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ABSTRACT

The results of an experimental evaluation of ablative materials suitable for the production of light weight, low

cost rocket engine combustion chambers and nozzles are presented. Ten individual specimens of four different compo-

sitions of silica cloth-reinforced phenolic resin materials were evaluated for comparative erosion in a subscale rocket

engine combustion chamber. Gaseous hydrogen and gaseous oxygen were used as propellants, operating at a nominal

chamber pressure of 1138 kPa (165 psia) and a nominal mixture ratio (O/F) of 3.3. These conditions were used to

thermally simulate operation with RP-1 and liquid oxygen, and achieved a specimen throat gas temperature of approxi-

mately 2456 K (4420 °R). Two high-density composition materials exhibited high erosion resistance, while two low-

density compositions exhibited —6-75 times lower average erosion resistance. The results compare favorably with

previous testing by NASA and provide adequate data for selection of ablatives for low pressure, low cost rocket

engines.

INTRODUCTION

The increasing demand for reliable, low-cost launches of small satellites (100-300 kg)(221-662 lbs) to equa-

torial or polar low-Earth orbit (LEO) has led to a number of design approaches for a low-cost propulsion system to

meet this demand. One approach includes the utilization of relatively inexpensive propellants such as RP-1 (processed

kerosene) fuel and liquid oxygen (LOX) in a low chamber pressure, pressure-fed engine, with an uncooled combustion

chamber and nozzle. The elimination of complex, high-pressure turbopumps, and avoidance of cryogenic fuels such as

liquid hydrogen or liquid methane, with insulated storage tanks and transfer lines, simplifies the entire system, thus

increasing reliability and lowering costs. The combination of RP-1 and LOX is also far more benign for the environ-

ment than conventional solid or hypergolic propellants.

References 1 and 2 identified plans for developing an orbital launch system consisting of a two-stage launch

vehicle capable of placing payloads of approximately 227 kg (500 lbs) to 340 kg (750 lbs) into polar or equatorial

LEOs. For simplicity and low cost, this system would utilize an existing off-the-shelf first-stage high thrust engine, and

a second-stage, low thrust rocket engine consistent with the above approach. To address the desire for a low-cost, light-

weight, uncooled combustion chamber and nozzle, Lewis Research Center conducted a conceptual design and analysis

study of two RP-1 /LOX propelled engines (one for sea-level testing and one for upper-stage operation) for this application.

Evaluation of design options, with the goals of simplicity and low cost, led to incorporating ablative materials to

fabricate part of the desired combustion chamber and nozzle.

Ablative materials are used extensively to provide sacrificial cooling (progressive endothermic decomposi-

tion of fiber-reinforced organic material and mass flow of pyrolysis gases away from the heated surface, blocking heat

flux to the outer surface) in a number of liquid and solid propellant rocket engine applications. The advantages of

ablative cooling include simplicity, reliability, ease of fabrication, and compatibility with deep throttling requirements.

Another major advantage is the elimination of the need for expensive, complex, regenerative engine cooling systems,

with high pressure pumps and tanks.

A preliminary survey was conducted of ablative materials, with emphasis on aerospace industry applications,

and it was determined that a number of available low cost materials could meet the design requirements which include:

• RP-1 and LOX Propellants

• Firing Duration = 265 seconds

• Chamber Pressure = 883 kPa (128 psia)



In addition to previously tested and utilized materials (e.g. Fiberite MX2600), a number of new light-weight

materials were considered for comparative evaluation. It was also determined (reference 3) that the rate of throat

erosion could be minimized by utilizing an engine design which incorporates a low O/F zone in the periphery of the

combustion gases, or "O/F Zoning", thus creating a lower gas temperature adjacent to the chamber wall. Selection of

O/F zoning was based on two aspects. First, by selection of an O/F zone of 1.6, a cool combustion zone in the periphery

of the injector will create a temperature of approximately 2444 K (4400 °R) which should keep the erosion of the

ablative to a minimum without seriously affecting the overall engine performance (reference 4). Second, the velocity

difference between core flow and peripheral-zone flow is less in the case of O/F zoning than it is with film cooling, thus

minimizing the mixing between the two zones. Hence, one would expect better maintenance of the zone cooling

influence throughout the length of the chamber. Figure I (reference 3) shows the effect of peripheral-zone combustion

temperature on ablative throat erosion for a rocket engine with a throat diameter of 7.62 cm (3.0 in.) and operating at a

chamber pressure of 690 kPa (100 psia). As can be seen, the ablative erosion rate decreases almost linearly, and the

onset of erosion is delayed at the lower combustion temperatures. That experimental effort utilized nitrogen tetroxide

and a blend of 50 percent unsymmetrical dimethyl-hydrazine and 50 percent hydrazine propellants. The current experi-

mental effort utilized an existing rocket engine chamber with a design throat diameter of 2.54 cm (1.0 in.) and operated

at a chamber pressure of 1138 kPa (165 psia) with gaseous hydrogen and oxygen propellants.

Erosion is also driven by the chamber pressure and gas velocity at the throat, which influence the heat transfer

coefficient and heat flux. Reference 5 shows that the heat transfer coefficient is directly proportional to the chamber

pressure and indirectly proportional to the throat diameter. Thus, the current experimental test results for the 2.54 cm

diameter throat sample should be conservative when applied to the larger diameter conceptual engine design.

This paper will cover the rationale behind the selection of the candidate materials for comparative evaluation;

the experimental test matrix selected; and the experimental test results leading to selection of a material for final

fabrication. Ten throat insert samples, comprised of four different silica cloth-reinforced/phenolic resin compositions,

were tested. To evaluate the candidate materials at the desired operating conditions, testing was conducted using gas-

eous oxygen and hydrogen propellants at an overall nominal mixture ratio of 3.3 and nominal chamber pressure of
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Figure 1.—Effect of peripheral-zone combustion temperature on ablative throat erosion.



Figure 3.—Rocket engine cross section.Figure 2.—Photograph of ablative test hardware.
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1138 kPa (165 psia). This was intended to simulate the thermal conditions anticipated in the proposed design. Each test

firing was conducted for progressively longer durations, with measurements of the material sample throat diameter

taken after each run to determine the condition and to document the rate of material erosion and any fabric delamina-

tion for each sample. Comparisons are made for the apparent erosion (regression) rates, throat area increase, and the

rate of throat area increase for the different materials.

EXPERIMENT DESCRIPTION

APPARATUS

Figure 2 is a photograph of the test hardware in place in test cell 22 of the Rocket Lab, described in refer-

ence 6, at the Lewis Research Center. The hardware for testing the candidate materials included an injector, combus-

tion chamber barrel section, converging nozzle section, test sample, and a sample retaining plate, as shown in cross-

section in Figure 3, with the 2.54 cm (1.0 in.) throat diameter test sample in place. The 5.08 cm (2.0 in.) diameter

combustion chamber and convergent nozzle section were water-cooled with the sample held in place by an uncooled

stainless steel plate.

The test injector design incorporated a porous sintered wire mesh faceplate through which the hydrogen was

introduced and a number of small diameter oxygen injector tubes. An augmented spark torch system was provided to

initiate combustion. The facility also included a water spray-cooled exhaust duct for handling the exhaust products; a

programmable logic controller to actuate the valves, control the run duration, and abort the firing if a problem occurs;

and a high-speed data acquisition system.

To simulate the conceptual engine's designed combustion temperature of approximately 2444 K (4400 °R), a

theoretical performance analysis was conducted using the One Dimensional Equilibrium program (reference 7), based

on operating at a nominal chamber pressure of 150 psia. From this analysis the desired propellant flows were deter-

mined for initial testing.



Nozzle Material Fabric orientation Throat radius Average char

change after through at
Composition Supplier's 150-second throat plane,

designation firing percent

(a) mil mm

lA 70-percent high silicon MX-89 300 centerline 190 4.82 48

1B dioxide - 30-percent 600 centerline 165 4.19 52

1C phenolic 900 centerline 180 4.57 60

ID 1/2- by 1/2-inch (1.27- 175 4.44 52

by 1.27-c m) square

IE Rosette 235 5.97 51.2

2A 61-percent high silicon 300 centerline b145 3.68 44

2B dioxide - 31-perc ent MX-7600 600 centerline 150 3.81 53.5

2C phenolic - silicon di- 900 centerline 205 5.22 61. 5

2D oxide filler (8 percent) 1/2- by 1/2-inch (1. 27- 190 4.82 60

by 1. 27-cm) square

3A 62-percent high silicon MX-19 300 centerline b165 4.19 44

3B dioxide - 32-percent 600 centerline 140 3.56 48

3C polyamide modified 900 centerline 250 6.35 57.5

3D phenolic 1/2- by 1/2-inch (1.27- 220 5.59 44

by 1.27-cm) square

4A 80-percent high silicon. MX-87 300 centerline b205 5.22 36.6

4B dioxide - 20-percent 600 centerline 220 5.59 52

4C polyamide modified 900 centerline 205 5. 22 50, 5

4D phenolic 1/2- by 1/2-inch (1.27- 215 5.46 44

by 1.27-cm) square

4E Rosette b330 8.38 45.5

5A 67-percent sULcon di- NM 141 300 centerline 250 6.35 47.2

5B oxide - 3-percent 600 centerline 240 6.10 52.0

5C chrome salt - 30 per- 900 centerline 245 6.23 56.0

5D cent phenolic 1/2- by 1/2-inch (1.27- 245 6.23 48.8

by 1. 27-cm) square

5E Rosette 315 8.00 48.0

6A 70-percent high silicon 4S-4161 300 centerline 200 5.08 42.5

6B dioxide - 30-percent 600 centerline 175 4.44 52.0

6C modified phenolic 900 centerline 190 4.82 53.6

6D 1/2- by 1/2-inch (1. 27- 185 4.70 48.8

by 1.27-cm) square

7A 60-percent high silicon FM-2015 300 centerline b225 5.72 44.0

7B dioxide - 40-percent 600 centerline 225 5.72 51.0

7C elastomeric phenyl 900 centerline 255 6.47 53.5

7E silane Rosette b' 0 450 11.4 52.0

8B 70-percent high silicon NDCS-115 600 centerline 200 5.08 60

8C dioxide - 30-percent 900 centerline 250 6.35 64

high-temperature

phenolic

9C 70-percent quartz - -------- 90 0 centerline 130 3.30 64

30-percent polyamide

10E 70-percent quartz - MX-5091 Rosette 220 5. 59 54

30-percent phenolic

aAll nozzles fabricated by Edler Industries.

bFabric delamination.

cAfter 110-sec firing.

Figure 4.-Reference material-previous NASA testing. This table taken from

reference 8.



TEST SAMPLES

The selection of candidate materials to be tested was based primarily on the documented performance of

existing materials, which included the rate of erosion (regression) and the "char through" caused by resin decomposi-

tion and flow of pyrolysis gases through the char layer. The availability and cost of possible materials was also consid-

ered during the selection process.

Based on an investigation of previously tested ablative materials (references 3 and 8 thru 15), shown in

Figure 4, and a review of the application of Fiberite MX2600 material (reference 16), as shown in Figure 5(a) and 5(b),

it was determined that a silica cloth-reinforced/phenolic resin composition should provide the ablative characteristics

desired for the conceptual engine application. Quartz cloth-reinforced/ phenolic resin compositions were considered

but determined to be prohibitively costly.

Finally, the investigation suggested that a cloth fabric orientation of 60° with respect to the chamber and

nozzle center line produced a lower level of erosion than other fabric orientations, as shown on Figure 6, (reference 8).

Four(4) candidates were selected for investigation of cost, availability, and performance characteristics. Two

materials (Fiberite MX-2600-LDC and MXS-385-LD) incorporated hollow microspheres in the phenolic resin to pro-

duce low-density compositions; one high-density composition (Fiberite MX-2600) included a silicon dioxide powder

filler in the resin; and the fourth was a proprietary (Utah Rocketry) silica cloth/phenolic resin composition, high-

density material. Table 1 shows the materials selected. The low-density compositions were included to provide the

possibility of a weight savings of approximately 40% for the final product. Figure 7 shows the dimensions of the test

samples with the desired cloth fabric orientation.
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Nozzle composition,

percent

SiO 2 Phenolic	 Others

0 70	30

q 61 31 8 (SiO2 filler)

4 68 32 (polyamide)

D 80 20 (polyamide)

0 67 30 3 (Cr salt)

17 70 30 (modified)

60 40 (elastomeric

0 70 30 (high-
phenyl silane)

temperature)

Solid symbols denote delamination
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Figure 6.—Erosion vs. fabric orientation.

TABLE 1.—ABLATIVE MATERIAL SAMPLES

Supplier Designation Composition Density, Remarks

gm/cm3

1 ICI fiberite MX 2600 59-63% silica cloth 1.72 High mold pressure

29-33% phenolic resin (1000 psi) laminate

—8% silica powder

2 ICI fiberite MX 2600 LDC 45-51 % silica cloth 1.1 Low mold pressure

30-36% phenolic resin (100 psi) laminate

—9% ceramic microspheres

3 ICI fiberite MXS 385 LD 32-42% silica cloth .90 Low mold pressure

25-33% phenolic resin (50 psi) laminate

33-35% filler (ceramic

microballoons & elastomer)

4 Utah Rocketry "SIL/PHEN" Proprietary 1.88 New composition

(NASA designation)

6
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TEST PROCEDURE

The procedures used in this test program were established to obtain comparative, progressive erosion data at

a single operating condition for all selected ablative material samples. Figure 8 shows a sample data sheet (including

the matrix of run durations) utilized for recording dimensional and operating data for each run. These data were used to

monitor the amount of erosion of the sample and the degree to which the operating conditions (chamber pressure and

mixture ratio) remained constant. Each sample was measured with a digital, electronic bore gage prior to any hot firing,

to determine the initial throat diameter. The operating conditions for the combustion chamber, and the test firing

duration were programmed into the test controller prior to each test run, and all operation and data acquisition was fully

automatic from test initiation.

Following each hot firing, the sample throat was measured using the same bore gage and taking multiple

readings around the inside circumference of the throat. The condition of the test sample was evaluated visually, and

documented photographically. Each test run was also documented by high-speed photography and on videotape. The

most valuable observation after each test run was the visual inspection of the condition of each sample. This inspec-

tion, along with the diametral measurement, was used to determine whether or not to continue the test matrix. Using

this technique consistently by the same investigator during the test program permitted a reasonable comparison of the

characteristics of the selected materials. Figure 9 shows the condition of one sample of low-density MXS-385-LD

material, and illustrates the difficulty in obtaining the absolute correctness of the throat diameter after this test run. This

figure also shows the "streaking" (possibly caused by nonuniform flow in the oxygen tubes in the injector) of the

combustion products at the 7:00 and 10:00 o'clock positions (looking upstream) which contributed to the irregular

erosion pattern.

To more accurately document the change in the test sample throat diameter after the final hot firing, each

sample was mounted in a Computer Programmable Optical Comparator (Figure 10) and an average diameter was

determined from 20 readings around the inside circumference of the throat. These data were used to determine the final

throat area of each sample.



Ablative sample - test results

Test Run no. Sample Run Throat diameter (in.) Operating

Initial Post-rundate material duration (sec.) parameters

U.R. SIUPHEN Pc = 174.0 psia
4/20/95 34 1 .9984 1.00355 WO =.404

O/F = 3.34
WF=.121

1.00820 max Pc = 163.7 psia
. 1 35 3 1.00355 WO =.383	

O/F = 3.301.00725 min
WF = .116

1.00820 1.01510 max
Pc = 167.9 psia

36 10  WO =
1.00725 1.01240 min .394} O/F = 3.34

WF = .118

Pc = 161.3 psia

37 30
1.01510 1.0300 max

WO = .383 l
1.01240 1.0129 min O/F = 3.33

WF - 115 J

Pc = 160.1 psia

38 60
1.0300 1.0401 max

WO = .385 1
O/F = 3.321.0129 1.0156 min

WF = .116 J

1.0401 1.05355 max
Pc = 159.1 psia

39 11 60 WO = .386
1.0156 1.02385 min } O/F = 3.30

WF = .117

1.0058 - Optical comparator data

Final throat gas temperature = 4294 °R

Figure 8.-Sample data sheet.

Figure 9.-Photo of sample MXS385 - LID material after firing.



Figure 10.—Optical measurement of test sample.

The Post-Run diameters shown were the bore gage measurements mentioned earlier, and were used only for

preliminary determination of throat condition and approximate operating gas temperature. As shown on Figure 8, the

final throat gas temperature for this series of runs was approximately 2386 K (4294 °R). All gas temperatures were

determined using techniques outlined in reference 7. The average final gas temperature, for all test runs, was approx-

imately 2456 K (4420 °R). This condition was the result of higher chamber pressures and O/F's than initially estab-

lished but was acceptable for the purpose of comparing the test samples. The temperature was held constant within

approximately ±3% for all test runs.

The final analysis of the test data included the determination of the accumulated change in the throat diameter,

AD (mm)(in.) from which the erosion, or regression rate, R (mm/sec or mil/sec), the throat area increase AA(%), the

rate of area increase, AA/T (%/sec), and the throat gas temperature could be determined.

Figure 11 shows a sample analysis sheet for sample U.R. SIL/PHEN( , where the results of the Optical

Comparator readings were used to determine the final change in throat diameter and area, and the rate of area increase.



A2 D2	D 1 = .9984 in.

Al « D1	D 2 = 1.0058 in. (average)

A2 (1.0058) 2 _ 1.01163
=

Al (.9984) 2	.996803	
1.01488

.•. A2 = 1.01488 Al

=> 1.49% increase

and 1.49%/164 sec =

0.009% per sec A A/T

Analysis of Sample: U.R. Silica/Phenolic(i)	 Analysis of Change in Throat Area

(Tested 4/20/95)

Run # Duration,

sec

Cum. duration,

T, (sec)

OD,

in.

AD/T,

in./sec

Erosion rate,

mil/sec

34 1 1 .00515 .00515 5.15

35 3 4 .00933 .00233 2.33

36 10 14 .01535 .00110 1.10

37 30 44 .02305 .000524 .524

38 60 104 .02945 .000283 .283

39 60 164 .0403 .000246 .246

.0074 .000045 .045

Figure 11.-Sample analysis sheet.

RESULTS AND DISCUSSION

The objective of these tests was to evaluate the comparative erosion characteristics of several ablative mate-

rials at a specific operating condition for selection and application to the design of a new rocket engine. Table 2 shows

the matrix of comparative test results for the selected materials, which are summarized as follows:

TABLE 2.-ABLATIVE MATERIAL TEST RESULTS

Sample material Total test Change in Regression rate, R Area Rate of area Average

time, diameter, increase, increase, combustion

T, AD AA, AA/T, temperature,

sec percent percent/sec °R

MITI in. mm/sec mil/sec

MX2600 2 104 0.470 0.0185 0.452x10 -Z 0.178 3.74 0.0360 4562

MX2600 3 120 .986 .0388 .822 .323 7.94 .066 4338

MX2600-LDC I 31 1.864 0.0734 6.013 2.368 15.22 0.491 4483

MX2600-LDC 2 35 .889 .0350 2.54 1.00 7.12 .203 4579

MX2600-LDC 3 34 1.298 .0511 3.818 1.503 10.47 .308 4404

MXS385-LD1Q 34 1.234 0.0486 3.629 1.429 9.95 0.293 N/A

MXS385-LD 20 34 1.438 .0566 4.229 1.665 11.64 .342 4442

U.R. SIL/PHEN1 164 0.188 .0074 0.115 0.045 1.49 0.009 4294

U.R. SIL/PHEN 2 164 .028 .0011 .017 .007 .22 .0013 4308

U.R. SIIJPHEN 3 164 .056 .0022 .034 .013 .44 .0026 4372

Notes:

1.All final results were based on measurements of effective diameter made on Optical Comparator.

2. All samples were subject to "streaking" of the combustion products within the test chamber, causing irregular

erosion of the ablative materials.

3. The configuration of the test chamber allowed the ablative samples to delaminate to some degree because of the

lack of support on the downstream side of the sample.

10



Figure 12.--(a) Photo of test sample U.R. SUPHEN (3) befor

164 seconds of firing.

1. A low-cost, high-density composition of silica cloth and phenolic resin with a silicon dioxide powder filler

(Fiberite MX-2600), previously utilized for the Lunar Module descent engine, provided erosion resistance

acceptable for the intended application (-0.25 mil/sec).

2. Both of the low-density compositions eroded much more rapidly (--6-75 times) than the high-density com-

positions and exhibited a greater degree of delamination of the fabric layers.

3. A new high-density material of a proprietary silica cloth/phenolic resin composition provided the best

erosion resistance of the samples tested (-0.02 mil/sec). Figure 12(a) shows test sample U.R. SIL/PHEN 3O

prior to test firing, and Figure 12(b) shows the same sample after 164 seconds accumulated operation.

4. The use of "inter-test" inspections provided a basis for whether or not to continue each test series, which

resulted in the variations in the total test times shown on Table 2. The shorter total test times for the low-

density materials resulted from these inspections, in which the rapid deterioration was evident. The longer

total test times for the U.R. SIL/PHEN samples were the results of the observation of lower deterioration,

allowing for longer duration testing.

5. The selection of the 60° fabric orientation in the samples resulted in erosion characteristics consistent with

earlier NASA investigations utilizing nitrogen tetroxide and a blend of 50-percent unsymmetrical

dimethyl-hydrazine and 50-percent hydrazine propellants. Figure 13 shows the comparison of the

current test data with the spread of previous data from reference 8.

6. Although the operating characterisitics of the test facility and the number of ablative material samples

were limited, the use of consistent data acquisition techniques provided sufficient data for comparison of

the erosion characteristics of these materials.
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As noted on Table 2, there were factors influencing the accuracy, on an absolute basis, of the test results. The

use of the Optical Comparator to determine the final throat diameter provided a more accurate measure than bore gage

readings for comparison purposes. The final condition of the samples was further exacerbated by the lack of full

support on the downstream face of the sample, allowing some degree of delamination. This delamination generally

occurred in the areas where "streaking" was evident.

A final comparison of these materials, drawn from these results, shows that the high-density composition

materials are more desirable than the low-density materials for the proposed engine application, with a long duration

firing time (approximately 300 seconds).

CONCLUDING REMARKS

An investigation was conducted to evaluate the comparative erosion characteristics of silica cloth-reinforced/

phenolic resin materials for application to the combustion chamber and nozzle of a low-pressure liquid oxygen/RP-1

propelled rocket engine. A survey of possible candidate materials was conducted, yielding four different composition

(two low-density and two high-density) materials for further evaluation. Experimental testing was performed in an

existing test facility utilizing gaseous oxygen and hydrogen propellants at an O/F scheduled to simulate the thermal

environment of oxygen/RP-1. Results of this evaluation show that the high-density, silica cloth-reinforced/phenolic

resin composition materials tested will provide acceptable erosion characteristics for the intended application.
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