
RESEARCH Open Access

Ablation of rat TRPV1-expressing Adelta/C-fibers
with resiniferatoxin: analysis of withdrawal
behaviors, recovery of function and molecular
correlates
Kendall Mitchell1, Brian D Bates1, Jason M Keller1, Matthew Lopez1, Lindsey Scholl1, Julia Navarro1,

Nicholas Madian1, Gal Haspel4, Michael I Nemenov2,3, Michael J Iadarola1*

Abstract

Background: Ablation of TRPV1-expressing nociceptive fibers with the potent capsaicin analog resiniferatoxin (RTX)

results in long lasting pain relief. RTX is particularly adaptable to focal application, and the induced chemical

axonopathy leads to analgesia with a duration that is influenced by dose, route of administration, and the rate of

fiber regeneration. TRPV1 is expressed in a subpopulation of unmyelinated C- and lightly myelinated Adelta fibers

that detect changes in skin temperature at low and high rates of noxious heating, respectively. Here we investigate

fiber-type specific behaviors, their time course of recovery and molecular correlates of axon damage and

nociception using infrared laser stimuli following an RTX-induced peripheral axonopathy.

Results: RTX was injected into rat hind paws (mid-plantar) to produce thermal hypoalgesia. An infrared diode laser

was used to stimulate Adelta fibers in the paw with a small-diameter (1.6 mm), high-energy, 100 msec pulse, or C-

fibers with a wide-diameter (5 mm), long-duration, low-energy pulse. We monitored behavioral responses to indicate

loss and regeneration of fibers. At the site of injection, responses to C-fiber stimuli were significantly attenuated for

two weeks after 5 or 50 ng RTX. Responses to Adelta stimuli were significantly attenuated for two weeks at the

highest intensity stimulus, and for 5 weeks to a less intense Adelta stimulus. Stimulation on the toe, a site distal to

the injection, showed significant attenuation of Adelta responses for 7- 8 weeks after 5 ng, or 9-10 weeks after 50 ng

RTX. In contrast, responses to C-fiber stimuli exhibited basically normal responses at 5 weeks after RTX. During the

period of fiber loss and recovery, molecular markers for nerve regeneration (ATF3 and galanin) are upregulated in the

dorsal root ganglia (DRG) when behavior is maximally attenuated, but markers of nociceptive activity (c-Fos in spinal

cord and MCP-1 in DRG), although induced immediately after RTX treatment, returned to normal.

Conclusion: Behavioral recovery following peripheral RTX treatment is linked to regeneration of TRPV1-expressing

Adelta and C-fibers and sustained expression of molecular markers. Infrared laser stimulation is a potentially

valuable tool for evaluating the behavioral role of Adelta fibers in pain and pain control.

Background
TRPV1 is a sodium/calcium ion channel expressed in a

subpopulation of DRG neurons that respond to noxious

heat, endogenous algesic compounds, and the vanilloid

agonist capsaicin [1-3]. Capsaicin responses are detected

in subpopulations of unmyelinated C-fiber neurons and

myelinated Aδ-fibers [4,5]. Electrophysiological studies

with radiant heat have shown that thermal sensing

C-fibers mediate responses to stimuli that heat the skin

at low rates (≤ 0.9°C/sec) whereas Aδ-fibers mediate

responses to stimuli that heat the skin at high rates

(≥ 6.5°C/sec) [6]. TRPV1 in C-fibers is responsible for

burning pain sensations plus the integration of inflam-

matory chemical signals in many pathological pain

states, and multiple drug development efforts have been
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directed at antagonizing TRPV1 for pain control [7-9].

TRPV1 agonists, such as the ultrapotent capsaicin analo-

gue resiniferatoxin (RTX), have also been proposed as

therapeutic agents for treating acute and chronic pain

[10,11]. The binding of RTX leads to a sustained influx

of sodium and calcium through TRPV1 channels [12]

leading to channel desensitization and/or the loss of

TRPV1-expressing DRG neurons and/or their fibers and

terminals via calcium-induced cytotoxicity [13,14]. Thus,

although the mechanisms diverge, ultimately either ago-

nists or antagonists can be used as analgesic agents.

While antagonists can be administered orally, for ago-

nists local administration is required and the route or

site of administration is a critical factor. For example,

RTX injection into the intrathecal space results in a loss

of centrally projecting TRPV1-expressing fibers in the

dorsal roots and at higher concentrations a loss of

TRPV1-expressing DRG neuronal perikarya; both cases

produce permanent regional analgesia [14-16]. In con-

trast, injections of low concentrations of RTX into per-

ipheral sites (e.g., subcutaneous injections) spare the

neuronal perikarya while ablating or temporarily inacti-

vating TRPV1-expressing peripheral terminals and fibers

[17,18]. This approach therefore results in temporary

analgesia at focal sites until the fibers reactivate or

regenerate. Systemic injections of RTX have also been

used to induce analgesia; however, higher concentrations

of RTX are needed and the analgesic effect is wide-

spread rather than regional or focal [19].

Although TRPV1 is expressed in C- and Aδ-fibers,

most animal studies that have ablated TRPV1 fibers with

capsaicin or RTX focus on behavioral responses asso-

ciated with C-fibers [14,17,20,21]. This can be attributed,

primarily, to the prevalence of thermal pain assays that

examine C-fibers rather than Aδ-fibers in awake rodents.

Indeed, in the rat, where the axons are relatively short

(20 cm or less), it may be difficult to distinguish beha-

vioral responses mediated solely by fast-conducting Aδ-

fibers. For example, the conduction velocity of the rela-

tively slower C-fibers is sufficient enough to produce

laser evoked potentials (LEP) as early as 225 ms after

heating the paw with a brief CO2 laser pulse [22].

One goal of this study was to evaluate the usage of an

infrared diode laser to examine behavioral responses

that are discretely associated with Aδ activation in the

rat. Infrared diode lasers, in contrast to CO2 lasers, are

capable of directly heating the skin at depths where

cutaneous nerve fibers terminate, thereby providing

rapid (capable of > 200°C/sec), efficient, non-damaging

thermal stimulation of Aδ-fibers [23-25], which can also

initiate rapid behavioral responses. We combined RTX-

induced ablation of TRPV1 fibers in plantar hind paw

[17] with infrared laser stimulation and provide an

excellent model to examine the contribution of

Aδ-fibers to nociceptive behaviors in rats. Our findings

demonstrate that RTX-induced thermal hypoalgesia is

sustained longer than previously thought, and RTX

greatly attenuates behavioral responses characteristic of

Aδ stimulation. Importantly, this methodology suggests

infrared laser stimuli can be used to analyze behavior

associated with fast-conducting Aδ-fibers, which has

been relatively difficult to accomplish in awake, unrest-

rained rodents.

Results
We sought to specifically stimulate afferent nerve fiber

subtypes in the glabrous skin of the rat hind paw using

either short-pulse, high-rate (Aδ) or long-pulse, low-rate

(C) skin heating with an infrared diode laser. Studies in

rats have suggested that withdrawal activity following

short-duration, high-intensity stimulation of the hind

paw with a CO2 laser is mediated by C-rather than Aδ-

fibers, in part from recordings of electromyographic

(EMG) activity in the stimulated limb [26] and/or of

laser-evoked cortical potentials (LEPs) [22,27,28], that

show latencies consistent with a conduction velocity in

the C-fiber range. The infrared diode laser used here

has the ability to specifically activate Aδ fibers, which

has been determined from direct extracellular recordings

of trigeminal ganglion neurons in rats [25]. In order to

further establish a relationship between Aδ conduction

and nociceptive response a high-speed video camera

(500 fps) was used to record stimulation-induced move-

ments in awake, freely-moving rats during the brief peri-

stimulus time period.

With the high-speed camera we observed that the actual

withdrawal of the stimulated limb was often preceded by a

panoply of dedicated motor programs. For example, video

frames of a rat before, and in the first 300 msec after sti-

mulation (6.08 W/mm2) are shown in Figure 1. In this

example, visible head movement towards the stimulated

hind paw could be detected by 110 msec. The right eye

was also seen to squeeze shut by 110 msec, however, this

behavior was not a prominent feature in many of the trials.

Figure 1C illustrates that by 210 ms, the stimulated toe has

been retracted off the glass platform, and by 310 ms with-

drawal of the hind limb is fully apparent (Figure 1D). The

latency from the noxious phase (the period after the first

30 ms from when the laser stimulation began, see Meth-

ods) of the stimulus to the first observable laser-evoked

movement (fLEM) in this trial was 74 ms which occurred

in a forelimb rather than the stimulated limb (see also

Additional file 1 Movie S1). In contrast, the latency to

fLEM in the stimulated limb was 112 msec. Nerve length

from the toe to the dorsal root entry zone was 16.8 cm,

based on dissection (350 g rat). Hence, this example

suggests a minimum conduction velocity of 2.27 m/s

(0.168 m/0.074 s), which is well within the range for
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Aδ-fibers [≥ 1.3 m/s] [29,30] and beyond the range for the

TRPV1 population of C-fibers [~0.4 m/s] [31].

Calculated estimates of conduction velocity based on

latency to fLEM for a series of normal rats are listed in

Table 1. We observed that response latency appeared

highly dependent on the rat’s posture at the moment of

stimulation. From 16 video recorded trials, 6 of the 8

shortest latencies (n = 4 rats) to fLEM occurred when

body weight was not supported by all four limbs. In these

cases, one or both forepaws were not on the floor and

hence the rat was in the “reared” position prior to stimu-

lation. For these 16 trials, the shortest latency to fLEM

was 56 ms and the average was 159.5 ± 36.7 msec. In

contrast, 6 of the 8 longest latencies to fLEM occurred

when weight was distributed to all four paws; from these

trials, the shortest latency was 74 ms and the average was

250.0 ± 28.9 msec. It should be emphasized that our con-

duction velocity estimates are conservative. They do not

account for central delay (possibly as high as 80 ms

in the rat) [32], motoneuron conduction velocity

(33-85 m/s) [33] or the time required for muscle contrac-

tion/relaxation (34-116 ms) [33], which would necessarily

yield faster conduction velocity estimates. Furthermore,

the cascade of bilateral extensor/flexor muscle activity

required for abrupt postural adjustment is complex, and

the possibility is strong that the earliest muscle twitches

in some trials may have been missed entirely by the view-

ing angle of the camera. We cannot predict, at present,

where movement will occur first. Despite this, we could

capture in 31% of trials movements associated with nerve

conduction velocities higher than 1.7 m/s, clearly within

the range for Aδ-fibers, following a short, intense noxious

laser stimulus. We conclude that Aδ-fibers must be

recruited in some, if not all, responses under this stimu-

lus paradigm.

Rats were treated with intraplantar injection of 5 or 50

ng RTX and examined behaviorally over several weeks.

Two stimulus intensities were used to examine the

effect of RTX on Aδ-fiber activity. At baseline, the prob-

ability of withdrawal to the lower power stimulus (5.12

W/mm2) was 0.69 ± 0.08 and the severity of withdrawal

(on the behavioral rating scale, see Methods) was 2.61 ±

0.24 (Figure 2A and 2B). After RTX injection, the prob-

ability of withdrawal and the severity of withdrawal were

eliminated or barely detectable during the first two

weeks. The 50 ng RTX-treated paws remained signifi-

cantly suppressed for up to 5 weeks. By week 7, there

was no longer a significant difference in behavioral

responses to the Aδ stimulus between the RTX and

vehicle treated paws. A statistically significant difference

was observed between the 5 and 50 ng doses over the

course of the study (p < 0.01, probability of withdrawal,

Figure 2A; p < 0.001, intensity of withdrawal, Figure 2B).

When stimulating with higher power (6.08 W/mm2),

the probability of withdrawal and intensity of withdrawal

were close to maximum at baseline (0.92 ± 0.05 and

3.33 ± 0.19, Figure 2C and 2D, respectively). The stron-

ger behavioral responses with the 6.08 W/mm2 stimulus

indicate more efficient heating of the skin as compared

to the 5.12 W/mm2 stimulus. After 50 ng RTX, rats

were almost completely unresponsive to the 6.08 W/

mm2 Aδ stimulus for the first two weeks. By three

weeks there was a substantial return towards baseline,

nonetheless, a small but significant difference could be

detected up to week 5 suggesting a small deficit in fiber

function remained. By week 7, there was no difference

A B

Before 110 ms

C D

Before 110 ms

210 ms 310 ms

FE FE

110 msBefore

Figure 1 Detection of early-onset nocifensive behaviors prior

to withdrawal of stimulated limb. A 100 msec thermal pulse at

high power (6.08 W/mm2) was used to stimulate the right index

toe. Withdrawal responses were recorded at a rate of 500 frames

per second. The position of the rat’s head before and after

stimulation are highlighted in A and B, respectively. The upper and

lower arrowheads in each frame bring attention to the eyes and

nose, respectively. Abrupt head displacement in (A) versus (B)

occurs by 110 msec (140-30 msec, see Methods). Also note in B the

orbital “tightening”, which was observed only with some rats

following laser stimulation. (C) By 210 msec, the head was oriented

towards the stimulated foot and toes on the stimulated foot have

moved. (D) Withdrawal of the stimulated paw was underway by 310

msec. (E) and (F) are magnifications of (A) and (B), respectively,

showing that by 110 msec, toe movement on the non-stimulated

hind paw has preceded any movement detected in the stimulated

limb. Full videos can be viewed in the Additional file 1 Movie S1

data and show that latency to the first detectable movement was

approximately 74 msec.
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between vehicle and RTX-treated paws, similar to the

5.12 W/mm2 setting. Responses from the 5 ng RTX

treated paws returned to baseline levels by week 3. As

with the lower power setting, a statistical difference

between the 5 and 50 ng groups was observed when sti-

mulating with the 6.08 W/mm2 laser pulse (p < 0.01,

probability of withdrawal, Figure 2C; p < 0.05, intensity

of withdrawal, Figure 2D).

Our previous work demonstrated that 62.5 ng of RTX

attenuates C-fiber responses for about 2 weeks [17]. In

the present study, normal rats withdrew from the laser

generated C-fiber stimulus at about 8 s (Figure 2E). In

rats lightly anesthetized with 0.5% isoflurane, a withdra-

wal response is retained, and the skin temperature (sti-

mulation site) at the time of withdrawal was 48.5 ± 0.5°

C when measured using a thermal camera [data not

shown]. Both doses of RTX produced significant

increases in withdrawal latency compared to the vehicle

injected (contralateral) paw. Withdrawal latencies at the

mid-plantar injected site reached cutoff (16 sec) during

week 1, the latencies then decreased by week 2 but

remained significantly different from contralateral paws

until they finally normalized by week 3 (Figure 2E).

Analgesia occurred with both doses of RTX and the

time course of recovery was similar but the effect,

however, was greater in the 50 ng group (p < 0.05).

Figure 2F and 2G directly compare behavioral responses

to the Aδ and C stimuli on day 18; after 50 ng RTX,

rats were generally unresponsive to the 5.12 W/mm2 Aδ

stimulus (as compared to vehicle (p < 0.05). In contrast,

responses to the C stimulus were not significantly differ-

ent between the RTX and vehicle groups by day 18.

The mid-plantar hind paw is innervated by the tibial

nerve. Since the toes are also innervated by the tibial

nerve, we separately examined the effect of intraplantar

RTX on recovery kinetics in the toes. The probability of

withdrawal for the toes using the 5.12 W/mm2 Aδ sti-

mulus was 0.72 ± 0.08 prior to RTX or vehicle treat-

ment, similar to that obtained with mid-plantar

stimulation. By 4 weeks, the probability of withdrawal

and the intensity rating were near maximal for the vehi-

cle-injected paw (0.94 ± 0.04 and 3.47 ± 0.16, respec-

tively) (Figure 3A and 3B). In contrast, on the RTX

injected side, the toe response was significantly reduced

for at least 7 weeks for the 5 ng group and 10 weeks for

the 50 ng group. Stimulation of the toes at higher inten-

sity (6.08 W/mm2) resulted in higher baseline responses

(probability of withdrawal = 0.89 ± 0.05 and response

rating = 3.33 ± 0.21). Despite the stronger intensity, sig-

nificant reductions in behavioral responses mediated by

this Aδ stimulus could be seen for up to 7 weeks after

intraplantar RTX (Figure 3C and 3D). These data show

that behavioral sensitivity to Aδ stimuli is regained more

slowly in the toes compared to the mid-plantar injection

site. However, as with the mid-plantar site, analgesia in

the toe was significantly greater in the 50 ng as com-

pared to the 5 ng group (p < 0.001, Figure 3A and 3B;

p < 0.05, Figure 3C).

Responses to C stimuli at week 5 revealed a small but

significant difference between RTX (50 ng) and vehicle-

treated toes (Figure 3E). By 10 weeks, there was no dif-

ference. There was no measurable statistical difference

between the 5 ng RTX and vehicle-treated paws at week

5 or week 10.

Application of RTX initially evokes nociceptive activity

by binding to and activating TRPV1 [14]. This is fol-

lowed by a dying-back (axonopathy) of unmyelinated

and myelinated TRPV1-expressing fibers and potentially

a recruitment of macrophages that can release cytokines,

which in turn could activate the remaining proximal end

of the nerve fiber. Using RT-PCR, we examined the

DRG and spinal cord for expression of genes associated

with nociceptive activity and nerve regeneration after

RTX-treatment. As shown in Figure 4 the gene encod-

ing the nociceptive chemokine MCP-1 [34,35] was

increased in the DRG at 24 h, likely due to an initial

burst of nociceptive activity following TRPV1 activation

[36], but expression normalized by day 10 (Figure 4A-C).

Table 1 Latency to observable movement following short-pulse (100 ms), high intensity stimulation with infrared

diode laser (6.08 W/mm2)

Standing on 2 or 3 paws Standing on 4 paws Total

Total number of trials 8 8 16

Shortest latency to fLEM 56 ms 74 ms 56 ms

†Fastest conduction velocity 3.0 m/s 2.3 m/s 3.0 m/s

Mean latency to fLEM (± SEM) 159.5 ± 36.7 ms 250.0 ± 28.9 ms 204.8 ± 25.4

†Mean conduction velocity 1.1 m/s 0.7 m/s 0.8 m/s

Shortest latency to withdrawal of stimulated limb 74 ms 128 ms 74 ms

Mean latency to withdrawal of stimulated limb (± SEM) 213.0 ± 34.1 271.0 ± 27.7 242.0 ± 22.5

†Conduction velocities are likely a gross underestimation of the actual conduction velocities. They do not account for central delay (~80 ms in the rat) [32],

motoneuron conduction velocity (33-85 m/s) [33] or the time required for muscle contraction/relaxation (34-116 ms) [33]. Nonetheless, we were able to

demonstrate that it is possible to detect nocifensive behaviors that are temporally consistent with being mediated by Aδ-fibers. The posture of the animal before

stimulation appears to greatly influence our ability to detect movements with short or longer latencies.
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In contrast, the nerve regeneration marker ATF3 [37]

was induced at 24 h but the increase was maintained

through day 10 (Figure 4A, B and 4D). The regenera-

tion marker galanin was also increased at day 5 and

10 (Additional file 2). Upregulated c-Fos in the spinal

cord is also an early marker of nociception [38,39].

Consistent with the elevation in ganglionic MCP-1

transcripts, c-Fos protein levels increased early (6 h)

but reverted by 24 h (Figure 4E-I), indicating that

regeneration after RTX-induced axonopathy is devoid

of ongoing spontaneous nociceptive activity sufficient

to induce these markers.
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Figure 2 Effect of RTX on Aδ and C responses at the mid-plantar injection site. Either 5 or 50 ng of RTX was injected into the right while

vehicle was injected into the left hind paw. Aδ and C responses before and after injections were followed for several weeks. (A-D and F) Aδ

responses following intraplantar RTX-injection. We used probability of withdrawal (A, C and F) and the intensity of withdrawal (B and D) as

endpoints for the Aδ assay. Behavioral responses to stimulus intensities at 5.12 W/mm2 (A, B and F) or 6.08 W/mm2 (C and D) are shown. (E)

Loss and return of C-fiber responses after RTX-intraplantar injection. We used latency to paw withdrawal as the endpoint for the C-fiber assay; a

stimulus intensity was chosen that produced a response latency of ~8 sec in normal rats. A cutoff of 16 sec (dashed line) was imposed to

prevent tissue damage. (F and G) Direct comparison of behavioral responses at day 18 post-RTX to Aδ (F) and C (G) stimuli. Data used in week

3, in the line graphs, are the average of tests done on days 16, 18 and 21. Hypoalgesia at day 18 was maintained in Aδ but not C-fibers. The

tables under the graphs denote statistical comparisons between vehicle and 5 ng or 50 ng RTX, which are aligned with the post-treatment time

points. Each data point is an average of the combined responses from 2 or 3 non-consecutive days of testing during the time period indicated

on the x-axis (weeks). For graphical simplicity, the data from all vehicle-treated rats (n = 12) is combined, yielding a single line in the plots, since

there was no significant difference between the two vehicle groups. 2-way ANOVA with repeated measures was used to compare the effect of 5

ng or 50 ng RTX versus vehicle. 2-way ANOVA was used to compare the effects of 5 ng versus 50 ng. Fisher’s exact test was used in F. *,† p <

0.5, **,†† p < 0.01, ***, ††† p < 0.001, n = 6 rats per group.
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Discussion
In the present study, we examined (a) behavioral

responses associated with thermal laser stimulation of

Aδ- and C-fibers in awake rats, (b) such behavioral

responses after peripheral ablation of the two fiber types

following intraplantar administration of the vanilloid

agonist RTX, (c) the time-course of recovery/regenera-

tion, and (d) the expression of markers for nociception

and nerve regeneration. The results demonstrate that

the infrared diode laser can be tuned to evoke beha-

vioral responses temporally consistent with activation of

Aδ-fibers in the rat hind paw. The results also

5 10
0

5

10

15
Vehicle

5.0 ng RTX

50 ng RTX

*
†

Weeks

W
it
h

d
ra

w
a
l 
 L

a
te

n
c
y
 (

s
e
c
)

E

B
L 1 2 3

4
-5

7
-8

9
-1

0

1
1

-1
3

1
4

-1
5

0

1

2

3

4

Vehicle

5.0 ng RTX

50 ng RTX

5 ng ns *** *** *** *** * ns ns ns
50 ng ns *** *** *** *** *** *** ns ns

5.12 W/mm2

†††

Weeks

R
e
s
p

o
n

s
e
 S

c
o

re

B
L 1 2 3

4
-5

7
-8

9
-1

0

1
1

-1
3

1
4

-1
5

0.0

0.2

0.4

0.6

0.8

1.0

Vehicle

5.0 ng RTX

50 ng RTX

5 ng ns *** *** *** *** ns ns ns ns
50 ng ns *** *** *** *** *** ** ns ns

5.12 W/mm2

†††

Weeks

P
ro

b
a
b

ili
ty

 o
f 

W
it
h

d
ra

w
a
l

B
L 1 2 3

4
-5

7
-8

0.0

0.2

0.4

0.6

0.8

1.0

Vehicle

5.0 ng RTX

50 ng RTX

5 ng ns *** *** ** *** *

50 ng ns *** *** *** *** *

6.08W/mm2

†

Weeks

P
ro

b
a
b

ili
ty

 o
f 

W
it
h

d
ra

w
a
l

B
L 1 2 3

4
-5

7
-8

0

1

2

3

4

Vehicle

5.0 ng RTX

50 ng RTX

5 ng ns *** *** *** *** *

50 ng ns *** *** *** *** **

6.08 W/mm2

Weeks

R
e
s
p

o
n

s
e
 S

c
o

re

A B

C D

Figure 3 Aδ- and C-fiber responses in the toes after mid-plantar RTX injection. The infrared diode laser was used to stimulate Aδ- or C-

fibers in the toes of the same rats used in Figure 2. (A-D) Responses to Aδ stimuli are diminished for up to 10 weeks. Plots are similar to those

in Figure 2. (E) For 50 ng RTX only, a small but significant difference was measured in the toes at 5 weeks (but not at 10 weeks) for C responses;

data reported are an average of 3 test days. Our initial protocol used C-fiber testing only at the mid-plantar footpad; however, since we

observed prolonged, diminished Aδ behavioral responses in toes after RTX-treatment, a suppression of C-fiber behavioral responses might occur

in tandem. During a separate study, we found that within 1 week after 50 ng intraplantar RTX, rats reached the 16 sec cutoff when testing C-

fibers in their toes. 2-way ANOVA with repeated measures was used to compare the effect of 5 ng or 50 ng RTX versus vehicle. 2-way ANOVA

was used to compare the effects of 5 ng versus 50 ng. *,† p < 0.5, **,†† p < 0.01, ***,††† p < 0.001, n = 6 rats per group.
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demonstrate that mid-plantar injection of RTX removes

both Aδ- and C-fiber mediated thermal sensations in

the footpad and toes. This is followed by a progressive

recovery of behavioral function from proximal (mid-

plantar) to distal (toes) over several weeks.

One of the main aims of the present report was to

evaluate infrared laser evoked Aδ- and C-fiber nocifen-

sive behaviors. Two approaches were used: analysis of

behavioral reactions in the immediate 300 msec of the

post-stimulus period and modulation of behaviors fol-

lowing intraplantar injection of RTX. We first estab-

lished, with high-speed videography, that nocifensive

behaviors following short duration (100 msec), high-

intensity laser pulse stimulation (6.08 W/mm2) are

mediated by Aδ-fibers, consistent with reported electro-

physiological [24,25] and laser-evoked potential

[22,26,40,41] observations. Importantly, the latency to

withdrawal of the stimulated limb was not always useful
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Figure 4 Intraplantar injection of RTX leads to a transient increase in gene markers of nociception but a sustained increase in markers

of nerve regeneration. Gel image shows ganglionic expression levels of mRNA encoding MCP-1 and ATF3 24 h or 10 days after vehicle or RTX

treatment, taken from left and right L4-L5 dorsal root ganglia (n = 4 rats, ipsilateral RTX expression is denoted by an asterisk). MCP-1 (C) and

ATF3 (D) transcript levels were normalized to GPDH. Data were obtained from RT-PCR analysis (n = 4/group). All graphs are presented as mean

± SEM. *p < 0.05 and **p < 0.01, and ***p < 0.001 as determined by a one-way ANOVA followed by a Bonferroni correction. (E-H)

Immunohistochemistry showing spinal cord c-Fos expression 6 h or 10 d post-RTX. E and F are epifluorescent images depicting an elevation in

c-Fos protein 6 h after RTX or vehicle in the ipsilateral and contralateral dorsal horn, respectively. G and H are epifluorescent images

representing c-Fos expression 10 d after RTX or vehicle in the ipsilateral and contralateral dorsal horn, respectively. (I) Cell counts demonstrate

significantly more c-Fos immunopositive cells in spinal cord ipsilateral to RTX injection as compared to contralateral vehicle injections at 6 h but

not at 24 h or 10 days. Data expressed as means ± SEM (n = 4). The fold-change is shown. *p < 0.05 as determined by Student’s t-test. Arrows

indicate the location of the medial dorsal horn. The most intense c-Fos positive neurons were counted in this area.
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for estimating the conduction velocities of activated

fibers. Instead, by capturing the behavior of the entire

animal with a high-speed camera, we often observed

that a rapid set of movements occurs before withdrawal

of the stimulated limb. In most cases the latencies of

these early movements indicated a faster afferent con-

duction velocity than if the latency to withdrawal of the

stimulated limb was used as the endpoint. The progres-

sion of motion after the first observable laser-evoked

movement (fLEM) was often consistent with postural

adjustments to ensure stability that preceded a later, yet

brisk, withdrawal of the stimulated limb. The shortest

latency to fLEM was 56 ms, yielding a conduction velo-

city estimate for the primary afferent volley of 3 m/s,

which is in the range for Aδ fibers and well above the

range for C-fibers. In a previous study using a CO2

laser, EMG recordings taken from the gluteus maximus

and biceps femoris of the stimulated limb yielded evoked

electrical activity at ~280 ms [26]. However, these studies

were performed on anesthetized animals whereas the

present observations, obtained from awake unrestrained

rats, suggest that complex postural changes and even

reflexive Aδ-type behaviors are suppressed when the ani-

mal is under anesthesia. Our high speed imaging of the

earliest, reflex-like movements is indicative of an Aδ-

mediated nociceptive response to ‘first pain’ [42] and an

activation of the Aδ “alarm system” [43].

When rats supported their body weight on 2 or 3

paws, fLEM often occurred at < 160 ms and frequently

the movement occurred on the contralateral (i.e., unsti-

mulated) side. This suggests that a readily observable

short latency Aδ-evoked movement is more likely to be

revealed when rats are in a “reared” position, or any

posture that opportunistically requires rapid mediolat-

eral balance adjustment prior to paw withdrawal. In

contrast, when rats are standing with body weight dis-

tributed to all four legs, and therefore more neutrally

balanced, latency to fLEM increased to ~250 msec.

When all four paws are on the ground, early postural

adjustments are difficult to detect if they primarily

involve the axial musculature rather than repositioning

of the forepaws or head and neck, all of which can

occur in the first 100 msec following the end of the

laser pulse. An additional consideration is that in the

rat, central delay to acute laser stimulation has been

reported to last for up to 80 ms [32]. Whether this

makes a significant contribution to “preparatory” adjust-

ments [44] or long latency movements is being further

investigated but it is clear that controlled balance at the

moment of retraction of the stimulated paw is a priority

for spinal sensory-motor circuits (for an example in

humans, see [45]).

The actions of RTX are manifested in both Aδ- and

C-fiber types. We observe that peripherally administered

RTX temporarily eliminates behavioral responses to

both Aδ- and C-fiber mediated thermal nociception.

Our data corroborate previous human studies in which,

after prolonged capsaicin treatment, cortical LEPs corre-

sponding to activated Aδ- and C-fibers are eliminated,

as well as the behavioral response [46,47]. The capacity

to independently test the two fiber types using our cur-

rent laser settings suggest differential recovery rate for

Aδ compared to C-fibers. After administering the higher

dose of RTX (50 ng), responses to the C-fiber stimulus

recovered first, but responses to the Aδ stimulus lagged

by several weeks. However, the C-fiber stimuli also cov-

ered a greater area of skin, increasing the likelihood of

activating a functional nerve ending. In both cases,

responses to the C-fiber and Aδ stimuli, which were

initially eliminated, returned gradually rather than

abruptly. The gradual return is consistent with the idea

that, within a single fiber type, the rate of regeneration

is heterogeneous. It is also possible that, during recov-

ery, C-fibers played a more pronounced role in mediat-

ing behavioral responses as they were no longer

preempted by the faster Aδ input [48]. The lag in recov-

ery of the full, archetypal Aδ behavioral responses after

RTX may indicate that the Aδ-fibers are greatly com-

promised and/or undergo a more extensive axonopathy

and/or that return of function depends on complete re-

myelination. Because the diameter of the Aδ laser spot

was small we could stimulate multiple discrete areas of

skin and spatially map the thermal sensitivity of the

paw. Spatial mapping of the paw demonstrated a slower

return of distal sensitivity (toes) compared to return of

sensitivity proximal to the injection site (mid-plantar).

Therapeutically, prolonged behavioral recovery at sites

distal to an RTX injection indicates that regional analge-

sia can be sustained longer by injecting RTX more prox-

imal to the DRG and has potential therapeutic

ramifications for treatment of peripheral neuropathic

pain problems subsequent to nerve injury or possibly

chemotherapy.

During the first 3 to 5 weeks of repeated testing, we

observed that the rats became progressively more sensi-

tive to the Aδ stimulus (Figure 2 and 3). This may be

due to one or more concurrent processes, including (a)

cued or non-cued learning or anticipation, which may

be greatly influenced by the aversive nature of the sti-

mulus, and (b) habituation to the novelty of the testing

environment. Interestingly, the rats did not become

more sensitive to C-fiber stimuli over the course of the

study. This likely reflects a specific difference between

the C and Aδ stimuli. Our C-fiber test involves slow-

rate heating over several seconds (average latency ~8 sec)

and the sensation of warming occurs well before the

stimulus becomes noxious. Even if distracted by environ-

mental cues, the warming phase can act as a thermal cue
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for the subsequent noxious threshold. Nonetheless, the

rats maintained consistent withdrawal latency to C-fiber

stimuli and did not exhibit a trend towards shorter laten-

cies after repeated testing. This suggests that neither

learning or anticipatory cues nor habituation critically

affect responses in longitudinal C-fiber testing. In con-

trast, the sharp, pricking sensation of an Aδ stimulus

(as reported by human subjects, [49]) may make it

substantially more aversive than a C-fiber stimulus and

therefore couple it more tightly to anticipatory or learn-

ing circuits and suggest that further exploration of these

aspects is warranted.

The initial RTX-induced nociceptive phase, subse-

quent analgesia, and nerve regeneration were each dis-

cernible at the molecular level. We assessed the

temporal regulation of several molecular markers of

nociceptive and regenerative processes in DRG or spinal

cord following intraplantar injection of RTX. MCP-1 is

widely thought to be a marker of pain since transcript

and protein levels are upregulated in the DRG by per-

ipheral inflammation [36] and in neuropathic pain mod-

els [50-52]. With intraplantar RTX, we observed that

ganglionic MCP-1 was induced at 24 h, consistent with

our previous findings [36]. The increase in MCP-1 was

not sustained: no elevation was detected at day 5 (data

not shown) or at day 10. In contrast, ATF3, a marker of

nerve regeneration [37,53], exhibited an increase at 24 h

that was sustained at both day 5 and 10, indicative of a

long-lasting regenerative process after intraplantar injec-

tion of RTX. Strong upregulation of galanin, another

marker of nerve regeneration, was also detected on day

5 and 10. Cumulatively these data suggest that processes

involved in peripheral nerve regeneration do not contri-

bute to the maintenance of MCP-1 upregulation.

Further investigation may provide clues to the mechan-

isms of MCP-1 upregulation in neuropathic and inflam-

matory models of pain and the heterogeneity of

neuronal expression in the DRG. At least in the case of

RTX, action potentials or calcium signaling [12] may be

involved, since RTX induces acute, prolonged nocicep-

tive behaviors at the 50 ng dose [36] and a massive

influx of calcium [13] precedes desensitization. It is also

possible, however, that MCP-1 is induced by the initial

dying back of the TRPV1-expressing fibers (e.g., due to

a loss of trophic factor signaling) rather than the initial

burst of nociceptive activity. Consistent with the transi-

ent increase in MCP-1 following peripheral RTX, we

observed that expression of the c-fos gene, measured by

c-Fos protein immunostaining, was transiently increased

in the spinal cord immediately after intraplantar RTX

injection, consistent with our previous findings [17].

Induction of c-Fos in the spinal cord is widely accepted

as a marker of pain signaling [38,39]. A drop in c-fos

gene expression towards baseline levels by 24 h further

indicates that RTX induces an immediate inactivation of

nerve fibers since sustained nociceptive input can pro-

duce a long-lasting change in Fos proteins in dorsal

spinal cord [38]. The lack of sustained elevation in pro-

tein occurs concurrently with a pronounced behavioral

analgesia.

Conclusion
Together our data demonstrate that analgesia following

intraplantar administered RTX lasts much longer than

previously assumed. The previous underestimate is due,

in part, to the undetected extended time required for

complete behavioral recovery to an Aδ stimulus. High-

speed videography suggests that Aδ nociception engages

a complex process of rapid sensory-motor integration

involving coordinated postural and balance adjustments

prior to limb retraction. Infrared laser stimulation in

awake, unrestrained animals can be used to assess the

behavioral role of Aδ-fibers in several pain models and

to differentiate mechanisms related to myelinated and

non-myelinated fiber populations.

Methods
Animals

Male Sprague-Dawley rats (250-350 g) were housed

under a 12 hr light-dark cycle and allowed access to

food and water ad libitum. The ambient temperature of

the holding and testing rooms was 21-22°C. Procedures

were performed in accordance with the National Insti-

tutes of Health (NIH) Guidelines for the Care and Use

of Laboratory Animals, and approved by the National

Institute of Dental and Craniofacial Research (NIDCR)

Animal Care and Use Committee. All efforts were made

to minimize both animal numbers and distress within

the experiments.

RTX administration

Sealed glass ampoules of RTX (1 mg) were obtained

from LC Laboratories (Woburn, MA). RTX was solubi-

lized in 150 μl ice-cold 100% ethanol, diluted with 50 μl

ddH2O supplemented with ascorbic acid (to make a

final RTX stock concentration of 5 μg/μl RTX and

2 mM ascorbic acid), and further diluted to a working

concentration of 100 ng/μl in sterile vehicle (0.25%

Tween-80, 2 mM ascorbic acid, 0.9% NaCl). Vehicle was

also used to dilute RTX (100 ng/μl) to lower working

concentrations. All intraplantar injections were made

using a total volume of 50 μl.

Thermal stimulus paradigm

An infrared diode laser (LASS-10 M; Lasmed, LLC,

Mountain View, CA) with an output wavelength of 980

nm and maximum power of 20 W was used to generate

thermal stimuli. For calibration, laser power/energy was
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measured using a meter with a thermal sensor (Nova II,

L30A-10 MM, Ophir Optronics). Cutaneous C-fibers

were selectively activated by low-rate heating using long

pulses, low energy and a large diameter beam (5 mm Ø,

nominal) [24]. Aδ-fibers were selectively activated with a

high rate of heating, using a high-energy, brief pulse

(100 ms), and a small spot size (1.6 mm Ø, nominal). A

thermal damage cutoff for each stimulus paradigm was

determined primarily by visual examination (e.g., pre-

sence of a spot of protein coagulation, acute redness or

blistering, swelling 24 h post) of stimulated, anesthetized

rats. We observed that Aδ pulses at 7000 mA (corre-

sponding to a power density of 6.93 W/mm2) often

resulted in instantaneous skin damage whereas 6000

mA (6.08 W/mm2), which evokes strong behavioral

withdrawal responses, never produced visible skin

damage. The skin heating rate for each Aδ stimulus was

measured with an infrared camera (ThermoVision

SC6000, FLIR Systems, Inc.) on the plantar foot pad of

anesthetized rats, acquired at 400 fps. At 5000 mA (5.12

W/mm2) the rate was ~235°C/sec; at 6000 mA (6.08 W/

mm2) the rate was ~300°C/sec. For the C-fiber stimulus

(1000 mA; 0.083 W/mm2), a 16 sec cutoff was used

since visible skin damage was not detected in stimulated

paws within 24 h. Stimulation for 18 sec, on the other

hand, resulted in visible skin damage. Generally, latency

to paw withdrawal is ~8 sec with our C stimulus

parameters.

Behavioral testing

The testing paradigm is similar to an earlier protocol

that we established using a radiant heat stimulus from a

focused incandescent light source [54]. Rats were placed

unrestrained under plastic enclosures on an elevated

glass platform. The enclosures (23 × 13 × 13 cm) were

large enough for the rats to move freely. Rats required

5-10 min to habituate. The laser collimator was attached

to a support and positioned below the glass, with the

beam perpendicular to the surface. Great care was taken

to keep the glass surface dry and free of debris or

excrement.

The endpoint for C-fiber response is paw withdrawal

latency. In this case, when the rat was still with paw flat

on glass, the beam was aimed at the mid-plantar foot pad

then fired continuously until withdrawal. The latency to

withdrawal was measured by the experimenter using a

digital stopwatch. Preliminary studies determined that

typical basal withdrawal latencies for adult Sprague-

Dawley rats (250-350 g) subjected to a 0.083 W/mm2

stimulus was between 8-9 sec, similar to the latency

obtained with a white-light radiant heat stimulus [54].

The response to a high-energy Aδ stimulus in

untreated, normal rats is brisk and behaviorally produc-

tive, characterized by rapid paw withdrawal, orientation

of the head to the stimulated paw, and paw shaking and

licking, which is similar to that observed when using a

CO2 laser [28,55]. Since withdrawal latency was gener-

ally too rapid to be an informative endpoint for the Aδ

response, we instead used a binary measure (no withdra-

wal = 0, withdrawal = 1), and calculated the probability

of withdrawal to each stimulus intensity (total withdra-

wals/total number of trials). Rats, 3 to 4 at a time, were

placed on an elevated glass test platform and stimulated

sequentially; the inter-stimulus interval, per rat, was

typically ~1 min. Two different stimuli were used where

the lower stimulus intensity (5.12 W/mm2) always pre-

ceded testing of the higher intensity (6.08 W/mm2).

Mid-plantar site was stimulated on each rat and then

the toe on each rat. On any one test day, two different

spots on the mid-plantar region were stimulated, one

with 5.12 and the other with 6.08 W/mm2; also two dif-

ferent toes were stimulated: the index toe received 5.12

W/mm2 and the middle toe received 6.08 W/mm2, for a

total of 4 stimuli per rat per day unless noted otherwise.

Responses to C-fiber stimuli (mid-plantar) were deter-

mined at least 10 min after evaluation of Aδ responses.

Only one C-fiber test was administered per day. When

C-fiber responses were tested on toes, the same spot dia-

meter of 5 mm was used. The toes in these rats are at

least 5 mm long but 2 mm wide. The stimulus was

applied in such a way as to ensure that an area of 5 ×

2 mm was heated. Aδ responses were not determined on

days when the toes were stimulated with the C-fiber sti-

mulus. To assess the effects of RTX, responses from each

animal (n = 6) were grouped according to stimulation

site (mid-plantar or toe) and stimulus intensity (5.12 or

6.08 W/mm2). Responses from 2 or three test days dur-

ing the indicated time period (weeks) were pooled and

averaged to obtain mean response values. To determine

statistical significance, repeated measures 2-way ANOVA

was used where responses were compared between vehi-

cle- and RTX-treated paws in each animal.

A subjective rating scale for behavioral intensity was

also developed to compare the effect of RTX on with-

drawal responses. There was nearly complete concur-

rence on the rating in all tests when performed

independently (JMK, KM, MJI or BDB). The categories

were: 0 = no visible response; 1 = slight twitch of the

body or abrupt movement of head; 2 = withdrawal of

the foot off the glass, including either a rapid return of

the paw to the glass as well as the rat walking away; 3 =

withdrawal of the foot characterized by prolonged paw

shaking or guarding, and orientation of the head, with-

out licking; 4 = strong withdrawal, which includes paw

shaking, orientation and licking. Although this endpoint

was useful in characterizing the degree of the nocifen-

sive behavior associated with Aδ stimulation, we cannot

say for certain whether licking, which sometimes
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occurred well after paw withdrawal, is mediated by Aδ-

fibers, C-fibers or both.

High-Speed Videography

A high-speed 12-bit monochrome camera (AOS Tech-

nologies AG, Switzerland) was used to precisely capture

rapid movements associated with withdrawal activity.

Images were acquired at 500 frames per second and

recorded for a total of 2 sec, which was sufficient to

capture the entire 100 ms laser pulse (IR light appears

as a saturating flash for 50 frames) and withdrawal of

the stimulated limb. Rats used for recording were initi-

ally conditioned to the test for 3 days prior (not conse-

cutive). Many preliminary recordings (> 40) of

stimulated rats were taken to determine the best condi-

tions, by varying such factors as the viewing angle and

illumination. Although ultimately not all were used for

the data in Table 1 they were constructive to developing

our hypothesis. In some recordings, to better view the

musculature, fur on rats hind quarters was shaved off to

reveal the lower back, hips, and legs. Great care was

taken to only record when the rats were properly habi-

tuated and sitting still at the moment of stimulation,

irrespective of posture. For the data presented in

Table 1, 4 rats total were used, and the middle or index

toe was targeted with the 100 ms, 6.08 W/mm2 stimu-

lus. On each day (2 total) of video recording, only one

stimulation was performed on both the left and right

toes, totaling 8 trials/day. The index toe was used on

one day while the middle was used for the second. For

calculating latency to withdrawal, frames were counted

from the onset of laser stimulation to the onset of the

first-observable movement or muscle twitch. In separate

experiments, these rats were also stimulated at the same

laser intensity but with progressively shorter pulse dura-

tions (increments of 10 ms) to determine the minimum

time required to initiate a response. Stimulation for

30 ms did not evoke withdrawal responses (0/8) whereas

stimulation for 40 ms evoked withdrawal in 25% of the

trials (2/8). Thus, when determining the latency, 30 ms

was subtracted from the total time, since the fibers were

not sufficiently heated by 30 ms to initiate a response.

Therefore the noxious phase of the 6.08 W/mm2 stimu-

lus was defined as the last 70 of 100 ms. An estimation

of the conduction velocity was then calculated using the

length of the exposed nerve, by gross dissection, from

the toe to the lamina 5 dorsal root entry zone.

Immunofluorescence and cell counting

Immunohistochemistry was performed on 12 μm fresh

frozen sections, which were immersion fixed for 10 min

in 4% buffered formaldehyde at room temperature and

subjected to antigen retrieval by boiling (20 min) in tar-

get retrieval solution, high pH (DAKO, Glostrup,

Denmark). The primary antibody was a rabbit anti-rat

c-fos [56] diluted 1:10 K. For immunofluorescence stain-

ing, secondary antibodies conjugated with Alexa Fluor

488 (Invitrogen) was used. Images were obtained with

an epifluorescence microscope attached to CCD camera

(Olympus) using Olympus software to take images of all

samples under the same exposure time. For cell count-

ing, an immunofluorescence intensity cut-off was estab-

lished to eliminate counting of basally expressed c-Fos

in the medial portion of the spinal cord.

RT-PCR Analysis

RTX (50 ng) was injected into one paw and vehicle was

injected into the contralateral paw. Animals were sacri-

ficed 6, 24, 120 or 240 h later, dorsal root ganglia were

removed and RNA was extracted as previously described

[57]. RT-PCR was performed using the Access RT-PCR

system (Promega, Madison, WI). The PCR primer pairs

are 5’-CTGTGGTTTTTGGTGGGAAG-3’ and 5’-

GGCCATGTAAACTGGCTGAT-3’ for ATF-3 (250 bp);

5’-CCAGAAACCAGCCAACTCTC-3’and 5’-CCGACT-

CATTGGGATCATCT-3’ for MCP-1 (192 bp);

5’-ACCACAGTCCATGCCATCAC-3’ and 5’-TCCAC-

CACCCTGTTGCTGTA-3’ for GPDH (452 bp). The

RT-PCR analysis was performed according to the manu-

facturer’s instruction in 25 μL reaction mixture contain-

ing exactly 8 ng of RNA. RT-PCR steps were 1 cycle of

45 min at 45°C for reverse transcription, 1 cycle of 2 min

at 94°C for inactivation of transcriptase, 26-30 cycles of

30 s at 94°C for denaturation, 1 min at 55°C for anneal-

ing, 2 min at 68°C for extension, and final extension at

68°C for 7 min. The RT-PCR products were separated by

electrophoresis on 2% agarose/ethidium bromide gels

and images were acquired with an AlphaImager system

(Alpha Innotech Corp.). The relative intensities of the

RT-PCR products, as visualized on the gel, were analyzed

quantitatively using ImageQuant 5 software. The results

were normalized to GPDH. Comparisons of gene expres-

sion from ipsilateral and contralateral tissues were made

by paired Student’s t-test.

Additional material

Additional file 1: Aδ laser stimulation of rat hind paw captured with

high-speed videography. The rat was recorded at a rate of 500 frames

per sec (fps) to capture the first-observable movement after laser

stimulation (6.08 W/mm2). The laser stimulus (100 ms, 31 frames) can be

easily observed since infrared light saturates the CCD sensor, appearing

as black pixels in the video. The rat was at rest and motionless

immediately before stimulation. Post-stimulation, ostensible movement

could be detected in the left forearm and the right shoulder by 104 ms.

Clear movement of the contralateral paw could be detected by 4 frames

(113 ms). Complete limb withdrawal and paw licking occur several

frames later. The total length of the recording is 1 sec. Withdrawal of the

stimulated limb appears rapid and very brisk when viewed in real-time.

[Note: Due to video compression, this reformatted video file plays at

~310 fps.]
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Additional file 2: Upregulation of galanin following intraplantar

injection of RTX (50 ng). Gel image shows ganglionic expression levels

of mRNA encoding galanin 5 or 10 days (A and B, respectively) after

vehicle or RTX treatment, taken from left and right L4-L5 dorsal root

ganglia (n = 4 rats, ipsilateral RTX expression is denoted by an asterisk).

Graph in (C) shows that galanin transcript levels (after GPDH

normalization) were significantly altered by intraplantar RTX injection.

Graph is presented as mean ± SEM. (N = 4/group). ***P < 0.001 as

determined by one-way ANOVA followed by a Bonferroni correction.

ATF3 transcript levels were also increased on day 5 whereas MCP-1 levels

were not (data not shown).
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