABA results in SnRK1 activation, promoting 39 

SnRK1 signaling during stress and once the energy deficit subsides. Consistent with 40 

this, SnRK1 and ABA induce largely overlapping transcriptional responses. Hence, the 41 

PP2C hub allows the coordinated activation of ABA and energy signaling, 42 

strengthening the stress response through the cooperation of two key and 43 

complementary pathways. 44 

  45 
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INTRODUCTION 46 

Changes in water and nutrient availability, soil salinity and extreme temperatures, 47 

amongst others, generate signals in plants that need to be finely integrated with 48 

metabolic activity and development for optimal growth and survival (Smith and Stitt, 49 

2007). One such signal is energy deficiency derived from impaired carbon assimilation 50 

and/or respiration in situations of stress, which triggers the activation of the SnRK1 51 

protein kinases to restore homeostasis and elaborate adequate longer-term responses 52 

through a vast metabolic and transcriptional reprogramming (Radchuk et al., 2006; 53 

Schwachtje et al., 2006; Baena-Gonzalez et al., 2007; Baena-Gonzalez and Sheen, 2008; 54 

Lee et al., 2009). The Arabidopsis (Arabidopsis thaliana) genome encodes 38 SnRKs, 55 

of which 3, SnRK1.1 (KIN10/AKIN10), SnRK1.2 (KIN11/AKIN11), and SnRK1.3 56 

(KIN12/AKIN12), represent the orthologs of the budding yeast Sucrose-non-57 

fermenting1 (Snf1) and mammalian AMP-activated Protein Kinase (AMPK) metabolic 58 

sensors (Halford et al., 2003; Polge and Thomas, 2007; Hardie, 2011). An increasing 59 

body of evidence suggests that SnRK1s act as convergence points for various metabolic, 60 

hormonal and stress signals during growth and development, linking it to key hormonal 61 

pathways and in particular to ABA (Nemeth et al., 1998; Bhalerao et al., 1999; Bradford 62 

et al., 2003; Radchuk et al., 2006; Baena-Gonzalez et al., 2007; Lu et al., 2007; 63 

Rosnoblet et al., 2007; Ananieva et al., 2008; Baena-Gonzalez and Sheen, 2008; Lee et 64 

al., 2008; Jossier et al., 2009; Radchuk et al., 2010; Coello et al., 2012; Tsai and 65 

Gazzarrini, 2012). SnRK1 is an heterotrimeric complex composed of an α-catalytic 66 

subunit (SnRK1.1/1.2/1.3 in Arabidopsis), and two regulatory subunits, β and γ (Polge 67 

and Thomas, 2007). Similarly to its mammalian and yeast counterparts SnRK1 activity 68 

requires phosphorylation of a highly conserved T-loop residue (T175 in SnRK1.1) 69 

(Estruch et al., 1992; Hawley et al., 1996; Stein et al., 2000; McCartney and Schmidt, 70 

2001; Baena-Gonzalez et al., 2007; Shen et al., 2009; Crozet et al., 2010). Under normal 71 

energy conditions in mammalian cells Mg-ATP is bound to the γ-subunit of the AMPK 72 

complex resulting, through the joint action of the constitutively active upstream Liver 73 

Kinase B1 (LKB1) and the still unknown upstream phosphatase, into a basal T-loop 74 

phosphorylation:dephosphorylation cycle with no net AMPK activation (Hardie, 2011). 75 

Under energy deficiency conditions, the replacement of Mg-ATP by AMP/ADP triggers 76 

a conformational change that promotes AMPK phosphorylation and most importantly, 77 

protects AMPK from dephosphorylation by rendering it a poor substrate for 78 
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phosphatases (Oakhill et al., 2011; Xiao et al., 2011). Despite the rate of 79 

dephosphorylation being a primary determinant of AMPK activity, the identity of the 80 

AMPK phosphatase(s) remains unclear and may differ between tissues and conditions 81 

of cell stimulation (Steinberg and Kemp, 2009; Carling et al., 2012). In the budding 82 

yeast, Reg1, a regulatory subunit of the protein phosphatase 1 (PP1) Glc7 enzyme, 83 

interacts with Snf1 and is required to maintain Snf1 in an inactive state during growth 84 

on glucose (Sanz et al., 2000; Hong et al., 2005). The metabolic signal underlying Snf1 85 

regulation remained enigmatic for a long time but recent work demonstrated that also 86 

Snf1 is regulated by ADP at the substrate level, preventing its dephosphorylation by 87 

phosphatases (Mayer et al., 2011). In plants, SnAK1/2 (GRIK2/1) have been identified 88 

as upstream SnRK1 kinases (Shen et al., 2009; Crozet et al., 2010), but the phosphatases 89 

responsible for resetting SnRK1 signaling are unknown. 90 

In Arabidopsis at least seven of the nine PP2Cs from clade A (Schweighofer et 91 

al., 2004) act as negative regulators of the ABA pathway (Gosti et al., 1999; Merlot et 92 

al., 2001; Leonhardt et al., 2004; Saez et al., 2004; Kuhn et al., 2006; Saez et al., 2006; 93 

Yoshida et al., 2006; Nishimura et al., 2007; Rubio et al., 2009; Antoni et al., 2012) 94 

through their interaction with SnRK2s, more divergent members of the SnRK family 95 

and specific to plants (Halford et al., 2003; Cutler et al., 2010). Arabidopsis contains 10 96 

SnRK2s of which three, SnRK2.2/2.3/2.6, are specifically activated by ABA and play a 97 

central role in the ABA pathway (Gomez-Cadenas et al., 1999; Li et al., 2000; Mustilli 98 

et al., 2002; Boudsocq et al., 2004; Yoshida et al., 2006; Boudsocq et al., 2007; Fujii et 99 

al., 2007; Fujii et al., 2009). Clade A PP2Cs regulate SnRK2.2/2.3/2.6 through physical 100 

obstruction and direct dephosphorylation of a conserved serine residue in the T-loop 101 

(S175 in SnRK2.6) (Umezawa et al., 2009; Vlad et al., 2009; Soon et al., 2012). In the 102 

presence of ABA, the Pyrabactin Resistance 1 (PYR1)/PYR1-Like  (PYL)/Regulatory 103 

Components of ABA Receptors (RCAR) family of ABA receptors (hereafter PYL) 104 

inhibit PP2Cs, resulting in SnRK2 activation and downstream gene expression (Ma et 105 

al., 2009; Park et al., 2009; Soon et al., 2012).  106 

Considering that clade A PP2Cs, through interaction with a wide array of 107 

targets, act as a regulatory hub for different abiotic stress responses (Sheen, 1996; 108 

Cherel et al., 2002; Guo et al., 2002; Himmelbach et al., 2002; Ohta et al., 2003; Miao 109 

et al., 2006; Yang et al., 2006; Umezawa et al., 2009; Vlad et al., 2009; Geiger et al., 110 

2010) and taking into account the role of SnRK1 as a convergence point for multiple 111 
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types of stress (Baena-Gonzalez et al., 2007), we postulated that clade A PP2Cs might 112 

function as SnRK1 phosphatases. An additional hint came from data mining on a high-113 

throughput proteomics screen for YFP-ABI1 interacting proteins, which inadvertently 114 

identified SnRK1s as putative ABI1-interacting proteins (Nishimura et al., 2010) (see 115 

below). 116 

Here, we provide molecular, genetic and physiological evidence for the role of 117 

clade A PP2Cs as negative regulators of SnRK1 signaling in Arabidopsis through their 118 

direct interaction with the SnRK1 α-catalytic subunit, its dephosphorylation, and 119 

subsequent inactivation, hence contributing to resetting SnRK1 signaling upon the 120 

remittance of stress. On the other hand, PP2C inhibition allows ABA to promote SnRK1 121 

activity, potentiating the stress response through the interplay of two complementary 122 

pathways and providing an explanation for the extensive genetic interactions reported 123 

between ABA and sugar signaling (Rolland et al., 2006).  124 

 125 

RESULTS 126 

Clade A PP2Cs interact with the SnRK1 catalytic subunit 127 

A high-throughput screen employing GFP-affinity purification and mass-spectrometric 128 

analyses was carried out by Nishimura and colleagues to identify proteins interacting 129 

with YFP-ABI1 (Nishimura et al., 2010). Data mining of their results revealed the 130 

presence of peptides corresponding to both SnRK1s in several of their replicate 131 

experiments with YFP-ABI1 (SnRK1.1 in Experiments #1, #3, and #8 and SnRK1.2 in 132 

Experiments #1 and #3), whereas neither of the two SnRK1s were identified in any of 133 

the YFP control experiments.  134 

As a first step to validate this data and investigate the possible regulation of 135 

SnRK1 by clade A PP2Cs, we tested in yeast-two-hybrid (Y2H) assays the interaction 136 

between the SnRK1 catalytic subunit and ABI1 or PP2CA, representative members of 137 

the two clade A branches in the PP2C family (Schweighofer et al., 2004). SnRK1.1 138 

interacted with ABI1 and PP2CA in yeast cells, and deletion of its regulatory domain 139 

(RD) abolished this interaction (Figure 1A and Supplemental Figure 1). The N-terminus 140 

harbors the kinase catalytic domain (CD), whilst the C-terminus harbors the RD that 141 

binds the β- and γ-subunits (Polge and Thomas, 2007). The SnRK1 RD contains a 142 

subdomain of unknown function, the Kinase-Associated 1 (KA1) domain, that was 143 

reported in the SnRK3.11/SOS2 protein kinase to closely superimpose on the protein 144 
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phosphatase interaction (PPI) domain (Sanchez-Barrena et al., 2007), a docking site for 145 

the clade A PP2C ABI2 (Ohta et al., 2003). Modeling SnRK1.1 with the structures 146 

resolved for the KA1 domain in SnRK3.11 (Sanchez-Barrena et al., 2007), the AMPK-147 

related Microtubule-Affinity Regulating Kinase 3 (MARK3) (Tochio et al., 2006), and 148 

for AMPKα (Xiao et al., 2011), revealed that in SnRK1.1 this subdomain spans residues 149 

390-512 (Supplemental Figure 2). As shown in Figure 1A, the KA1 domain was both 150 

required and sufficient for the interaction with the phosphatase. Nevertheless, colony 151 

growth when using the KA1 domain alone was weaker than with SnRK1.1-RD or the 152 

full-length protein, suggesting that other regions may play a role in the PP2C-153 

interaction. 154 

To further validate the Y2H data, we performed an in vitro pull-down assay 155 

(Figure 1B). Purified recombinant His-SnRK1.1-CD or His-SnRK1.1-RD were 156 

incubated with GST-PP2CA or GST and the interacting proteins were pulled-down 157 

employing a glutathione-agarose matrix. SnRK1.1-RD was recovered only when using 158 

GST-PP2CA as bait, and a clear enrichment of SnRK1.1-CD was observed when using 159 

GST-PP2CA compared to GST alone, suggesting that even though not detected in the 160 

Y2H assay, PP2Cs interact also with the SnRK1.1-CD. To determine whether a 161 

SnRK1.1-PP2C interaction occurs also in planta, SnRK1.1 was transiently co-expressed 162 

in Arabidopsis protoplasts with control DNA or with a plasmid expressing ABI1-HA. 163 

Immunoprecipitation with an anti-HA antibody revealed a specific interaction between 164 

SnRK1.1 and ABI1-HA (Figure 1C), demonstrating that clade A PP2Cs interact with 165 

SnRK1.1 also in vivo. 166 

 167 

Clade A PP2Cs dephosphorylate and inactivate SnRK1.1 168 

To evaluate whether the detected PP2C-SnRK1.1 interaction results in SnRK1.1 169 

dephosphorylation and inactivation, we immunoprecipitated SnRK1.1 from plants 170 

overexpressing an HA-tagged version (35S::SnRK1.1-HA) (Baena-Gonzalez et al., 171 

2007) and treated with recombinant His-PP2CA. PP2CA treatment caused a clear 172 

dephosphorylation of SnRK1.1, as assessed by a faster mobility in a Phos-tag SDS-173 

PAGE that selectively retards phosphorylated proteins (Kinoshita et al., 2009) (Figure 174 

2A). To investigate the effect of this dephosphorylation on SnRK1 activity, we 175 

performed in vitro kinase assays. In agreement with previous reports, active SnRK1.1 176 

could efficiently autophosphorylate and phosphorylate the ABF2 transcription factor in 177 
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vitro (Bhalerao et al., 1999; Zhang et al., 2008; Shen et al., 2009) (Figure 2B, lane 1). 178 

However, addition of PP2CA to the reaction caused a substantial decrease in the 179 

phosphorylation of both SnRK1.1 and ABF2 (Figure 2B, lane 2). The PYL receptors 180 

inhibit clade A PP2Cs in the presence of ABA, resulting in SnRK2 activation (Fujii et 181 

al., 2009; Ma et al., 2009; Park et al., 2009). Adding the PYL4 receptor in the absence 182 

of ABA did not change the ability of PP2CA to inactivate SnRK1 (Figure 2B, lane 3), 183 

whilst in the presence of ABA, PYL4 fully blocked SnRK1.1 inactivation by PP2CA 184 

(Figure 2B, lane 4). The repressive effect of PP2CA was at least partly due to a direct 185 

effect on SnRK1.1, since a similar inactivation was observed when SnRK1.1 was pre-186 

incubated with PP2CA and PYL4 (PP2CA active) prior to ABA and ABF2 addition 187 

(PP2C inactive) (Supplemental Figure 3, lanes 2 and 3). 188 

SnRK1 requires phosphorylation of the T-loop T175 residue (S175 for 189 

SnRK2.6) for activity (Baena-Gonzalez et al., 2007; Shen et al., 2009; Crozet et al., 190 

2010). To test whether T175 could be a substrate for clade A PP2Cs, we first performed 191 

in vitro dephosphorylation experiments. Recombinant SnRK1.1 is not phosphorylated 192 

and hence barely active, but can be strongly activated by the upstream kinases SnAK1/2 193 

(GRIK2/1) through the specific phosphorylation of T175 (Shen et al., 2009; Crozet et 194 

al., 2010). PP2CA treatment of recombinant GST-SnRK1.1, pre-phosphorylated with 195 

GST-SnAK2, resulted in significant T175 dephosphorylation, as detected with an anti-196 

phospho-AMPK(T172) antibody (Sugden et al., 1999; Baena-Gonzalez et al., 2007) 197 

(Figure 2C). A similar effect was observed when SnRK1.1 was immunoprecipitated 198 

from 35S::SnRK1.1-HA plants and treated with GST-PP2CA (Figure 2D), altogether 199 

showing that T175 is efficiently dephosphorylated by PP2Cs in vitro.  200 

To determine whether T175 is a PP2C substrate in vivo, we used Arabidopsis 201 

mesophyll protoplasts to transiently express SnRK1.1-GFP alone or in combination 202 

with various PP2Cs. As shown in Figure 2E, co-expression of SnRK1.1-GFP with either 203 

ABI1 or PP2CA (from clade A) resulted in a significant reduction in T175 204 

phosphorylation levels, whilst co-expression with the unrelated PP2C6-6 from clade E 205 

(Schweighofer et al., 2004) did not have an impact on T175 phosphorylation (Figure 206 

2F). These results suggest T175 is a substrate for clade A PP2Cs also in vivo. 207 

 208 

Clade A PP2Cs repress SnRK1 signaling 209 
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To further explore the functional implications of SnRK1 regulation by PP2Cs, we 210 

employed a transient cell-based assay that uses luciferase (LUC) induction from the 211 

DIN6::LUC reporter as readout of SnRK1 activity (Baena-Gonzalez et al., 2007). In 212 

transfected mesophyll protoplasts, SnRK1.1 overexpression is sufficient to induce 213 

strong LUC activity under control conditions (Figure 3A) (Baena-Gonzalez et al., 214 

2007). Co-expression with the ABI1 or PP2CA phosphatases reduced SnRK1.1-215 

mediated DIN6::LUC induction more than 60% without affecting SnRK1.1 levels 216 

(Figure 3A). Importantly, the ability of these phosphatases to repress reporter gene 217 

induction by SnRK1.1 was strongly diminished in the corresponding catalytically 218 

inactive variants (D177A and D142A, respectively), suggesting that repression of 219 

SnRK1 signaling by ABI1 and PP2CA occurs to a large extent through 220 

dephosphorylation. As a negative control, co-expression with the unrelated PP2C6-6 221 

from clade E (Schweighofer et al., 2004) had no effect on the ability of SnRK1.1 to 222 

induce the reporter (Figure 3B), altogether supporting the specific repressive role of 223 

clade A PP2Cs on the SnRK1 pathway.  224 

To investigate the influence of clade A PP2Cs on endogenous SnRK1 signaling, 225 

we treated detached leaves of wild-type (WT), the double abi1-2 pp2ca-1 (Rubio et al., 226 

2009), and two different quadruple pp2c knockout mutants (hai1-1 pp2ca-1 hab1-1 227 

abi1-2, hereafter Qhai1-1, and abi2-2 pp2ca-1 hab1-1 abi1-2, hereafter Qabi2-2; 228 

Supplemental Figure 4; (Antoni, 2013)) under control (3h light, L), activating (3h 229 

darkness, D) and inactivating conditions (3h darkness followed by 1h darkness in 50 230 

mM glucose, DG), and analyzed SnRK1 target gene expression (Baena-Gonzalez et al., 231 

2007) by quantitative RT-PCR (qRT-PCR). Exposure to darkness triggered a strong 232 

induction of SnRK1 target genes in all genotypes (Figure 3C), in agreement with the 233 

current view that the conformation adopted by AMPK and Snf1 under conditions of low 234 

energy renders the kinases resistant to phosphatase action (Mayer et al., 2011; Oakhill et 235 

al., 2011; Xiao et al., 2011). In marked contrast, SnRK1 inactivation in response to 236 

subsequent glucose addition was deficient in abi1-2 pp2ca-1 plants (for DIN6) and 237 

completely blocked in the quadruple pp2c mutants (Figure 3C), demonstrating that 238 

clade A PP2Cs are essential components for the post-stress inactivation of SnRK1. 239 

To assess whether these differences in SnRK1 target regulation between WT and 240 

quadruple pp2c mutants were correlated with differences in T175 phosphorylation, we 241 

monitored phospho-T175 levels in WT and Qabi2-2 leaves under the same conditions 242 
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as for the gene expression analyses. In agreement with previous work (Baena-Gonzalez 243 

et al., 2007), we did not observe differences in T175 phosphorylation between control, 244 

inducing, and inactivating conditions nor between WT and Qabi2-2 leaves 245 

(Supplemental Figure 5), suggesting that even though T175 phosphorylation is required 246 

for SnRK1 activity, other phosphorylation events or additional mechanisms play a role 247 

in the regulation of SnRK1.  248 

 249 

Altered sugar responses in pp2c mutants 250 

High concentrations of sugars (6% glucose, ~330 mM) induce a developmental arrest 251 

characterized e.g. by repression of cotyledon greening and expansion (Rolland et al., 252 

2006). WT seedlings grow well on plates containing 4% glucose but cotyledon greening 253 

and expansion are clearly impaired on higher sugar concentrations (Figure 4). Such 254 

adverse conditions trigger SnRK1 activation leading to sugar hypersensitivity in 255 

35S::SnRK1.1 seedlings (Jossier et al., 2009) (Figure 4). The abi1-2 pp2ca-1 double 256 

mutant displays glucose hypersensitivity visible only in 6% glucose, but this is 257 

markedly enhanced in the quadruple pp2c mutants, which exhibit a clear phenotype in 258 

4% glucose (Figure 4). Even though the high ABA hypersensitivity of these mutants 259 

(Supplemental Figure 4) renders them more sensitive to increased osmolarity in the 4% 260 

sorbitol control plates (Antoni et al., 2012), a clear impact on development can be 261 

observed on 4% glucose plates. In 6% sorbitol and glucose plates the growth of these 262 

mutants is so compromised that a distinction between osmotic and sugar effects is not 263 

possible. Consistent with the loss-of-function phenotype, plants overexpressing PP2CA 264 

are sugar insensitive (Figure 4), altogether genetically supporting the role of PP2Cs as 265 

negative regulators of SnRK1 signaling. 266 

 267 

ABA promotes SnRK1 signaling via PP2Cs 268 

We next wanted to assess whether PP2C regulation of the SnRK1 pathway could allow 269 

ABA to modulate SnRK1 activity. The transient co-expression of PYL receptors with 270 

ABI1 in ABA-treated mesophyll protoplasts is enough to efficiently repress ABI1 271 

action and to trigger the activation of an ABA signaling reporter (Fujii et al., 2009). 272 

Similarly, co-expression of ABI1 with PYL4 in the presence of ABA fully restored 273 

SnRK1.1 ability to induce the DIN6::LUC reporter in protoplasts (Figure 5A), 274 

presumably through ABI1 sequestration in the ABA-PYL-PP2C ternary complex. We 275 
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observed an overall 2-fold increase in LUC activity when comparing mock- and ABA-276 

treated samples (Supplemental Figure 6), further suggesting that ABA can induce 277 

SnRK1 signaling. To further explore this possibility and to examine the ABA effect on 278 

other SnRK1 target genes (Baena-Gonzalez et al., 2007), we treated Arabidopsis leaf 279 

discs with or without ABA (100 µM) for 5h and quantified downstream gene expression 280 

changes by qRT-PCR. ABA treatment did result in SnRK1 activation, albeit to an extent 281 

one order of magnitude lower than that triggered by darkness (Figure 5B). Most 282 

importantly, the impact of ABA on SnRK1 target genes was clearly reduced in plants 283 

overexpressing PP2CA (35S::PP2CA, Figure 5C) (Antoni et al., 2012), indicating that 284 

the effect of ABA on SnRK1 activity is via PP2C inhibition. To investigate this 285 

connection at the whole genome level, we compared the transcriptional profile 286 

associated with SnRK1.1 activation in protoplasts (Baena-Gonzalez et al., 2007) with 287 

that of seedlings treated with ABA 288 

(http://Arabidopsis.org/portals/expression/microarray/ATGenExpress.jsp, 289 

AtGenExpress Consortium) (Nemhauser et al., 2006). Despite differences in tissue type 290 

and developmental stage in the two datasets, there was a significant overlap between the 291 

transcriptional changes triggered by SnRK1.1 and by ABA (Figure 5D). More than 22% 292 

and 28% of the total number of genes upregulated and downregulated by SnRK1.1, 293 

respectively, were similarly regulated by ABA, in marked contrast with the negligible 294 

overlap with other hormone treatments or when comparing genes oppositely regulated 295 

in the SnRK1.1 and ABA datasets (Supplemental Figure 7). Despite the wide impact of 296 

both SnRK1 and ABA on the transcriptome, the probability of obtaining such an 297 

overlap of similarly regulated genes by chance is very low (hypergeometric test, p<9.2-
298 

42). 299 

We next analyzed SnRK1 target gene expression from WT leaf discs adding 300 

ABA in the beginning of the dark treatment to test the combined effect of ABA and 301 

energy stress, or 2h prior to glucose addition to test the impact of ABA on the sugar-302 

induced inactivation of SnRK1. Addition of ABA could clearly enhance SnRK1 303 

activation by darkness (Figure 5E, samples D, DA). Moreover, adding ABA prior to 304 

glucose diminished SnRK1 inactivation in response to sugar (Figure 5E, samples DG, 305 

DGA). Collectively, these results show that ABA positively regulates SnRK1 signaling 306 

through inhibition of clade A PP2Cs, promoting SnRK1 signaling during stress and 307 

once energy deficiency remits. 308 

http://arabidopsis.org/portals/expression/microarray/ATGenExpress.jsp�
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 309 

DISCUSSION 310 

Despite the central role of SnRK1 kinases in the plant stress response, the regulatory 311 

mechanisms underlying SnRK1 function are poorly understood. We have demonstrated 312 

here that clade A PP2Cs are bona fide SnRK1 phosphatases that contribute to resetting 313 

SnRK1 activity upon restoration of energy levels and that allow ABA to induce and 314 

potentiate SnRK1 signaling during stress (Figure 6). 315 

A clear interaction between SnRK1.1 and PP2Cs was observed both in vitro and 316 

in vivo (Figure 1), demonstrating that PP2Cs act through direct binding to the SnRK1 α-317 

catalytic subunit, probably using the C-terminal regulatory domain of SnRK1 as a 318 

docking site, albeit interacting also with the catalytic region that harbors the T175 target 319 

residue. Based on Y2H experiments the KA1 domain of SnRK1 may play a key role in 320 

the PP2C-SnRK1 interaction (Figure 1A). As previously noted (Sanchez-Barrena et al., 321 

2007), the KA1 domain can be closely superimposed on the phosphatase interaction 322 

domain of SOS2/SnRK3.11 and, given its presence also in the related AMPK and 323 

MARK3 kinases, has been suggested to represent an ancient highly conserved scaffold 324 

for interaction with PP2Cs (Sanchez-Barrena et al., 2007) (Supplemental Figure 2). 325 

SnRK2.2/2.3/2.6 also require their C-terminal region, namely the ABA box, for PP2C 326 

binding (Vlad et al., 2009; Soon et al., 2012), and additional regions of interaction exist 327 

within the N-terminal catalytic domain (Soon et al., 2012), some of which, such as the 328 

T- loop and the αG helix, correspond to conserved features of the protein kinase 329 

canonical fold (Hanks and Hunter, 1995) (Supplemental Figure 2). Similarly to 330 

SnRK2s, our in vitro pull-down assays suggested that the SnRK1.1-PP2CA interaction 331 

is mediated through regions both in the regulatory and the catalytic domains (Figure 332 

1B). Interestingly, a high-throughput screen for YFP-ABI1 interactors employing 333 

affinity purification and LC-MS/MS identified SnRK1s as candidate ABI1-interacting 334 

proteins, whilst peptides corresponding to SnRK2.6 were not retrieved and the ABI1-335 

SnRK2.6 interaction could only be confirmed by co-immunoprecipitation of the 336 

transiently overexpressed proteins in tobacco (Nishimura et al., 2010)). 337 

As an outcome of the interaction with clade A PP2Cs, SnRK1 is 338 

dephosphorylated and inactivated (Figures 2 and 3). Nevertheless, mutation of the 339 

catalytic site in the ABI1_D177A and PP2CA_D142A mutants did not fully restore 340 

SnRK1 activity (Figure 3A), suggesting that, although dephosphorylation plays a major 341 
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role in SnRK1 inactivation, physical blockage may, similarly to SnRK2s (Soon et al., 342 

2012), also be important for SnRK1 repression.  343 

PP2CA was able to efficiently dephosphorylate T175 in vitro and in vivo 344 

(Figures 2, 3D, and 3E), consistent with the in vitro dephosphorylation of this residue 345 

by mammalian PP2C (Sugden et al., 1999). In agreement with previous work (Baena-346 

Gonzalez et al., 2007), we could not detect any differences in the phosphorylation levels 347 

of T175 under various conditions (Supplemental Figure 5). It is thus likely that, in 348 

contrast to mammals (Hardie, 2011), and despite being a requirement for kinase activity 349 

(Baena-Gonzalez et al., 2007; Shen et al., 2009; Crozet et al., 2010), T175 350 

phosphorylation is not the final switch between SnRK1 activation and inactivation and 351 

additional modifications may be involved, similarly to what has been reported for 352 

several SnRK2s (Vlad et al., 2010). For example, while S175 phosphorylation is 353 

necessary for the catalytic activity of SnRK2.6, full kinase activation by ABA requires 354 

phosphorylation at a second site, S171 (Vlad et al., 2010), and both of these residues are 355 

substrates of ABI1 (Umezawa et al., 2009). Additional phosphorylated residues in the 356 

T-loop and the C-terminal regulatory region have indeed been identified in SnRK1.1 357 

(Wang et al., 2012), and the phosphorylation level of one of these (S364) appears to be 358 

increased in response to ABA and in particular to dehydration (Umezawa et al., 2013), 359 

suggesting they might be involved in the activation of SnRK1.1 under these conditions. 360 

Whether S364 and other residues are, likewise T175, dephosphorylated by clade A 361 

PP2Cs and whether they are differentially phosphorylated in the conditions used in our 362 

study remains to be determined. It is also plausible that this level of regulation applies 363 

only to a small fraction of the SnRK1 cellular pool and thus differential phosphorylation 364 

may remain undetected when assaying total protein extracts. 365 

Our results employing reporter gene assays and gene expression analyses in WT, 366 

pp2c knockout mutants and PP2CA overexpressors show that PP2Cs are negative 367 

regulators of SnRK1 signaling (Figures 3 and 4). Transient co-expression of PP2Cs with 368 

SnRK1 in protoplasts reduced more than 60% the ability of SnRK1 to activate gene 369 

expression (Figure 3). Using a similar approach Fujii and colleagues showed that the 370 

extent of repression by ABI1 was nearly 100% when co-expressing SnRK2.6 and its 371 

downstream ABF2 transcription factor to activate an ABA reporter (Fujii et al., 2009). 372 

However, the ability of PP2Cs to repress kinase activity varied depending on the 373 

SnRK2 and PP2C combination employed, and in the case of SnRK2.6 and HAB1 the 374 
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repression was only 30%. Since some clade A PP2Cs have been shown to 375 

dephosphorylate ABF2 (Antoni et al., 2012), it is also possible that the difference in the 376 

extent of repression is due to a simultaneous effect of ABI1 on the kinase and on the 377 

transcription factor.  378 

Most importantly, constitutive PP2C depletion in the quadruple pp2c mutants 379 

abrogates SnRK1 inactivation and downstream target gene repression after stress-380 

derived energy deprivation subsides (Figure 3C, DG samples). However, the impact of 381 

PP2C depletion is less obvious under activating stress conditions (Figure 3C, D 382 

samples) presumably because, likewise AMPK and Snf1 (Mayer et al., 2011; Oakhill et 383 

al., 2011; Xiao et al., 2011), the kinase is protected from dephosphorylation when 384 

energy levels are low (Sugden et al., 1999). Similarly to plants overexpressing 385 

SnRK1.1, double and quadruple pp2c knockout mutants showed to varying degrees a 386 

sugar hypersensitive phenotype, whilst PP2CA overexpressors displayed an opposite 387 

phenotype (Figure 4), all consistent with the conclusions from the molecular data that 388 

PP2Cs negatively regulate SnRK1. 389 

Our results indicate that the ABA and energy signaling pathways interact 390 

through PP2Cs and that ABA can induce SnRK1 signaling through PP2C inhibition 391 

(Figure 5). This is in agreement with a recent study reporting enhanced SnRK1 activity 392 

in wheat roots in response to ABA (Coello et al., 2012), and provides a molecular 393 

explanation for the extensive interactions observed between ABA and sugar signaling in 394 

genetic screens (Rolland et al., 2006). SnRK1s were never identified amongst ABA-395 

activated kinases, most probably because the extent of SnRK1 activation by ABA is one 396 

order of magnitude lower than that by energy stress (darkness; Figure 3C), and would 397 

probably remain masked by the much stronger activities of SnRK2s. On the other hand, 398 

these studies relied on in-gel kinase assays for detection of kinase activities (Yoshida et 399 

al., 2002; Furihata et al., 2006; Fujii et al., 2007). Despite our current lack of knowledge 400 

regarding the exact subunit composition of functional SnRK1, and despite the fact that 401 

the catalytic subunit alone is active (Bhalerao et al., 1999; Shen et al., 2009; Crozet et 402 

al., 2010), in vivo SnRK1 most likely operates, similarly to Snf1 and AMPK, as a 403 

heterotrimeric complex (Polge and Thomas, 2007; Hedbacker and Carlson, 2008; 404 

Hardie, 2011; Ramon et al., 2013), whose dissociation under the denaturing conditions 405 

employed in the in-gel kinase assays may result in loss of kinase activity. 406 
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In addition to the interaction through PP2Cs other points of crosstalk are likely 407 

to exist between ABA and energy signaling, and e.g. SnRK1 may regulate ABA 408 

transcription factors like ABF2 (Figure 2B) or FUS3 (Zhang et al., 2008; Tsai and 409 

Gazzarrini, 2012) that can also be directly dephosphorylated by PP2Cs (Antoni et al., 410 

2012). It is conceivable that in plants with altered SnRK1 signaling, aberrant 411 

PP2C:SnRK1 ratios, as well as the possible PP2C/SnRK1 co-regulation of downstream 412 

factors, could account for the altered ABA sensitivity and ABA-related phenotypes of 413 

these plants (Radchuk et al., 2006; Lu et al., 2007; Rosnoblet et al., 2007; Jossier et al., 414 

2009; Radchuk et al., 2010; Tsai and Gazzarrini, 2012). 415 

We propose a dual role for the regulation of SnRK1 by clade A PP2Cs (Figure 416 

6). On one hand, activation of the SnRK1 pathway through alternative signals like 417 

ABA, could support the ABA response with a more general one directed towards a 418 

metabolic and transcriptional reprogramming to cope with energy deficiency. Activation 419 

of SnRK1 by ABA could also serve to prime the SnRK1 system, potentiating a 420 

subsequent response to energy imbalance derived from stress. On the other hand, PP2C 421 

regulation appears to be an integral part of the SnRK1 signaling pathway, resetting the 422 

system once stress subsides or an energy balance is attained through the appropriate 423 

metabolic readjustments. Persistence of ABA under these conditions would in turn 424 

promote the maintenance of SnRK1 in an active state, similarly to how elevated 425 

interleukin-6 (IL-6) sustains high AMPK activity in skeletal muscle when energy levels 426 

are presumably no longer altered after exercise (Ruderman et al., 2006). With this 427 

scenario in mind, one could envision that in tissues directly exposed to stress SnRK1 428 

activation would be mainly dictated by the energy-dependent branch, whereas in distant 429 

tissues this activation could be mediated by ABA. In addition to IL-6, AMPK responds 430 

to other inflammatory mediators and hormones, but the precise mechanisms underlying 431 

this regulation are in most cases unknown (Steinberg and Kemp, 2009; Lim et al., 432 

2010). Interestingly, chronic TNFα treatment in muscle cells suppresses the AMPK 433 

pathway through the induction of the repressor PP2C (Steinberg et al., 2006), 434 

suggesting that a connection between hormone signals and energy signaling through the 435 

inhibitory PP2Cs might be conserved in multicellular eukaryotes. 436 

In summary, we have identified clade A PP2Cs as the upstream phosphatases of 437 

SnRK1 uncovering also a mechanism through which ABA can stimulate SnRK1 action. 438 

Future work to further understand SnRK1 regulation and to unravel the interplay of 439 
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these two central pathways may offer new insight not only into the mechanisms of 440 

stress tolerance, but also into fundamental developmental processes like seed maturation 441 

and germination. 442 

 443 

METHODS 444 

Primers, gene identifiers and constructs 445 

A list of all primers, gene identifiers, cloning steps and vectors is provided in 446 

Supplemental Table 1. 447 

 448 

Plant material and growth conditions 449 

All used Arabidopsis thaliana (Arabidopsis) plants are in the Columbia (Col-0) 450 

background, except 35S::SnRK1.1-HA (Landsberg erecta) (Baena-Gonzalez et al., 451 

2007). The 35S::SnRK1.1 (35S::SnRK1.1-2) (Jossier et al., 2009), 35S::PP2CA (Antoni 452 

et al., 2012), and abi1-2 pp2ca-1 (Rubio et al., 2009) lines have been described. 453 

Quadruple pp2c knockout mutants were generated from pp2ca-1 hai1-1 (Antoni et al., 454 

2012) and the corresponding triple pp2c mutants (Rubio et al., 2009). 455 

Plants were grown in soil under short day conditions (12 h light 100 µE/12 h 456 

dark). For in vitro culture, sterilized seeds were stratified in the dark at 4ºC for 2 days, 457 

and sowed on plates containing Murashige and Skoog medium with 0.1% MES, 0.8% 458 

phytoagar, and glucose (4% or 6%) or sorbitol (4% or 6%). Plates were sealed and 459 

incubated at 23ºC under continuous light. 460 

 461 

Antibodies and protein expression analyses 462 

The SnRK1.1 antibody was purchased from Agrisera (anti-AKIN10, AS10919). 463 

Phospho-SnRK1.1(T175) was detected with an anti-phospho-AMPK(T172) antibody 464 

(referred as αP-AMPK; Cell Signaling #2532), detecting also phospho-SnRK1.2(T175) 465 

as a lower band (Baena-Gonzalez et al., 2007). An anti-GST polyclonal antibody 466 

(Sigma G7781), and anti-HA- (Roche, 11583816001), and anti-T7- (Novagen, 69522-3) 467 

monoclonal antibodies were used for the detection of the corresponding tagged proteins. 468 

For analyses of protein expression from protoplast pellets and leaf tissue, the 469 

material was directly ground in 2X Laemmli solubilization buffer to maintain the 470 

phosphorylation status during protein extraction. 471 
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 472 

Protoplast transient expression assays  473 

Vectors for protoplast transient expression and assays were as described (Yoo et al., 474 

2007), using the UBQ10-GUS reporter as transfection efficiency control. For constructs 475 

for overexpression of SnRK1.1-GFP, ABI1-HA, PP2CA-HA, PP2C6-6-HA, and 476 

FLAG-PYL4 the corresponding coding sequences were cloned into a pHBT95 vector 477 

harboring the indicated C- or N-terminal tag. SnRK1 signaling was monitored using a 478 

DIN6::LUC reporter (Baena-Gonzalez et al., 2007). ABA and glucose were added to a 479 

final concentration of 5 µM and 30 mM, respectively. 480 

For co-immunoprecipitation assays untagged SnRK1.1 was expressed with 481 

ABI1-HA or mER7 control DNA (Yoo et al., 2007) in 3 ml of protoplasts under 482 

standard conditions.  483 

Frozen cell pellets were lysed in 500 µl of lysis buffer [50 mM Tris-HCl pH8.0, 484 

50 mM NaCl, 10 mM EDTA, 10% Glycerol, 0.5% Triton X-100, Complete Protease 485 

inhibitor cocktail (Roche), 20 mM NaF, 1 mM Orthovanadate, 1/500 (v/v) Phosphatase 486 

inhibitor 2 (Sigma P044), 1/500 (v/v) Phosphatase inhibitor 3 (Sigma P5726)],  487 

incubated at 4°C for 10min and diluted to a final volume of 1.5 ml with lysis buffer 488 

without Triton X-100. The cleared lysate was incubated with 40 µl of anti-HA affinity 489 

matrix (Roche 11815016001) for 3h at 4ºC. Agarose beads containing 490 

immunoprecipitated proteins were washed 5 times with lysis buffer containing 0.05% 491 

Triton, eluted with 4X Laemmli solubilization buffer, and analyzed by Western blot 492 

with an anti-SnRK1.1 antibody. 493 

 494 

Recombinant protein production 495 

The coding sequence of PP2CA was cloned into pGEX-4T1. Recombinant GST-PP2CA 496 

was produced in E. coli (BL21:DE3) and purified through GSH affinity 497 

chromatography as recommended by the manufacturer (Sigma G4510). 498 

N- (residues 1-293, CD) and C-terminal (residues 294-512, RD) SnRK1.1 were 499 

cloned into pET28a (Novagen). Recombinant proteins were produced in E. coli 500 

(BL21:DE3) and purified using IMAC (TALON, Clontech #635502) following 501 
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manufacturer’s instructions. Successful protein production and purification was verified 502 

by Western blotting with anti-GST and anti-T7 antibodies. Recombinant His-PYL4, 503 

His-PP2CA and His-ΔC ABF2 (residues 1–173) were produced as described in (Antoni 504 

et al., 2012), and recombinant GST-SnRK1.1 and GST-SnAK2 as in (Crozet et al., 505 

2010). 506 

 507 

In vitro pull-down assays 508 

Proteins (3µg of each) were incubated 1h at room temperature in 100µL of buffer A (50 509 

mM Tris-HCl pH7.5, 150 mM NaCl, 1 mM EDTA, 0.05% Triton-X100, 1/500 (V/V) 510 

plant-specific protease inhibitor cocktail (Sigma P9599)), mixed with 30 µl of GSH-511 

agarose beads and incubated one more hour. Beads were washed 4 times with buffer A, 512 

and bound proteins were analyzed by Western blotting using anti-T7 antibodies. 513 

 514 

SnRK1.1 immunoprecipitation, phosphatase treatment and in vitro kinase assays 515 

SnRK1.1 was immunoprecipitated from leaves of 35S::SnRK1.1-HA plants treated for 516 

1h in darkness. Plant material (~1g) was extracted in 3 volumes of 1XPBS 517 

supplemented with 1mM EDTA, 0.05% Triton X-100, and 1/500 (V/V) plant-specific 518 

protease inhibitor cocktail (Sigma). After centrifugation (16000g, 4ºC, 15min) the 519 

supernatant was recovered and 1mg of total protein was incubated O/N at 4ºC with 30 520 

µl Anti-HA affinity matrix. The matrix was washed 3 times with extraction buffer and 521 

resuspended in a total volume of 66 µl of buffer (50 mM Tris-HCl pH 7.6, 250 mM 522 

KCl, 10 % glycerol, 0.1 % Tween-20), of which 3 µl were used for each reaction.  523 

To assess dephosphorylation of immunoprecipitated SnRK1.1 by PP2CA, 524 

SnRK1.1 was incubated with His-PP2CA (2 µg) in a 50µl reaction containing 25 mM 525 

Tris-HCl, pH 7.5, 10 mM MgCl2 and 1 mM DTT. The reaction was stopped with 526 

Laemmli solubilization buffer and analyzed employing a Phos-tag SDS-PAGE (50 μM 527 

Phos-tag ligand (Wako) and 100 μM MnCl2) (Kinoshita et al., 2009) and Western blot 528 

with an anti-HA antibody. The Phos-tag ligand selectively retards phosphorylated 529 

proteins. 530 



  SnRK1 regulation by PP2Cs and ABA 

 

18 

 

For in vitro kinase assays immunoprecipitated SnRK1.1 was preincubated (for 531 

10 min) or not with His-PP2CA (0.6µg) and His-PYL4 (2.0µg) in 30 μl kinase buffer 532 

(20 mM Tris-HCl pH 7.8, 20 mM MgCl2, 2 mM MnCl2) ± ABA (30 µM) and further 533 

incubated with GST-ΔC ABF2 (0.5µg) for 1h at room temperature in the presence of 534 

3.5 μCi of γ32P-ATP. Reaction products were resolved in an 8% SDS-PAGE, 535 

transferred to an Immobilon-P membrane (Millipore), and detected using a 536 

Phosphorimage system (FLA5100, Fujifilm) (Antoni et al., 2012).  537 

For pre-activation of SnRK1.1, GST-SnRK1.1 and GST-SnAK2 (1µg of each) 538 

were incubated in 50 mM Tris-HCl pH7.5, 10 mM MgCl2, 100µM ATP, 1 mM DTT, 539 

1/1000 protease inhibitor cocktail (Sigma P9599) at 30°C for 30 min. After adding or 540 

not GST-PP2CA (1µg) the mix was further incubated for 30 min, and analyzed by 541 

Western blot employing anti-P-AMPK(T172) and anti-SnRK1.1 antibodies. 542 

 543 

Yeast-two-hybrid assays 544 

Y2H assays were performed as described (Saez et al., 2008). The full-length coding 545 

sequence of SnRK1.1 and the various deletions, cloned into pGBKT7, were faced with 546 

constructs harboring full-length PP2CA and ABI1 in fusion with the GAL4 activation 547 

domain (GAD). To generate the GAD-PP2CA fusion the PP2CA coding sequence was 548 

cloned into pGADT7. The pGADT7-ABI1 construct has been previously described 549 

(Vlad et al., 2010). 550 

 551 

Gene expression analyses 552 

Fully expanded leaves of 5-week old plants were used as such or to cut leaf discs (Ø 553 

9mm) and incubated on sterile MilliQ water in Petri dishes. For examining SnRK1 554 

regulation in the WT and pp2c mutants, leaves were incubated for 3h in light (control; 555 

L; 100 µE) or darkness (D), or 3h in darkness followed by 1h in darkness with glucose 556 

(DG). Unexpected darkness is perceived as stress and activates SnRK1 (Baena-557 

Gonzalez et al., 2007). For assessing the effect of ABA leaf discs of WT or 558 

35S::PP2CA plants were incubated ± ABA under light for 5h. For the effect of ABA on 559 

SnRK1 activation by stress and inactivation by sugar, leaf discs of WT plants were 560 
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incubated 3h in light (L), in darkness with (DA) or without ABA (D), or 1h in darkness 561 

followed by 2h in darkness with ABA and 1h in darkness with ABA and glucose 562 

(DGA). Glucose and ABA were added to a final concentration of 50 mM and 100µM, 563 

respectively. 564 

Following the indicated treatments, total RNA was extracted using TRIzol® 565 

reagent (Life Technologies), treated with RNase-Free DNase (Promega) and reverse 566 

transcribed (1.5 μg) using SuperScript III Reverse Transcriptase (Life Technologies). 567 

qRT–PCR analyses were performed using a 7900HT fast real time PCR System 568 

(Applied Biosystems) employing the Eva-Green fluorescent stain (Biotium), and the 2-
569 

ΔCT or comparative CT method (Livak and Schmittgen, 2001). Expression levels were 570 

normalized using the CT values obtained for the EIF4 gene. Efficient ABA uptake and 571 

signaling was confirmed by monitoring the induction of the ABA marker genes RAB18 572 

and RD29. 573 

 574 

Microarray dataset comparisons 575 

The dataset for the SnRK1.1-induced transcriptional profile corresponds to Table S3 in 576 

(Baena-Gonzalez et al., 2007). The hormone treatment datasets, as compared in 577 

(Nemhauser et al., 2006), are from the Arabidopsis AtGenExpress consortium 578 

(http://Arabidopsis.org/portals/expression/microarray/ATGenExpress.jsp). A two-fold 579 

change filter was applied to all the hormone datasets and, given the 6h incubation of the 580 

SnRK1.1 overexpression dataset, only the 3h (and not the 1h) time points were 581 

considered for the comparisons. Overlap between the compared datasets was revealed 582 

using the Venny Venn diagram on-line application 583 

(http://bioinfogp.cnb.csic.es/tools/venny/index.html). The dataset for the SnRK1.1-584 

induced transcriptional profile corresponds to Table S3 in (Baena-Gonzalez et al., 585 

2007). For determining the significance of overlap between the two experiments, 586 

hypergeometric testing was applied using the dhyper function in R. 587 

 588 

Statistical analyses 589 

http://arabidopsis.org/portals/expression/microarray/ATGenExpress.jsp�
http://bioinfogp.cnb.csic.es/tools/venny/index.html�
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All statistical analyses were performed with the GraphPad Prism software. For analyses 590 

of qPCR data, the statistical significance of the indicated changes was assessed 591 

employing log2-transformed relative expression values (Rieu and Powers, 2009).  592 

 593 
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Sequence data from this article can be found in the Arabidopsis Genome Initiative or 595 

GenBank/EMBL databases under the following Accession numbers: SnRK1.1, 596 
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 902 

 903 

FIGURE LEGENDS 904 

 905 

Figure 1. Clade A PP2Cs and SnRK1.1 interact in vitro and in vivo. (A) SnRK1.1 906 

interacts with ABI1 and PP2CA in yeast-two-hybrid assays. CD and RD, catalytic and 907 

regulatory domain, respectively. (B) In vitro interaction between GST-PP2CA and His-908 

T7-SnRK1.1 detected by GST-pull-down and T7-immunodetection of SnRK1.1 preys. 909 

(C) HA-immunoprecipitation pulls down SnRK1.1 from protoplasts co-expressing 910 

SnRK1.1 (untagged) with ABI1-HA, but not with control DNA.  911 

 912 

Figure 2. Clade A PP2Cs inhibit SnRK1.1 by dephosphorylation. Immunoprecipitated 913 

SnRK1.1-HA is dephosphorylated (A) and inactivated (B) in vitro by PP2CA. (A) HA-914 

immunoblot following Phos-tag-SDS-PAGE (Kinoshita et al., 2009). (B) 915 
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Autoradiograms showing that SnRK1.1 activity on itself and ABF2 (lane 1) is lost 916 

following PP2CA-treatment (lane 2), but rescued by PYL4 and ABA (lane 4). PP2CA 917 

dephosphorylates T175 in recombinant SnRK1.1, phosphorylated or not with SnAK2, 918 

(C) and in immunoprecipitated SnRK1.1 (n=3) (D) in vitro. Numbers below 919 

autoradiograms and immunoblots denote band intensities relative to SnRK1.1 control 920 

(=1). At least three independent experiments were performed in (A-C) with similar 921 

results. Co-expression of clade A PP2Cs (E) but not of clade E PP2C6-6 (F) with 922 

SnRK1.1 in protoplasts results into its dephosphorylation of T175. PP2Cs and SnRK1.1 923 

bear HA- and GFP-tags, respectively. SnRK1.1(T175) phosphorylation was detected by 924 

immunodetection with anti-phospho-AMPK(T172) antibodies from a subset of the 925 

samples used in Figures 3A (E, n=6) and 3B (F, n=4) and only relevant samples of the 926 

same blot are shown. Error bars=SEM; p-values, two-tailed paired t-test (D, F) and one-927 

way ANOVA with Tukey test (E) on the non-normalized ratio of SnRK1.1(T175) 928 

phosphorylation relative to total SnRK1.1. 929 

 930 

 931 

Figure 3. Clade A PP2Cs repress SnRK1 signaling. (A) SnRK1.1 activity, measured as 932 

the induction of the DIN6::LUC reporter in protoplasts is severely reduced by clade A 933 

PP2Cs ABI1 and PP2CA, but to a much lesser extent by the corresponding catalytically 934 

inactive mutants ABI1_D177A and PP2CA_D142A (n=9). Numbers above columns 935 

designate the percentage of SnRK1.1 inhibition as compared to 100% activity in the 936 

absence of PP2Cs. (B) An unrelated clade E PP2C6-6 does not impinge on SnRK1.1 937 

activity (n=9). (C) Reduced SnRK1 inactivation in double and quadruple pp2c knockout 938 

mutants Qhai1-1 and Qabi2-2. Relative gene expression of SnRK1.1 marker genes 939 

(DIN6, AXP) in control (light, L), activating (dark, D), and inactivating (glucose 940 

treatment following darkness, DG) conditions (n=4). p-values, one-way ANOVA with 941 

Tukey (A, B) and two-way ANOVA with Sidak test (C). Error bars=SEM. 942 

  943 

Figure 4. Altered glucose response in pp2c knockout mutants and PP2C 944 

overexpressors. Glucose-hypersensitivity of SnRK1.1 overexpressors (35S::SnRK1.1; 945 

4-6% glc), double (abi1-2 pp2ca-1; 6% glc) and quadruple pp2c knockout mutants 946 

(Qhai1-1 and Qabi2-2; 4% glc), and glucose-insensitivity of PP2CA overexpressors 947 
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(35S::PP2CA; 6% glc) in early seedling development. Glc, glucose; Sor, sorbitol 948 

osmotic control; MS, control media without glucose or sorbitol. Scale bar=1 cm. 949 

 950 

Figure 5. ABA promotes SnRK1 signaling. (A) PP2C repression of SnRK1 signaling in 951 

protoplasts is blocked by co-expression of the PYL4 receptor in the presence of ABA 952 

(n=3). (B) Induction of SnRK1 target genes by ABA (n=10) and energy stress 953 

(darkness; n=12). (C) Reduced induction of SnRK1 target genes by ABA in 954 

35S::PP2CA plants (n=3). (D) SnRK1 activation and ABA treatment induce largely 955 

overlapping transcriptional responses. Percentage of upregulated or downregulated 956 

SnRK1.1 targets similarly regulated by ABA. (E) ABA enhances SnRK1 activation by 957 

darkness and diminishes its glucose-triggered inactivation. SnRK1 target gene 958 

expression in light (L) and dark with (DA) or without ABA (D). Following dark 959 

activation, SnRK1 repression triggered by glucose was examined with (DGA) or 960 

without (DG) ABA pre-treatment (n=4). Error bars=SEM. p-values, two-way ANOVA 961 

with Fisher´s LSD test. DIN6, SEN5, AXP, SnRK1 target genes.  962 

 963 

Figure 6. SnRK1 regulation by energy signals and ABA through clade A PP2Cs. 964 

SnRK1 is activated by the energy deficiency triggered by stress and is inactivated by 965 

PP2Cs once normal energy levels are restored. PP2Cs repress also SnRK2s and ABA 966 

signaling, but are inhibited by PYL receptors upon ABA binding. Via its effect on 967 

PP2Cs, the ABA-PYL complex induces SnRK1 signaling, potentiating the effect of 968 

energy-stress, diminishing the effect of sugar on SnRK1 repression, and complementing 969 

the ABA response. SnAK, SnRK1 Activating Kinases. 970 
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Figure 2. ABI1 and PP2CA inhibit SnRK1.1 by dephosphorylation. Immunoprecipitated SnRK1.1-
HA is dephosphorylated (A) and inactivated (B) in vitro by PP2CA. (A) HA-immunoblot following 
Phos-tag-SDS-PAGE (Kinoshita et al., 2009). (B) Autoradiograms showing that SnRK1.1 activity on 
itself and ABF2 (lane 1) is lost following PP2CA-treatment (lane 2), but rescued by PYL4 and ABA 
(lane 4). PP2CA dephosphorylates T175 in recombinant SnRK1.1, phosphorylated or not with 
SnAK2 (C), and in immunoprecipitated SnRK1.1 (n=3) (D) in vitro. Numbers below autoradiograms 
and immunoblots denote band intensities relative to SnRK1.1 control (=1). At least three 
independent experiments were performed in (A-C) with similar results. (E) Co-expression in 
protoplasts of SnRK1.1 with clade A PP2Cs ABI1 and PP2CA but not with clade E PP2C6-6 results 
into SnRK1.1(T175) dephosphorylation. PP2Cs and SnRK1.1 bear HA- and GFP-tags, respectively. 
SnRK1.1(T175) phosphorylation was detected by immunodetection with anti-phospho-
AMPK(T172) antibodies (n=6). Error bars=SEM; p-values, two-tailed paired t-test (D) and one-way 
ANOVA with Tukey test (E) on the non-normalized ratio of SnRK1.1(T175) phosphorylation 
relative to total SnRK1.1. 
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Figure 3. ABI1 and PP2CA repress SnRK1 signaling. (A) SnRK1.1 activity, measured as the 
induction of the DIN6:LUC reporter in protoplasts is severely reduced by clade A PP2Cs ABI1 and 
PP2CA, but to a much lesser extent by the corresponding catalytically inactive mutants 
ABI1_D177A and PP2CA_D142A (n=9). Numbers above columns designate the percentage of 
SnRK1.1 inhibition as compared to 100% activity in the absence of PP2Cs. (B) An unrelated clade E 
PP2C6-6 does not impinge on SnRK1.1 activity (n=8). (C) Reduced SnRK1 inactivation in double 
and quadruple pp2c knockout mutants Qhai1-1 and Qabi2-2. Relative gene expression of SnRK1.1 
marker genes (DIN6, AXP) in control (light, L), activating (dark, D), and inactivating (glucose 
treatment following darkness, DG) conditions (n=4). p-values, one-way ANOVA with Tukey (A, B) 
and two-way ANOVA with Sidak test (C). Error bars=SEM. Analyses of SnRK1(T175) 
phosphorylation (D) and SnRK1 activity (E) from total cellular extracts reveal no differences in 
various conditions and between WT and Qabi2-2 mutant plants. (D) SnRK1.1(T175) 
phosphorylation was detected by immunodetection with anti-phospho-AMPK(T172) antibodies. (E) 

SnRK1 activity was measured using SnRK1 immunoprecipitated from WT or Qabi2-2 leaves using 
the AMARA peptide assay. Values represent means±SD (n=2).  
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Figure 4. Altered glucose response in pp2c knockout mutants and PP2C overexpressors. Glucose-
hypersensitivity of SnRK1.1 overexpressors (35S:SnRK1.1; 4-6% glc), double (abi1-2 pp2ca-1; 6% 
glc) and quadruple pp2c knockout mutants (Qhai1-1 and Qabi2-2; 4% glc), and glucose-
insensitivity of PP2CA overexpressors (35S:PP2CA; 6% glc) in early seedling development. Glc, 
glucose; Sor, sorbitol osmotic control; MS, control media without glucose or sorbitol. Scale bar=1 
cm. 
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Figure 5. ABA promotes SnRK1 signaling. (A) PP2C repression of SnRK1 signaling in protoplasts 
is blocked by co-expression of the PYL4 receptor in the presence of ABA (n=3). (B) Induction of 
SnRK1 target genes by ABA (n=10) and energy stress (darkness; n=12). (C) Reduced induction of 
SnRK1 target genes by ABA in 35S:PP2CA plants (n=3). (D) SnRK1 activation and ABA treatment 
induce largely overlapping transcriptional responses. Percentage of upregulated or downregulated 
SnRK1.1 targets similarly regulated by ABA. (E) ABA enhances SnRK1 activation by darkness and 
diminishes its glucose-triggered inactivation. SnRK1 target gene expression in light (L) and dark 
with (DA) or without ABA (D). Following dark activation, SnRK1 repression triggered by glucose 
was examined with (DGA) or without (DG) ABA pre-treatment (n=4). Error bars=SEM. p-values, 
two-way ANOVA with Fisher´s LSD test. DIN6, SEN5, AXP, SnRK1 target genes.  
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Figure 6. SnRK1 regulation by energy signals and ABA through PP2Cs. SnRK1 is activated by the 
energy deficiency triggered by stress and is inactivated by ABI1, PP2CA and other PP2Cs once 
normal energy levels are restored. PP2Cs repress also SnRK2s and ABA signaling, but are inhibited 
by PYL receptors upon ABA binding. Via its effect on PP2Cs, the ABA-PYL complex induces 
SnRK1 signaling, potentiating the effect of energy-stress, diminishing the effect of sugar on SnRK1 
repression, and complementing the ABA response. The SnRK1 and ABA pathways are likely to 
crosstalk also at other levels (dotted lines). SnAK, SnRK1 Activating Kinases. 
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Figure S1. Yeast-two-hybrid controls for the SnRK1.1 and PP2C interaction (Fig. 2A). (A) None of 
the AD and BD constructs activate  the ADE and HIS reporters. Colony growth was assessed on 
medium lacking adenine and histidine (-A-H) using serial dilutions (10-1, 10-2, and 10-3) of saturated 
cultures. The  different SnRK1.1 deletions are shown. CD=catalytic domain, residues 1-293; 
RD=regulatory domain, residues 294-512; KA1 domain=residues 390-512. AD=GAL4 activation 
domain,  BD=GAL4 binding domain. (B) Expression of the indicated constructs in yeast as revealed 
by immunodetection with  anti-HA (for AD-constructs) and anti-c-MYC (for BD-constructs) 
antibodies. Full-length SnRK1.1 and SnRK1.1 ∆KA1 have low expression levels and are more 
readily detected with the anti-SnRK1.1 antibody. Note that this antibody is against a peptide in the 
more proximal part of the RD-region and thus does not detect SnRK1.1-CD nor SnRK1.1 KA1. Red 
asterisks indicate the band with the expected molecular weight. 
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Figure S2. Alignment and structural comparison of SnRK1 and SnRK2. (A) Alignment of SnRK1.1 
(Q38997), SnRK1.2 (P92958),  AMPKα (PDB: 2Y94-A) and SnRK2.6 (PDB: 3UJG-A) was 
performed with ClustalW and represented with ESPript (Gouet et al., 1999), displaying the known 
secondary structures on the top. Residues fully conserved in all four sequences are in red and those 
conserved in three in yellow. Residues marked by a red asterisk are implicated in physical interaction 
with the HAB1 PP2C phosphatase (3UJG) (Soon et al., 2012). Kinase Domain (KD, catalytic 
domain, CD; common to the four proteins) is marked by orange arrows and the KA1 domain (only 
for SnRK1 and AMPK) in marked by blue arrows. “AID + linker” (marked by purple arrows) stands 
for “Auto-Inhibitory Domain” followed by a linker region by analogy with the AMPKα (Hardie et 

al., 2012). No function has been assigned to this sub-domain in plants. (B) Structural alignment of 
the SnRK1.1 model [performed from template 2Y94S (Xiao et al., 2011) with Swiss-model (Arnold 
et al., 2006)] with SnRK2.6 (3UJG-A). Colored as described, cartoon representation. (C) Structural 
alignment of the kinase domain of SnRK1.1 model with SnRK2.6. RMSD of kinase domain 
alignment is 1.62Å on 73% of aligned atoms, giving confidence on the conservation observed in 
alignment (see A). As almost all the important residues (* in A) are in loops, no more can be assessed 
for these. The other three are located in the αG helix of the kinase domain in its large lobe 
(subdomain XS) (Hanks & Hunter, 1995). The large lobe alignment of these kinases is good 
(RMSD=0.81Å on 74% of aligned atoms) giving confidence in these conservation. Colored as 
described, ribbon representation. (D) Validation of the Kinase Associated1 (KA1) domain model of 
SnRK1.1. KA1 domain from Uniprot database is annotated as shorter (486-512) than our considered 
model (390-512). Comparison of the actual structures of a SnRK3.11/SOS2 (2HEB) (Sánchez-
Barrena et al., 2007), MARK3 (1UL7) (Tochio et al., 2006), the AMPKα “core complex” part 
(2YA3) (Xiao et al., 2011) with a model of the last 122 residues of SnRK1.1 (part colored blue in (A) 
modeled by Phyre (Kelley & Stenberg, 2009). This part is clearly exhibiting a KA1 fold with a β-
sheet (of four β-strands) and two α-helixes on the same side of the β-sheet. Colored as stated, cartoon 
representation. All images and structural alignment were generated with Pymol (from Delano 
Scientific). α1 refers to the α-helix part of the phosphatase interacting domain (PPI) (Sánchez-
Barrena et al., 2007). 
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Figure S3. SnRK1.1 is inactivated by recombinant His-PP2CA in vitro. (A) Control HA-
immunoprecipitation from WT plants retrieves no ABF2 phosphorylating activity, showing that the activity 
measured from 35:SnRK1.1-HA plants is specific to SnRK1.1. Right panel, positive control showing that  
recombinant SnRK1-His preactivated with SnAK2-GST phosphorylates ABF2. (B) Where indicated 
SnRK1.1 was pre-incubated, for 10 min, with PP2CA and PYL4 in the  absence (lane 2) or presence 
(lane 3) of ABA, to allow or prevent PP2CA activity, respectively. After this pre-incubation ABA 
was added to all samples to inactivate PP2CA, the ABF2 substrate was supplied, and the reaction 
was further incubated for 1h. 
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Figure S4. Specific detection of phosphorylated SnRK1. (A) The P-AMPK antibody recognizes 
specifically SnRK1.1 and SnRK1.2 in total protein extracts from Arabidopsis leaves. WT and 
SnRK1.1 RNAi plants were infiltrated with Agrobacterium containing viral vectors for a GFP control 
(WT) or for VIGS of SnRK1.2 and analyzed 3 weeks after, using anti-SnRK1.1 and anti-P-AMPK 
antibodies (Baena-González et al., 2007). The red arrow indicates the band corresponding to SnRK1.1. 
(B) Mutation of T175 to A abolishes SnRK1.1-HA recognition by the P-AMPK antibody. Arabidopsis 
mesophyll protoplasts were transfected with constructs expressing SnRK1.1-HA or SnRK1.1T175A-HA 
and proteins were detected after SDS-PAGE by immunoblotting with anti-HA or anti-P-AMPK 
antibodies.  
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Figure S5. Clade A pp2c quadruple mutants are ABA–hypersensitive. (A) Enhanced sensitivity to 
inhibition of seedling establishment by ABA. Seeds were germinated and grown in medium lacking or 
supplemented with 0.1 µM ABA for 10 days (n=100). (B) The growth of the pp2C mutants is not 
strongly affected in control MS medium but is impaired in medium containing 10 µM ABA. 
Photographs were taken 20 days after transferring 5-day-old seedlings from MS medium to plates 
lacking or containing 10 µM ABA (n=15). (C) ABA-hypersensitive root growth inhibition of pp2c 
mutants. Photographs were taken 10 days after transferring 4-day-old seedlings to MS plates lacking 
or supplemented with 10 µM ABA (n=15). Col, Columbia wild-type; Qhai1-1, hab1-1 abi1-2 pp2ca-1 

hai1-1; Qabi2-2, hab1-1 abi1-2 pp2ca-1 abi2-2 (Antoni et al., 2013). Values represent means±SEM.  
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Figure S6. ABA promotes SnRK1 signaling in protoplasts. Cells were transfected with control 
DNA, or with plasmids expressing SnRK1.1 alone or in combination with ABI1 and the PYL4 
receptor. In the absence of overexpressed PYL4, ABA and the endogenous receptors are not 
sufficient to inhibit overexpressed ABI1. Samples are the same as in Fig. 2A, but instead of 
normalizing the mock and ABA sets to their corresponding controls, all samples were normalized to 
the mock control (n=3). Values represent means±SEM. p-values, multiple t-test with Holm-Sidak 
correction. 
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Figure S7 (cont.) Overlap between transcriptional changes induced by SnRK1.1 (Baena-González, 
Rolland,  et al., 2007) and indicated hormone treatments (Nemhauser et al., 2006; AtGenExpress). UP 
and DOWN denote the set of up- or down-regulated genes, respectively, in the indicated datasets. 
Percentage values refer to the number of overlapping genes per total number of upregulated or 
downregulated SnRK1.1 targets. ACC, 1-aminocyclopropane-1-carboxylic acid (ethylene precursor); 
BL, brassinolide; GA, gibberellic acid; IAA, indole-3-acetic acid (auxin); MJ, methyl jasmonate; CK, 
cytokinin 
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Figure S7 (cont.) Overlap between transcriptional changes induced by SnRK1.1 (Baena-González, 
Rolland,  et al., 2007) and indicated hormone treatments (Nemhauser et al., 2006; AtGenExpress). UP 
and DOWN denote the set of up- or down-regulated genes, respectively, in the indicated datasets. 
Percentage values refer to the number of overlapping genes per total number of upregulated or 
downregulated SnRK1.1 targets. ACC, 1-aminocyclopropane-1-carboxylic acid (ethylene precursor); 
BL, brassinolide; GA, gibberellic acid; IAA, indole-3-acetic acid (auxin); MJ, methyl jasmonate; CK, 
cytokinin 
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Figure S7. Overlap between transcriptional changes induced by SnRK1.1 (Baena-González, Rolland,  
et al., 2007) and ABA (Nemhauser et al., 2006; AtGenExpress). Overlap between the genes induced by 
SnRK1.1 and repressed by ABA, and between the genes repressed by SnRK1.1 and induced by ABA. 
UP and DOWN denote the set of up- or down-regulated genes, respectively, in the indicated datasets. 
Percentage values refer to the number of overlapping genes per total number of upregulated or 
downregulated SnRK1.1 targets.  
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Rodrigues_Supplementary Table S1

Cloning primers

Restriction sites introduced by PCR are marked in blue

Name Primer sequence Vector Description Sites used for the cloning

SnRK1.1 Fw CGGGATCCATGGATGGATCAGGCACAGG pHBT95 SnRK1.1 overexpression in protoplasts BamHI/StuI

SnRK1.1 Rev AAGGCCTGAGGACTCGGAGCTGAGC pHBT95

ABI1 BamHI Fw TTTGGATCCATGGAGGAAGTATCTCCGGCG pHBT95 ABI1 overexpression in protoplasts BamHI/SmaI (insert)

ABI1 SmaI Rev TTTCCCGGGGTTCAAGGGTTTGCTCTTGAG pHBT95 BamHI/StuI (vector)

PP2CA Fw GCGGATCCATGGCTGGGATTTGTTGC pHBT95 PP2CA overexpression in protoplasts BamHI/StuI

PP2CA Rev AAGGCCTAGACGACGCTTGATTATTCCT pHBT95

At1g03590 BamHI Fw CGCGGATCCATGGGAGGTTGTATCTCTAAG pHBT95 At1g03590 (URP) overexpression in protoplasts BamHI/StuI

At1g03590 StuI Rev GAAGGCCTAGTCTTTGGTTCCTCTCCAGG pHBT95

PYL4_StuI_Fw AAGGCCTCTTGCCGTTCACCGTCCTT pHBT95 PYL4 overexpression in protoplasts StuI/PstI

PYL4_PstI_Rev AACTGCAGTCACAGAGACATCTTCTTC pHBT95

2CASal2bFW AAAGTCGACTCATGGCTGGGATTTGTTGCGGT pGEX-4T1 Production of recombinant PP2CA-GST SalI/NotI

2CANotI Rev AAAGCGGCCGCTTAAGACGACGCTTGATTATTC pGEX-4T1

SnRK1.1BamHI-F CGGGATCCGATGGATCAGGCACAGGCAG pET28a Production of recombinant His-T7-SnRK1.1CD BamHI/EcoRI

SnRK1.1I293_EcoRI_RP_STOP CCGGAATTCTCAAATCTTTTTTGCCTGTTGC pET28a

SnRK1.1D294EcoRIFw CCGGAATTCGACGAGGAGATTCTCCAAGAAG pET28a Production of recombinant His-T7-SnRK1.1RD EcoRI

SnRK1.1EcoRI-R CGGAATTCTCAGAGGACTCGGAGCTGAG pET28a

PP2CA_NdeI_Fw TTTGTCGACTACATATGGCTGGGATTTGTTGCGGT pGADT7 Expression GAL4 AD-PP2CA for Y2H NdeI/SmaI

PP2CA_SmaI_Rev TTTGTCGACTTACCCGGGAGACGACGCTTGATTATTCCTpGADT7

SnRK1.1EcoRIFw CCGGAATTCATGGATGGATCAGGCACAGGC pGBKT7 Expression of GAL4 BD-SnRK1.1 full-length for Y2H EcoRI/BamHI

SnRK1.1NOSTOPBamRev CGCGGATCCGAGGACTCGGAGCTGAGCAAG pGBKT7

SnRK1.1D294EcoRIFw CCGGAATTCGACGAGGAGATTCTCCAAG pGBKT7 Expression of GAL4 BD-SnRK1.1 RD for Y2H EcoRI/BamHI

SnRK1.1NOSTOPBamRev CGCGGATCCGAGGACTCGGAGCTGAGCAAG pGBKT7

BD adapt1 TATGGGATCCATGGAAGCTTTAGGCCTCTGCA Adaptors to create  BamHI and StuI sites in the pGBKT7 MCS

BD adapt2 GAGGCCTAAAGCTTCCATGGATCCCA to generate the following BD-KIN delections

SnRK1.1BamNdeFw CGGGATCCCATATGGATGGATCAGGCACAGGC pGBKT7 Expression of GAL4 BD-SnRK1.1 CD for Y2H BamHI/StuI

SnRK1.1CatDStuRev TAGGCCTGTCAATCTTTTTTGCCTGTTG pGBKT7

SnRK1.1BamNdeFw CGGGATCCCATATGGATGGATCAGGCACAGGC pGBKT7 Expression of GAL4 BD-SnRK1.1 ΔKA1 for Y2H BamHI/StuI

SnRK1.1D390StuRev TAGGCCTTCTCTCAACAGGGTATTGAG pGBKT7

SnRK11 KA1BamH1-Fw CGGGATCCAAATGGGCTCTTGGACTTCAG pGBKT7 Expression of GAL4 BD-SnRK1.1 KA1 for Y2H BamHI/StuI

SnRK1.1D390StuRev TAGGCCTTCTCTCAACAGGGTATTGAG pGBKT7

Mutagenesis primers

ABI1_D177A_Fw CATTTCTTCGGTGTTTACGCTGGCCATGGCGGTTCTCAGG To generate a catalytically inactive ABI1

ABI1_D177A_Rev CCTGAGAACCGCCATGGCCAGCGTAAACACCGAAGAAATG

PP2CA_D142A_Fw CATTTCTACGGTGTCTTTGCTGGCCATGGCTGCTCTCATG To generate a catalytically inactive PP2CA

PP2CA_D142A_Rev  CATGAGAGCAGCCATGGCCAGCAAAGACACCGTAGAAATG

qPCR primers

EIF4 A TCATAGATCTGGTCCTTAAACC amplifying eIF4, house-keeping gene

EIF4 B GGCAGTCTCTTCGTGCTGAC

DIN6 A AACTTGTCGCCAGATCAAGG amplifying DIN6, SnRK1.1 activated marker gene

DIN6 B GGAACACGTGCCTCTAGTCC

SEN5 A GCGAAACTCTCTCCGACTTC amplifying SEN5, SnRK1.1 activated marker gene

SEN5 B CCACAGAACAACCTTTGACG

AXP A CTTCGACAAGCCTTCTCACC amplifying AXP, SnRK1.1 activated marker gene

AXP B TCGTCGCTGTATAGCCAATC

RAB18 A TGGCTTGGGAGGAATGCTTCA amplifying RAB18, ABA activated marker gene

RAB18 A CCATCGCTTGAGCTTGACCAGA

RD29B A CTTGGCACCACCGTTGGGACTA amplifying RD29B, ABA activated marker gene

RD29B B TCAGTTCCCA GAATCTTGAACT
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