
ABITS: An Agent Based Intelligent Tutoring System
for Distance Learning

Nicola Capuano, Marco Marsella, Saverio Salerno

CRMPA, Centro di Ricerca in Matematica Pura ed Applicata c/o DIIMA, University of
Salerno, via Ponte Don Melillo, 84084, Fisciano (SA), Italy

niccap@crmpa.unisa.it

DIIMA, Dipartimento di Ingegneria dell’Informazione e Matematica Applicata, University
of Salerno, Via Ponte Don Melillo, 84084, Fisciano (SA), Italy

Abstract. The purpose of this paper is to describe an Intelligent Tutoring
Framework highly re-usable and suitable to several knowledge domains. In
particular the system, named ABITS, has been realized in the context of the
InTraSys ESPRIT project. It is able to support a Web-based Course Delivery
Platform with a set of “intelligent” functions providing both student modeling
and automatic curriculum generation. Such functions found their effectiveness
on a set of rules for knowledge indexing based on Metadata and Conceptual
Graphs following the IEEE Learning Object Metadata (LOM) standard.
Moreover, in order to ensure the maximal flexibility, ABITS is organized as a
Multi Agent System (MAS) composed by pools of three different kind of agents
(evaluation, pedagogical and affective agents). Each agent is able to solve in
autonomous way a specific task and they work together in order to improve the
WBT learning effectiveness adapting the didactic materials to user skills and
preferences.

1 Introduction

An efficient Training System should allow users to take a lesson without time and
place constrains. In order to fulfil these requirements, at present days, the best
solution has to be naturally Web based. It requires to end-users zero cost installation
and provides them the maximum time/place flexibility.
Three kinds of Web-Based Tutoring (WBT) methodologies are available on the scene
at this moment.

• Static WBT: teachers arrange learning material in order to cover one or more
topics and convert them in interactive linked HTML pages (or different kinds of
Web-deliverable objects). Material is then placed on-line in order to make it visible
to everybody. Learners can exploit it only by following the path established by
teachers.

• Personalized WBT: teachers, using a specific kind of software named Course
Management System (i.e. Macromedia Attain) are able to perform manually a set
of additional tasks. They can monitor student knowledge by testing them, assign

recovery material if necessary, define different paths through learning objects for
different kind of learning goals, etc.

• Adaptive WBT: includes all features of a Personalized WBT but the teacher is
supported/simulated in his activity by using Artificial Intelligence techniques.

In this paper we will present ABITS: an highly re-usable Intelligent Tutoring
Framework able to extend a traditional Course Management System (CMS) with a set
of “intelligent” functions allowing both student modeling and automatic curriculum
generation. Adding ABITS as a module, any Personalized WBT will be able to
become an Adaptive one. The requirement for the CMS is only one: it must be able to
be extended with a scripting language supporting RMI invocation and able to access
external data sources. Macromedia Attain, for example, fulfills these requirements.
ABITS (Agent Based Intelligent Tutoring System) has been thought and developed in
the context of the InTraSys ESPRIT project. InTraSys (Intelligent Training System in
Technical Assistance) is a very complex training and learning system geared towards
high-tech organizations whose objectives are to improve the training and learning
effectiveness, reduce the training costs, increase industrial intellectual capital
retention and decrease the employee training time [5].
The already quoted ABITS intelligent functions are summarized in the use case
diagram of figure 1 and will be described in the following chapters. In particular, the
“Evaluate Curriculum” function is dealt with curriculum sequencing and will be
detailed in chapter 4; “Evaluate Preferences” and “Evaluate Cognitive State” concern,
instead, user modeling and will be fully described in chapter 3.

CMS

Evaluate Curriculum

Evaluate Cognitive State

Evaluate All

<<uses>>

<<uses>>

Evaluate Preferences

<<uses>>

Fig. 1. ABITS Use Case Diagram

Such functions found their effectiveness on a set of rules for knowledge indexing
based on Metadata and Conceptual Graphs. In the following chapter we will deepen
this topic.

2 Knowledge Indexing

Inside ABITS, all didactic material is organized in several Learning Objects and
stored in a Course Material File System. A Learning Object is defined [1] as any
entity which can be used, re-used or referenced during technology-supported learning.
In our case, a Learning Object is a logical container that represents an atomic Web-
deliverable resource such as a Lesson (an HTML page), a Simulation (a Java applet),
a Virtual World (a VRML file), a Test (an HTML page with an evaluating form) and
each kind of Web-deliverable object.
Learning Objects must be indexed in order to let ABITS know what each one of them
is about and how it can be used during the learning process. Some kind of information
about Learning Objects is so required. We call this kind of information Metadata.

2.1 Metadata

 “Metadata is information about an object, be it physical or digital and its main goal is
to locate in efficient and effective way resources over a system or a computer
network” [2].
In the field of learning materials, several organizations such as IEEE, EDUCOM etc.
have focused their attention on the creation of metadata standards specifying the
syntax and the semantics of the so-called Learning Object Metadata. A Learning
Object Metadata standard defines the minimal set of properties needed to allow these
objects to be managed, located, and evaluated. It accommodates moreover the ability
for locally extending the basic properties.
Many advantages come from referring to a Learning Object Metadata standard:

• To take advantage of a complete syntax and semantic already created by experts of
the Learning Technology.

• To enable the automatic importation of extern learning objects that adopt the same
Metadata description standard.

• To enable the exportation/sale of learning objects created for ABITS to extern
systems/clients that adopt the same Metadata description standard.

We chose to adopt for ABITS the IEEE LTSC Learning Object Metadata (LOM)
standard [1]. We seen, in fact, that other organization are slowly converging to this
one: for the future it can be the best choice.
LOM Metadata is structured in a hierarchical way: schemes consist of data elements.
The latter are defined through: “sub-schemes” if they are a collection of data elements
themselves; “data types” if their values are strings, decimals, etc; “vocabularies” if
their values come from an enumerated list. Data elements moreover can be
“mandatory” (must be present) or “optional” (may be present).
IEEE metadata definition implies that descriptors of a learning resources are grouped
in meaningful categories. Our schema proposes six categories: a subset of the eight
defined by IEEE standard:

• General : groups all context independent features plus the semantic descriptors for
the resource.

• Life Cycle: groups the features linked to the lifecycle of the resource.
• Meta Metadata: groups the features of the description itself (rather than those of

the resource being described).
• Technical : groups the technical features of the resource.
• Educational : groups the educational and pedagogic features of the resource.
• Rights Management: groups features that depend on the kind of use envisaged for

the resource.

Table 1 resumes all categories and data elements that constitute ABITS Metadata
Scheme. This is an IEEE LTSC LOM formally derived scheme.

General
 Identifier
 Title
 Language
 Description
 Domain
 Idea
 Structure

 LifeCycle
 Version
 Create

 MetaMetaData
 Create
 MetadataScheme

 Technical
 Format
 Size
 LocSpec
 Requirements
 Type
 Name
 MinimumVersion
 MaximumVersion

 Educational
 PedagogicalType
 CoursewareGenre
 Format
 Approach
 InteractivityLevel
 SemanticDensity
 EducationalUse
 Role
 Difficulty
 Level
 Duration

 RightsManagmnt
Role
Description
Conditions
 Reciprocity
 Attribution
 Prize
 MonetaryUnit
 Amount
 UnitOfPricing

Table 1. ABITS Learning Object Metadata Scheme

2.2 Conceptual Graphs

Metadata schemas not only have to provide information about a single Learning
Object but they must also provide information about object relations and
interdependency. For this purpose LOM standard provides an important data element
called “Idea” (under the “General” category) that allows the so-called Domain
Conceptualization.
A Conceptualization is an abstract, simplified view of the world that we wish to
represent for some purpose. A Conceptual Graph is an explicit specification of a
Conceptualization. They can be viewed as structures of Concepts and conceptual
relations where every arc links some conceptual relation r to some concept c [3].
With the term Concept we intend an abstract notion that refers to a particular
Conceptual Graph. Within the ABITS context, Conceptual Graphs are used to link
concepts underlying the knowledge domain with three kinds of relations: prerequisite,
sub-concept and general relation (see table 2 for more details).

Kind of Relation Relation Name Abbreviation

… “IsRequiredBy” … IRB
Prerequisite

… “Requires” … R

… “IsPartOf” … IPO
Sub-Concept

… “HasPart” … HP

General Relation … “IsRelatedTo” … IRT

Table 2. ABITS Concept Relations

As an example of Conceptualization consider the concepts of addition, subtraction,
multiplication, division and “basic operations” inside the domain of mathematical
operations. Naturally in the Conceptual Graph of the Domain of Arithmetic, concepts
must be represented as in figure 2.

Addition IRB SubtractionMultiplication IRB

IRB

Division Basic Operations

HP

Fig. 2. An example of Conceptual Graph

A standard to allow communication between systems that require a structured
representation for logic is going to be defined. It is the Conceptual Graph
Interchange Form (CGIF) [4] and has been developed as a conceptual schema
language, as specified by ISO/IEC 14481 on Conceptual Schema Modeling Facilities
(CSMF). We chose to represent ABITS Conceptual Graphs using this format.
Such kind of information about the domain is massively used by ABITS functions in
conjunction with Metadata fields for Cognitive State modeling and automatic
Curriculum generation. While Metadata fields give information about Learning
Object including explained Concepts (the already quoted “Idea” field), Conceptual
Graphs give information about how Concept explained in these Learning Objects are
related between themselves. In the following chapters we will see how such
information is exploited by ABITS.

3 Student Modeling

In every instant ABITS must be able to determine both Cognitive State and
Learning Preferences for each student basing on his developed activities. Such set of
information constitutes the so-called Student Model. Such structures, as we will see

in the following two paragraphs, are composed by many “fuzzy” fields so it is useful
now to provide a small Fuzzy Numbers overview.
A Fuzzy Number is a concept related to the fuzzy set theory, an extension of the
conventional set theory born in 1965 by the work of Zadeh [6]. The fuzzy set theory is
dealt with subsets of an universe where the transition between the full membership
and the non-membership is gradual rather than sudden. If X is an objects space, a
fuzzy subset A of X is a set characterized by a membership function of the type:

µ(|): ,x A X → 0 1 . (1)

where x is a generic element of X and µ(|)x A is told membership degree of x in A. A
subset in its classical meaning (crisp) can be then seen as a particular case of fuzzy
subset with membership function with values in }1,0{ where 1 indicate the full
membership and 0 the non membership.
A Fuzzy Number is a fuzzy subset of the set of real numbers with membership
function µ(|)x A continuous, normal and convex able to satisfy the following
requirements:

ℜ∈∃x such that µ(|)x A =1 (normality); (2)

µ µ µ(|) min{ (|), (|)} ,x A x A x A x x x≥ ∀ ∈1 2 1 2 (convexity). (3)

Exploiting fuzzy numbers it is possible to mathematically represent quantity of the
kind: “approximately 5” or “few less than 3” and so on, in way to model uncertainty
in intuitive manner and without resorting to the artifice of probability distributions.
A fuzzy number can be graphically represented through the so-called belief graphs
that map membership function for all support values (it is said support of a fuzzy set
the set of all elements of the universe that have membership degree greater then 0).
Figure 3 shows a belief graphs for a triangular fuzzy number where only a value has
maximum membership degree.

0
654

1

Fig. 3. A Triangular Fuzzy Number

3.1 Cognitive State

For Cognitive State it is intended the knowledge degree, reached by a particular
student, of every Domain Concept (for each provided Domain). This information is
logically represented by a string of fuzzy numbers (one for each concept) [8].

Graphically such string can be view as in figure 4. This string is updated dynamically
by ABITS during training and testing activities.

…
Fig. 4. A Graphical Representation of a Cognitive State

The decision to use fuzzy numbers in Cognitive States arises from the necessity to
manage uncertainty in the student evaluation. In this way, in fact, we can admit
different kind of evaluations with different degree of reliability. For example, when a
student reads an expositive Learning Object with a particular set of Concepts
involved, ABITS can infer that there is a little increase in the student Cognitive State
for these concepts but with a very large degree of uncertainty. When a student answer
to a test in a correct way there is also an increase in his cognitive state in relation to
involved concepts but with a more and more low degree of uncertainty. To represent
this kind of information we use more and more “narrow” fuzzy numbers.
An other important aspect to take into consideration is that a student could forget
what he has learned some times before. In order to model the attitude that have
humans to forget what they learn, ABITS applies a Forgetting Function to Cognitive
States. Cause that not all humans forget in the same manner, this algorithm can’t
decrease knowledge degrees but only can wide the amplitude of representing fuzzy
number signifying that evaluations are more and more unreliable.

3.2 Learning Preferences

Within Learning Preferences we enclose all information about the student
perceptive capabilities i.e. to which kind of resources a specified student is shown to
be more receptive. To evaluate student preferences we exploit data elements
contained into the “Educational ” IEEE metadata category such as: format (kind of
media), pedagogical approach, interactivity level, semantic density and difficulty [8].
Table 3 resumes all Learning Preferences fields with all possible values.

Fields Possible Values

Format Text, Image, Slide, Hypertext, Video Clip, Simulation, Virtual Reality

Approach Inductive, Deductive, Explorative

Interactivity Level Very Low, Low, Medium, High, Very High

Semantic Density Very Low, Low, Medium, High, Very High

Difficulty Very Low, Low, Medium, High, Very High

Table 3. ABITS Learning Preferences Possible Values

For the Format data element, ABITS maintains a list of fuzzy number where each
one of them evaluates the receptiveness of a particular student to involved media

(text, hypertext, video clip, simulation, virtual world, slide, etc.). The same idea is
adopted in relation to pedagogical Approach field to evaluate if student is more
interested in inductive, deductive or exploratory approach to learning. In the case of
Interactivity Level , Semantic Density and Difficulty, represented by a single level
value (very low, low, medium, high, very high), ABITS maintains a fuzzy number
(for each parameter) representing the best receptive level for a particular student.
In order to evaluate student Preferences, ABITS exploits this idea: during the learning
process there are some Milestones (established by tutors) when the Cognitive State is
updated with respect to activities performed by students. This means that for each
Domain Concept involved in the student performed activities, a new evaluation is
given.
Exploiting the conceptual variation for each Concept and Metadata information on
Learning Objects visited concerning that Concept, ABITS can evaluate the
pedagogical effectiveness of Learning Object typologies. For example, if the
knowledge of a particular Concept is sensibly raised between two milestones and
visited Learning Objects concerning this particular Concept have been for a great part
simulations, ABITS infers that the student is receptive to simulations. The system
increases consequently the “format” Preference that refers to simulations.
The information calculated by ABITS about Student Models can be exploited directly
by tutors or can be re-used by ABITS in the automatic Curriculum generation
procedure. In the following chapter we will explain how ABITS can do that.

4 Automatic Curriculum Generation

Each student can be assigned to one or more different Courses. An ABITS Course is
composed essentially by an set of Learning Goals and by a Curriculum [8].
With Learning Goals (that are strongly different from Learning Objects) we intend a
set of key Concepts necessary to be learned to successful complete a specific Course.
Such Concepts (as all other Concepts) are part of a Domain and are represented inside
the Conceptual Graph of such Domain.
With Curriculum we intend, instead, an ordered list of Learning Objects that can be
used to provide to a specific student all necessary knowledge to complete a specific
Course. While Learning Goals indicate what (which Concepts) a student has to learn,
Curriculum specify how these Concepts has to be learnt.
Different students can require different Curriculums to learn about the same Learning
Goals depending on their Cognitive States and Learning Preferences. For this reason a
Curriculum Generation procedure is also provided by ABITS.
Starting from the list of Learning Goals that must be covered, ABITS Curriculum
Generation is done by a three-step procedure [9].

1. The list LG of Learning Goals is exploded in order to obtain the list C of all
Concepts that a student must learn to reach such Goals. This is obtained using a
recursive function: for each concept c contained in LG a test is done: if c is already
known by the student (looking his Cognitive State) then c is discarded, otherwise
the c is added to C and all c requisites are kept (looking the Conceptual Graph of
the c Domain) and added to LG. The procedure is repeated until LG is empty.

1. The list of concept C is transformed in a list of Learning Objects LO finding the
best ordered sequence of Learning Object from the Course Material Database
matching student Learning Preferences (comparing Metadata “Educational” Fields
with student Preferences fields) and covering C. LO must be ordered: if concept

1c requires concept 2c then any Learning Object explaining 1c will be placed in
the Curriculum after any Learning Object explaining 2c .

2. The list of Learning Objects LO is transformed in a Curriculum CURR by adding
Testing Material and Milestones. Testing material are simply Testing Learning
Objects (i.e. HTML pages with evaluation forms) while Milestones are embedded
ABITS calls. Milestones are placed after each testing block and at the end of the
whole curriculum in order to advice the Course Management System that ABITS
must be called in this place to update the model and/or the Curriculum sequence
for a specified student.

It is important to note that all ABITS functions could be used by the Course
Management System in a systematic or occasional manner according to tutors and
administrators policies.
Information generated in the student modeling phase in-fact can be used directly by
ABITS in the Curriculum generation process or simply by tutors to take decisions
about lessons and recovery activities to assign. In the same manner, the Curriculum
generation facility itself can be used both to help tutor course management activities
or directly by ABITS to change in run-time student Curriculums basing on performed
activities.

5 ABITS Architecture

While in the preceding chapters we looked ABITS from the functional point of view
(what functions are provided by ABITS and how they work), this chapter will instead
show ABITS from the architectural point of view (how ABITS is composed). As we
already said in the introduction, ABITS is born as a module of a greater system
named InTraSys but, thanks to its auto-consistency, ABITS can be extrapolated from
this context.
Figure 5a depicts relations and interdependencies between ABITS and a generic
external Course Management System. As you can see, modules are strongly
separated. Communication happens only through CMS – ABITS directed RMI
invocations. Both modules, moreover, must have the ability to access to a shared
courses database. From this preliminary discussion it appears already clear that any
Course Management System allowing both RMI calls and access to external data
sources through a scripting language can be supported by ABITS.
Many data sources can be found in figure 5a, let’s describe them.

• Course Material Database contains all Learning Object in the form of web-
deliverable files (HTML, VRML, CLASS, etc.);

• Metadata Base contains all Metadata schemas indexing Course Material in
XML/RDF format [7] (such database can be accessed and modified using the
Metadata Authoring Tool);

Course
Management

System

ABITS

USER
+

Web Browser

Pages Feedback

Events

ABITS Calls

Metadata
Authoring Tool

LogLearner
Models

ABITS Data Base

Course
Material

Metadata

Knowledge
Library

Courses

Users

CMS
Data Base

Pedagogical
Agent 0+

Evaluation
Agent 0+

ABITS
Database 1

Metadata
Base 1

Affective
Agent 0+

Course
Database 1

Course
Management

System 1

Fig. 5. ABITS External (a) and Internal (b) System Architecture

• Log Database contains all student activities performed during the learning
experience (visited pages, permanency times, test results etc.);

• Learner Models Database contains ABITS-calculated Cognitive States and
Learning Preferences for each student;

• Users Database contains all information about system users (log-in names, roles,
course assigned, etc.);

• Courses Database contains all information about Learning Goals and Curriculum
of all student courses.

Interactions between databases and modules (which module can access to which data
source) are still depicted in figure 5a where arrows represent data flows.
As we already said, ABITS, internally, is conceived as a Multi Agent System (MAS).
The motivation of this choice rely on the high degree of scalability allowed by this
kind of architecture. ABITS in fact is composed by pools of three different kinds of
Agents. The three typologies are the followings:

• Evaluation Agents: are interested of evaluating and updating Cognitive States and
whole Student Models (remember the “Update All” use case); to do this, they
interact with the Metadata Base, the ABITS Database, the Affective Agent and the
Pedagogical Agent.

• Affective Agents: are interested of evaluating and updating Learning Preferences;
to do this, they interact with the Metadata Base and the ABITS Database.

• Pedagogical Agents: are interested of evaluating and updating Curriculums; to do
this, they interact with the Metadata Base, the ABITS Database and the Courses
Database.

Figure 5b shows how ABITS agents interact between themselves and between
external modules and data sources. It is important to note the multiplicity number near
each object. While CMS and data sources have multiplicity 1 (only one component of
this kind must be present), each agent has multiplicity 0+ (zero or more agents of this

kind may be present). These are the advantages in terms of scalability of this kind of
architecture.
Thanks to that, in fact, many scenarios are feasible using subsets of ABITS agent
kinds that can add to a Course Management System only needed subsets of ABITS
functions (according to tutors and administrator policies). Moreover, for each kind,
any number of agents can be invoked and placed on different machines in order to
fulfill any work load request.

6 Conclusions

In this paper we described ABITS: an highly re-usable Intelligent Tutoring
Framework suitable to several knowledge domains. Such system, as we shown, is able
to support any Web-based Course Delivery Platform (RMI compliant and able to
access external data sources) with a set of “intelligent” functions allowing student
modeling and automatic curriculum generation.
We described ABITS intelligent functions pointing on how they are implemented. As
we seen, such functions found their effectiveness on a set of rules for knowledge
indexing based on Metadata and Conceptual Graphs following, respectively
LOM/RDF and CG/CGIF standards.
We discussed finally about ABITS internal architecture and we shown that, in order
to maximize flexibility and scalability, it is organized as a Multi Agent System
(MAS) composed by pools of different kind of agents where each agent has its own
task to solve.

References

1. Wayne Hodgins et al. “Learning Object Metadata, Working Draft Document 2.5” IEEE
Learning Technology Standards Committee (LTSC), 1999. (http://ltsc.ieee.org/wg12).

2. InTraSys project “InTraSys Metadata Specification and Design v1.0” InTraSys ESPRIT
project official deliverable, 1999.

3. Sowa, John F. “Conceptual Structures: Information Processing in Mind and Machine”
Addison-Wesley, 1984.

4. “Conceptual Graph Standard, draft proposed American National Standard (dpANS)”
Information Technology (IT) – Conceptual Graphs, 1999.

5. InTraSys project “InTraSys: Intelligent Training System in Technical Assistance –
Description of the RTD Project ” InTraSys ESPRIT project official deliverable, 1999.

6. D. Dubois, H, Prade “Fuzzy Sets and Systems – Theory and Applications” Academic
Press, 1980.

7. World Wide Web Consortium “Resource Description Framework (RDF) Model and
Syntax Specification” W3C Proposed Recommendation, 1999. (http://www.w3.org/RDF/).

8. InTraSys project “ABITS: Agent Based Intelligent Tutoring System Specifications v1.3”
InTraSys ESPRIT project official deliverable, 1999.

9. InTraSys project “ABITS: Agent Based Intelligent Tutoring System Design v1.0”
InTraSys ESPRIT project official deliverable, 1999.

