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Abstract

Recently, many researchers have used graph theory to study the aberrant brain structures in Alzheimer’s disease (AD) and
have made great progress. However, the characteristics of the cortical network in Mild Cognitive Impairment (MCI) are still
largely unexplored. In this study, the gray matter volumes obtained from magnetic resonance imaging (MRI) for all brain
regions except the cerebellum were parcellated into 90 areas using the automated anatomical labeling (AAL) template to
construct cortical networks for 98 normal controls (NCs), 113 MCIs and 91 ADs. The measurements of the network properties
were calculated for each of the three groups respectively. We found that all three cortical networks exhibited small-world
properties and those strong interhemispheric correlations existed between bilaterally homologous regions. Among the
three cortical networks, we found the greatest clustering coefficient and the longest absolute path length in AD, which
might indicate that the organization of the cortical network was the least optimal in AD. The small-world measures of the
MCI network exhibited intermediate values. This finding is logical given that MCI is considered to be the transitional stage
between normal aging and AD. Out of all the between-group differences in the clustering coefficient and absolute path
length, only the differences between the AD and normal control groups were statistically significant. Compared with the
normal controls, the MCI and AD groups retained their hub regions in the frontal lobe but showed a loss of hub regions in
the temporal lobe. In addition, altered interregional correlations were detected in the parahippocampus gyrus, medial
temporal lobe, cingulum, fusiform, medial frontal lobe, and orbital frontal gyrus in groups with MCI and AD. Similar to
previous studies of functional connectivity, we also revealed increased interregional correlations within the local brain lobes
and disrupted long distance interregional correlations in groups with MCI and AD.
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Introduction

Alzheimer’s disease, the most common form of dementia, is

associated with plaques and tangles in the brain which would lead

to a loss of neurons and synapses [1–2]. In the early stages,

Alzheimer’s disease is characterized by a decline in cognitive and

memory functions. Clinical symptoms of Alzheimer’s disease

include confusion, aggression, language breakdown, and the loss of

cognitive functions [3–4]. Mild Cognitive Impairment (MCI),

characterized by memory impairment, is considered to be the

clinical transition stage between normal aging and dementia [5–6].

Studies suggest that subjects with MCI tend to progress to

probable Alzheimer’s disease at a rate of approximately 10% to

15% per year [7]. Facing these serious facts, many research groups

have studied AD and MCI from various perspectives, attempting

to understand the pathogenesis with a goal of discovering effective

therapies [8–9]. Voxel based morphometry (VBM), proposed by

Friston and Ashburner [10], allows a fully automated whole-brain

analysis of structural MRI scans [11]. Using the VBM method,

previous studies showed atrophy of the parahippocampal gyrus,

medial temporal lobe [12], entorhinal cortex, cingulum [13],

insula and thalamus [14] in subjects with MCI and atrophy of the

entire hippocampus and some localized regions in the temporal

lobe, cingulum, precuneus, insular cortex, caudate nucleus, and

frontal cortex [14–16] in patients with AD.

Recently, studies of functional and structural brain networks in

AD patients have indicated that cognitive function deficits could

be due to abnormalities in the connectivity between different brain

areas. These brain areas include the bilateral parietal regions,

middle temporal gyrus, cingulum, medial frontal gyrus, precentral

gyrus, fusiform, etc. [17–19]. Small-worldness, which was

characterized by a high degree of clustering and short path
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lengths, has been found to exist in social networks, the connectivity

of the internet, and in gene networks [20–21]. Previous studies

have reported that the human cortical network also has small-

world properties [22–25], and a loss of small-world characteristics

has been detected in patients with AD [18–19]. Reports on the

characteristics of the structural cortical network in MCI have been

rare [26]. In the present study, we constructed structural cortical

networks using average gray matter volumes of each AAL area to

investigate the characteristics of the cortical networks in NCs,

MCI subjects and AD patients. In addition, we also inspected the

pattern of structural connections and hub regions. This type of

research may contribute to understanding the pathogenesis of

MCI and AD. Since MCI is considered to be an intermediate

stage between normal aging and AD, we hypothesized that the

measurements of the cortical network properties (for example

clustering coefficient and absolute path length) in MCI would lie

between those of NC and AD subjects.

Results

The interregional correlation coefficients of the cortical

networks were calculated to construct correlation matrices

(90690) for the NC, MCI and AD groups (see Materials and

Methods). The images of the interregional correlation matrices are

shown in Figure 1. We revealed one feature in common among the

three groups that strong interregional correlations exist between

most homotopic regions (the same areas in opposite hemispheres).

This finding is consistent with earlier studies using cortex thickness

[24] and gray matter volume [27].

Small-world properties of cortical networks
Some recent studies demonstrated that small-world properties

are exhibited in functional brain networks [23,28] and structural

brain networks [24,29]. Compared with random networks, small-

world networks have higher clustering coefficients and similar

shortest absolute path length. Over a wide range of sparsity values

(15%ƒSƒ30%), clustering coefficients and absolute path lengths

were calculated for the three networks. The small-world attributes

of three cortical networks are shown in Figure 2. Compared with

matched random networks which have the same number of nodes

and degree distribution, the three cortical networks had similarly

identical absolute path lengths (l&1) and larger clustering

coefficients (c]1) (see Materials and Methods). A precise

quantitative analysis suggests that small-world networks with a

high global efficiency and an optimal organization can support

distributed information processing and high dynamic complexity

[25]. Similar to previous studies, the cortical networks of the

groups with MCI and AD showed varying degrees of loss of small-

world characteristics [18–19]. As shown in Figure 3, the clustering

coefficient was the greatest for the AD group and the absolute path

length was shortest for the normal controls. Additionally, the

corresponding measurements were intermediate for the MCI

group among the three cortical networks. A permutation test was

used to detect the statistical significance of the between-group

differences of the attributes (see Materials and Methods). In

Figure 4, the arrows indicated the significant differences between

NCs and ADs in the cluster coefficients (p,0.05) at most of the

sparsity values. The differences between NCs and ADs in the

absolute path lengths were significant at higher sparsity values

(Sw26%). And we detected no significant differences in the

clustering coefficients and the absolute path lengths between the

NC and MCI groups and between the MCI and AD groups

(p.0.05). Our findings provided additional support for the

hypothesis that the cortical networks had a further loss in the

small-world characteristics in the progression from MCI to AD

[18–19].

Measurements of the cortical networks
In order to detect the specific between-group differences among

the three cortical networks, a fixed sparsity threshold value

(sp = 15%) was used. This sparsity value can ensure that the

cortical networks are fully connected while minimizing the number

of false-positive paths [19,23].

Figure 1. The interregional correlations matrix in the AD, MCI
and NC groups. The color bar indicates the value of the correlation
coefficient r (ranging from 20.8 to 1). A. The correlations matrices
obtained by calculating the correlations between pairs of AAL areas
within each group (left - the AD group, middle - the MCI group and
right - the NC group). B. The binarized matrices obtained by
thresholding the above correlations matrices of A with a sparsity
threshold (15%). The sparsity threshold sets the same number of nodes
and edges in each of the three cortical networks.
doi:10.1371/journal.pcbi.1001006.g001

Author Summary

Understanding the progression of Alzheimer’s disease (AD)
is essential. We investigated networks of cortical connec-
tivity along a continuum from normal to AD. Mild
Cognitive Impairment (MCI) has been implicated as
transitional between normal aging and AD. By investigat-
ing the characteristics of cortical networks in these three
stages (normal, MCI and AD), we found that all three
networks exhibited small-world properties. These proper-
ties indicate efficient information transfer in the human
brain. We also found that the small-world measures of the
MCI network were intermediate to those of the normal
controls and the patients with AD. This supports the
opinion that MCI is a transitional stage between normal
aging and AD. Additionally, we found altered interregional
correlations in patients with MCI and AD, which may
indicate that a compensatory system interacts with
cerebral atrophy. The presence of compensatory mecha-
nisms in patients with MCI and AD may enable them to use
additional cognitive resources to function on a more
nearly normal level. In future, we need to integrate the
multi-level network features obtained with various func-
tional and anatomical brain imaging technologies on
different scales to understand the pathophysiological
mechanism of MCI and AD. We propose brainnetome to
represent such integration framework.

Abnormal Cortical Networks in MCI and AD
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Hub regions of the three cortical networks. To ascertain

the hub regions of the cortical networks, the normalized

betweenness centrality (bi) of each node was evaluated (see

Materials and Methods). Hub nodes were defined as those whose

betweenness values were more than twice the average betweenness

of the network (biw2). Based on our results, some regions were

identified as hub regions in the cortical networks of each of the

three populations. Details of the hub regions in the three cortical

networks are shown in Table 1.

In our work, the identified hub regions involved the middle

temporal gyrus, temporal pole, lingual gyrus, orbital frontal gyrus,

and superior parietal gyrus in the NC group and the orbital frontal

gyrus, inferior frontal gyrus, cingulum, and medial orbital frontal

gyrus in the AD group. The findings for these two groups were

compatible with previous studies [19,23–24]. In subjects with

MCI, some hub regions, such as the medial orbital frontal gyrus,

lingual gyrus, and paracentral lobule, were the same as those in the

normal controls and in the AD group. These identical hub regions

were predominately located in regions of the association cortex,

which has been regarded as a pivotal region for receiving

convergent information in human cortical networks. The primary

location of the hub regions in the association cortex also supports

the perspective that it plays a critical role in combining signals

from the primary sensory and motor modalities to create emergent

psychological properties [30].

Changes in nodal centrality. 1000 nonparametric

permutation tests were used (see Materials and Methods) to

inspect the between-group differences. The regions with significant

abnormal changes in nodal centrality in MCI and AD groups are

shown in Figure 5. Compared with the NC group, the nodal

centrality of the MCI and AD groups significantly decreased in the

left lingual gyrus, middle temporal gyrus, middle orbital frontal

gyrus and significantly increased in the precuneus. Moreover,

compared with the NC and MCI groups, the nodal centrality in

AD population showed significant decreases in the right lingual

gyrus and significant increases in the right rolandic operculum,

anterior cingulum and left calcarine. Additionally, compared with

NC and AD groups, no brain areas showed significant changes in

nodal centrality in the MCI population.

Changes in the correlation coefficients. Fisher’s Z

transformation was used to investigate the differences in the

between-group interregional correlations (see Materials and

Methods). The abnormal interregional correlations that were

detected in groups with MCI and AD (p,0.01) are shown in

Figure 6. Regions that showed significant changes in the

interregional correlations between the NC and AD populations

primarily included the parahippocampus gyrus, temporal pole,

fusiform, cingulum, superior parietal region and orbital frontal

gyrus. The regions that showed significant changes in the

interregional correlations between the NC and MCI populations

included the parahippocampus gyrus, cingulum, fusiform, orbital

frontal gyrus, olfactory, paracentral lobule, inferior temporal

gyrus, and rolandic operculum. The regions that showed

significant changes in the interregional correlations between the

MCI and AD populations included the middle frontal gyrus,

superior motor area, paracentral lobule, parahippocampus,

temporal pole, orbital frontal gyrus, and middle cingulum. As

we can see from Figure 6, our results were consistent with previous

studies, which reported progressively increased short distance

Figure 2. Small-world properties of the structural cortical
networks. The graphs show the absolute path lengths (Gamma
c= Cp

real/Cp
rand) and clustering coefficients (Lambda l= Lp

real/Lp
rand)

over a wide range of sparsity values (15%ƒSƒ30%) and the error bars
were obtained using bootstrap method. All the networks have c.1 (the
blue lines) and l<1 (the black lines), which imply small-world
properties. As the values of the sparsity thresholds increase, the c
values decrease rapidly and the l values change only slightly. A – The
values of Gamma and Lambda in NC. B – The values of Gamma and
Lambda in MCI. C – The values of Gamma and Lambda in AD.
doi:10.1371/journal.pcbi.1001006.g002

Figure 3. Mean clustering coefficients and mean absolute path
lengths of the cortical networks in the three subject groups.
Mean clustering coefficient (Cp) and mean absolute path length (Lp)
over a wide range of sparsity values (15%ƒSƒ30%) and the error bars
were obtained using bootstrap method. A - The red stars represent the
mean clustering coefficient in the AD group. The blue circles represent
the mean clustering coefficient in the MCI group. The black squares
represent the mean clustering coefficient in the NC group. B - The red
stars represent the mean absolute path length in the AD group. The
blue circles represent the mean absolute path length in the MCI group.
The black squares represent the mean absolute path length in the NC
group. The mean clustering coefficient was the greatest for the AD
group and the absolute path length was shortest for the NC group. The
measurements of the MCI group were intermediate between the NCs
and ADs.
doi:10.1371/journal.pcbi.1001006.g003

Abnormal Cortical Networks in MCI and AD
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connectivity and progressively decreased long distance

connectivity from MCI to AD [17,19,31].

Discussion

In this study, we constructed cortical networks of NC, MCI and

AD groups by calculating correlation coefficients between pairs of

gray matter regions. Gray matter, which primarily consists of

neuronal cell bodies, is a major component of the central nervous

system and can directly reflect the function in the brain. Gray

matter volume has been widely adopted as an important

measurement by many studies [10,12,16,23,27,32–34]. Covaria-

tion of gray matter volume might provide additional insight into

the topographical organization of multiple cortical regions, as

indicated by a previous study which reported that related

components of the visual system covaried in volume across

individuals [22,27,34]. Mechelli et al. analyzed the level of

covariation in gray matter density in cortical regions to investigate

brain symmetry [27]. They suggested that covariation might be

the result of mutually trophic influences or common experience-

related plasticity and that the level of covariation might be

disrupted in some patient populations. Raz et al. examined

hemisphere-related differences in the cerebral cortex using the

gray matter volume [34]. Bassett et al. constructed a whole-brain

anatomical network by compiling a matrix of correlations in gray

matter volumes between all pairs of regions [22]. In the present

work, we took into account the cortical networks of NC, MCI and

AD populations to investigate synthetically the abnormal structure

of cortical networks in MCI and AD. For the first time, we

investigated the characteristics of cortical networks as an aid in

understanding the abnormal structural brain network in subjects

with MCI. The main finding of this study was that the

characteristics of the cortical network in the MCI populations

displayed an intermediate position between those of NC and AD

subjects. The relevant detailed attributes of the three cortical

networks were: 1. The cortical networks in the NC, MCI and AD

groups all showed small-world properties. 2. Abnormal nodal

centrality changes were detected in the cortical network in the

MCI and AD groups. 3. Significant changes in the interregional

correlations were found in populations with MCI and AD. These

results may indicate that a loss of small-world characteristics was

shown in the cortical network of MCI subjects, as has previously

been identified in AD populations. These hub regions and the

interregional correlations of the cortical network in MCI provided

additional structural evidence to support the opinion that MCI is

the transitional stage between normal aging and AD.

Small-world properties of the three cortical networks
Small-world properties, which are frequently found to be

properties of complex networks, seem to be common to a wide

variety of information systems. Since gray matter volume has

played an important role in brain research in recent years [14,35–

36], we constructed cortical networks using gray matter volumes to

investigate small-world properties in subjects with MCI and AD.

Figure 4. Between-group differences in the clustering coefficient (Cp) and the absolute path length (Lp) over a range of sparsity
values. The left shows the between-group differences in clustering coefficients (DCp) and the right shows the between-group differences in
absolute path lengths (DLp) over a wide range of sparsity values (15%ƒSƒ30%). The black open circles represent the mean values and the black
lines represent the 95% confidence intervals of the between-group differences obtained from 1000 permutation tests at each sparsity value. A -
Differences between the NC and AD groups (DCp = CpNC2CpAD, DLp = LpNC2LpAD). B - Differences between the NC and MCI groups
(DCp = CpNC2CpMCI, DLp = LpNC2LpMCI). C - Differences between the MCI and AD groups (DCp = CpMCI2CpAD, DLp = LpMCI2LpAD). The arrows
indicate the significant (p,0.05) between-group differences in the clustering coefficients and absolute path lengths.
doi:10.1371/journal.pcbi.1001006.g004

Abnormal Cortical Networks in MCI and AD
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Previous studies have showed abnormal cerebral structures

accompanied by atrophy of the gray matter in groups with MCI

and AD. Therefore we hypothesized that the small-world

characteristics of the cortical network in an MCI population

might be the similar to that in AD patients, which was

characterized by a higher clustering coefficient and a longer

absolute path length [18]. We observed that the clustering

coefficient and the absolute path length of the cortical network

in subjects with MCI exhibited median values between those of the

normal controls and those with AD over a wide range of sparsity

threshold values. Using permutation tests, we detected statistically

significant differences in the clustering coefficients and absolute

path lengths between the normal controls and patients with AD

(p,0.05). However, we found no significant difference in the two

measurements between the NC and the MCI population and

between the MCI and AD populations over the entire range of

sparsity threshold values. A previous study indicated that the

global gray matter volume in their MCI population was

intermediate between that of the normal controls and patients

with AD but was not significantly different from either group [14].

Our result suggests that MCI forms a boundary between normal

aging and AD. We also found that MCI was not statistically

significantly different from either group in the characteristic

measurements of cortical networks.

Altered interregional correlations in MCI and AD
Details of the abnormal interregional correlations in groups with

MCI and AD are shown in Figure 6. Compared with the normal

controls, the AD patients were found to show a significant increase

in their interregional correlations, mainly in the parahippocampal

gyrus, temporal pole, fusiform gyrus and cingulum. We also

observed that the locations of these involved regions were

distributed within a limited area of the whole brain. Our results

support recent resting-state fMRI studies which reported increased

interregional functional connectivity within each brain lobe and

decreased interregional functional connectivity between brain

lobes in AD [31]. Decreased interregional correlations in patients

with AD, that is, the disappearance of positive correlations

between the right parahippocampal gyrus and the posterior

cingulum, might suggest impairment of learning and memory

[37].The disrupted connectivity between the hippocampus and the

posterior cingulum may account for the posterior cingulum

hypometabolism that has commonly been detected in positron

emission tomography (PET) studies of early AD [38]. Compared

with the normal control and AD groups, fewer regions showed

significant changes in the interregional correlations in MCI group.

Consistent with the concept that MCI is a transition stage in the

evolution of AD, subjects with MCI showed the same status as

those with AD, that is, increased short distance interregional

correlations and decreased long distance interregional correlations.

Compared with MCI population, we also observed increased short

distance interregional correlations, but no decreased interregional

correlation was significant in patients with AD. The abnormal

increased interregional correlations may explain the higher

clustering coefficients of cortical networks in groups with MCI

and AD. Our results suggest that the cortical network structure is

seriously abnormal and show a progressive loss of small-world

characteristics in subjects with MCI [39].

Abnormal changes in nodal centrality in MCI and AD
The hub regions of the cortical network that we identified in the

normal controls were compatible with those found in previous studies

of functional and structural cortical networks [24,40–41]. These hub

regions, which are thought to be the substrates for human cognition

and consciousness, are in the association cortex that receives con-

vergent inputs from multiple other cortical regions. Previous studies

have found that subjects with MCI had a significant reduction in the

amount of gray matter in the medial temporal lobe, hippocampus,

inferior parietal areas, posterior cingulum, and the lingual and

fusiform gyri [13,33,42]. In addition, a significant reduction in the

gray matter in the frontal cortex has been found in patients with AD

[15–16]. We expected to find that the structure of the cortical

network in groups with MCI and AD changed in these regions along

with the atrophy in their gray matter. Our result showed that the

middle temporal gyrus, superior temporal pole, lingual gyrus, and

parahippocampal gyrus were no longer hubs in groups with MCI

and AD. A portion in the these abnormal changes of hub regions in

MCI and AD belong to the default mode network, which has been

hypothesized as being profoundly relevant to cognitive processing

[43]. The abnormal hub regions in the default mode network could

result from a decrease in brain metabolism that may occur in the

Table 1. Hub regions in cortical networks of the three
populations listed in descending order of their normalized
betweenness in the NCs.

AAL areas Betweenness

NC MCI AD

Temporal_Mid_R 4.660 1.297 0.106

Lingual_R 3.474 2.793 0

Frontal_Med_Orb_R 2.898 7.341 1.116

Lingual_L 2.825 0.133 0

Paracentral_Lobule_R 2.641 1.830 3.806

Frontal_Mid_Orb_L 2.601 0.284 0

Frontal_Med_Orb_L 2.575 1.382 2.253

Occipital_Mid_L 2.462 3.819 2.194

Temporal_Pole_Sup_L 2.287 0.629 0.332

Parietal_Sup_R 2.256 0.623 0.522

Paracentral_Lobule_L 2.253 2.935 3.069

Frontal_Inf_Orb_L 2.237 1.579 1.697

ParaHippocampal_R 2.084 0.984 1.649

Insula_L 2.049 0.240 1.038

Parietal_Sup_L 1.782 3.095 2.544

Caudate_R 1.632 3.8108 0.036

Putamen_R 1.207 0 3.189

Precuneus_L 1.034 3.612 5.974

Temporal_Sup_R 1.025 2.176 1.428

Frontal_Inf_Orb_R 1.022 2.713 4.494

Frontal_Inf_Tri_R 0.975 2.159 2.442

Postcentral_R 0.963 2.026 0.964

Cingulum_Ant_R 0.652 0.178 2.367

Cuneus_L 0.639 2.534 5.534

Precentral_R 0.547 2.827 2.612

Insula_R 0.529 1.741 3.321

Supp_Motor_Area_R 0.358 2.489 0.958

Rolandic_Oper_R 0.329 1.094 6.464

Pallidum_R 0.165 4.122 0

Calcarine_L 0.125 0.761 3.864

doi:10.1371/journal.pcbi.1001006.t001

Abnormal Cortical Networks in MCI and AD
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course of the development of AD [38]. Figure 5 shows the regions

with abnormal changes in nodal centrality. In fact, these results are to

some extent consistent with previous studies. Abnormal changes in

the middle temporal gyrus in subjects with MCI and AD were

reported as being related to a decline in verbal memory performance

[44]. Less activation, as measured using fMRI was detected in the

lingual gyrus and cingulate in subjects with MCI and AD [45]. In the

present study, the nodal centrality in the precuneus showed a

significant difference between the NCs and MCIs and ADs and no

significant difference between the MCIs and the ADs. This finding

supports a previous study which indicated that differences in the

activity in the precuneus were only distinguishable between ADs and

NCs, not between the MCI and AD groups [5]. The calcarine and

anterior cingulate areas of the cortex seem to be notably spared until

the late stages. This sparing of some cortical areas might explain why

the nodal centrality of the two areas is abnormal only in patients with

AD [32]. From Figure 5, we can see that almost all the brain areas

with abnormal changes in nodal centrality showed gradual changes

along the transition from NCs to ADs and that no area with

abnormal changes was only detected in MCI group. This result also

implicates MCI as an intermediate stage between normal aging and

AD. The longer absolute path length in subjects with MCI and AD

Figure 5. Abnormal changes in between-group nodal centrality in the MCI and AD groups. Each of the eight regions belongs to the hub
regions in at least one of the three cortical networks and showed a significant difference (p,0.05). The blue spheres indicate significant decreases in
between-group nodal centrality. The red spheres indicate significant increases in between-group nodal centrality. A - Abnormal changes shared by
the MCI and AD groups. B - Abnormal changes only in the AD group. Note that no abnormal changes occurred only in the MCI group. For the
abbreviations of the regions, see Table 2.
doi:10.1371/journal.pcbi.1001006.g005

Abnormal Cortical Networks in MCI and AD
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may indicate that the disappearance of these hub regions disrupted

the large-scale connections between pairs of brain regions [19,46].

Meanwhile, we also observed that some regions which had a higher

nodal centrality in MCI and AD became new hub regions. Previous

studies have reported that increased functional connectivity occurred

widely in MCI and AD in various brain regions [17,47–48]. Such

increased connectivity may effectively serve as a compensatory

system. This compensatory mechanism may play an important role

in MCI and AD by enabling patients to use additional cognitive

resources to approach a normal level [49–51]. The abnormal

characteristics of the cortical networks which we observed in MCI

and AD may reflect anatomical structural abnormalities. Such a

relationship may contribute to an understanding of the cerebral

organization in MCI and AD.

Figure 6. Abnormal interregional correlations in the MCI and AD subjects. The red and blue lines indicate significant between-group
differences in interregional correlations between pairs of regions (p,0.01, FDR-corrected); the yellow dots represent those AAL regions with
significantly abnormal correlations. The red and blue lines indicate the significantly increased and decreased interregional correlations between the
corresponding regions, respectively. A - Significant changes in interregional correlations between the NC and AD groups. B - Significant changes in
interregional correlations between the NC and MCI groups. C - Significant changes in interregional correlations between the MCI and AD groups. For
the abbreviations of the regions, see Table 2.
doi:10.1371/journal.pcbi.1001006.g006

Abnormal Cortical Networks in MCI and AD
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Methodological limitations and perspectives
Our study also has some limitations. Firstly, only small amounts

of 3T MRI data are available from the ADNI database. To

ascertain the real cortical networks as accurately as possible, this

study included as many subjects as were available from each group

of the ADNI database, which made the sample size of each group

inconsistent. Furthermore, we might have been able to demonstrate

this transition from normal aging to MCI to Alzheimer’s disease if

we had had a larger sample size. As it was, our MCI population

could not be separated from the normal controls or from the

Alzheimer’s group, but the combined groups could clearly be

separated from each other. Secondly, Pearson correlation was

adopted instead of partial correlation analysis. In fact, after a linear

regression of the age, gender and total gray matter volumes of each

subject, the matrices of gray matter volumes were not full rank.

Thus, a partial correlation analysis could not be performed because

the sample size was not large enough. That is why the Pearson

correlation was adopted in this work. Finally, compared with the

anatomical connectivity obtained by diffusion-based imaging, the

method we used in the present study only measures the anatomical

connectivity indirectly. However, it is more practical for revealing

the anatomical connectivity patterns of the human brain because of

its relatively low computational load and simple definition of the

neuronal elements (regions) and connections. Future studies should

be done to further investigate this issue and replicate our findings

using diffusion-based imaging.

In this paper, we only studied the global network manifestation

of brain malfunction in MCI and AD based on gray matter

volume correlations, an indirect anatomical connectivity. In order

to understand the pathophysiological mechanism of MCI and AD,

it is necessary to integrate the multi-level network features

obtained with various functional and anatomical brain imaging

technologies on different scales. On macroscale, such features can

be obtained from networks based on illness special region of

interest, networks related to special cognitive function, and whole

brain networks. Here we would like to propose a concept of

brainnetome to represent such integration framework. We define

the essential components of brainnetome as network topological

structure, performance, dynamics, manifestation of functions and

malfunctions of brain on different scales. In fact, a big project (973

program) has been approved in China to conduct studies of

brainnetome for four different diseases with focal lesion (stoke and

glioma) and diffusion lesions (schizophrenia and AD). For AD, the

goal is to find biomarkers on network level which can predict

whom of MCIs will develop into AD. We envision that

brainnetome will become an emerging co-frontier of brain science,

information technology, neurology and psychiatry. Some long-

standing issues in neuropsychiatry may be solved by combining

brainnetome with genome.

Materials and Methods

Subjects
All the subjects used in this study were selected from the

Alzheimer’s disease Neuroimaging Initiative (ADNI) database

(http://www.loni.ucla.edu/ADNI/). This project is the most

comprehensive effort to date to identify neuroimaging and other

biomarkers of the cognitive changes associated with MCI and AD.

The primary goal of this project is to measure the progression of

MCI and early AD, in order to develop improved methods for

clinical trials in this area. This study included 98 NCs who ranged

in age from 70.02 to 90.74 (M = 77.27; SD = 4.66) (female/male,

49:49), 113 MCI subjects who ranged in age from 56.28 to 89.40

(M = 75.12; SD = 7.60) (female/male, 34:79), and 91 AD subjects

Table 2. The abbreviations of AAL regions except the
cerebellum.

Region ID AAL Regions Abbreviation

1 Precentral PreCG

2 Frontal_Sup SFGdor

3 Frontal_Sup_Orb ORBsup

4 Frontal_Mid MFG

5 Frontal_Mid_Orb ORBmid

6 Frontal_Inf_Oper IFGoperc

7 Frontal_Inf_Tri IFGtriang

8 Frontal_Inf_Orb ORBinf

9 Rolandic_Oper ROL

10 Supp_Motor_Area SMA

11 Olfactory OLF

12 Frontal_Sup_Medial SFGmed

13 Frontal_Med_Orb ORBsupmed

14 Rectus REC

15 Insula INS

16 Cingulum_Ant ACG

17 Cingulum_Mid DCG

18 Cingulum_Post PCG

19 Hippocampus HIP

20 ParaHippocampal PHG

21 Amygdala AMYG

22 Calcarine CAL

23 Cuneus CUN

24 Lingual LING

25 Occipital_Sup SOG

26 Occipital_Mid MOG

27 Occipital_Inf IOG

28 Fusiform FFG

29 Postcentral PoCG

30 Parietal_Sup SPG

31 Parietal_Inf IPL

32 SupraMarginal SMG

33 Angular ANG

34 Precuneus PCUN

35 Paracentral_Lobule PCL

36 Caudate CAU

37 Putamen PUT

38 Pallidum PAL

39 Thalamus THA

40 Heschl HES

41 Temporal_Sup STG

42 Temporal_Pole_Sup TPOsup

43 Temporal_Mid MTG

44 Temporal_Pole_Mid TPOmid

45 Temporal_Inf ITG

doi:10.1371/journal.pcbi.1001006.t002
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who ranged in age from 55.73 to 90.20 (M = 76.16; SD = 7.81)

(female/male 41:50).

Image acquisition
The datasets included standard T1-weighted MR images

acquired sagittally using volumetric 3D MPRAGE with

1.2561.25 mm in-plane spatial resolution and 1.2 mm thick

sagittal slices. All the high-resolution magnetic resonance images

were obtained using 1.5 T scanners. Images using 3T scanners

were excluded to remove the discrimination that might be

introduced by using different magnetic field strengths. All scans

were downloaded in the DICOM format and finally converted to

the NIFTI format. Detailed information about the MR acquisition

procedures is available at the ADNI website.

Measure of gray matter volume
All the structural images were preprocessed using voxel based

morphometry (VBM) implemented with Statistical Parametric

Mapping software (SPM5) running under Matlab 7.0 on the

Ubuntu operating system. VBM is a whole-brain, unbiased,

semiautomatic, neuroimaging analysis technique that allows the

investigation of regional differences in brain volume. In brief, the

average gray matter volumes of each brain area were obtained for

each subject using the following steps. First, all the structural images

were corrected for non-uniformity artifacts. Then, the corrected

images were registered to an asymmetric T1-weighted template

using nonlinear normalization. Next, the corrected and normalized

images were segmented into gray matter, white matter, cerebrospi-

nal fluid and other background classes. Fourth, the resulting gray

matter images were smoothed by a 4 mm isotropic Gaussian kernel

to compensate for the inexact nature of the spatial normalization.

Finally, from these smoothed gray matter images, we calculated the

average gray matter volumes for each of n = 90 brain areas, which

were comprised of 45 cortical regions in each hemisphere (excluding

the cerebellum) in each participant.

Construction of the structural cortical network
Before obtaining the structural cortical networks, the anatom-

ical connection matrix was calculated. In this study, the structural

connections of the cortical network are defined as statistical

correlations between pairs of average gray matter volumes from

the corresponding AAL areas. We considered that a structural

connection existed if the correlation coefficient for a pair of brain

areas was statistically significant. Subsequently, an interregional

correlation matrix (90|90) was obtained for each group by

calculating the Pearson correlation coefficients across individuals

between the average gray matter volumes for each pair of brain

areas. We tested the difference in age between the three groups

and found a significant difference between the NC and MCI

groups (p = 0.016). We found no significant difference for the NC

and AD as well as for the AD and MCI in age (p = 0.23 and

p = 0.34 respectively). Prior to the correlation analysis, a linear

regression was performed to remove the effects of age, gender and

total gray matter volume on the full set of individual measurements

in each region. The residuals of this regression represented the

regional volumes corrected for age, gender and total gray matter

volume and provided the substrate for additional analysis. Finally,

the matrices for the interregional correlations were obtained with

diagonal elements equal to one and the number of total probable

connections 90689/2 = 4005.

Graph theoretical approaches
Structural cortical networks for each group were represented by

binarized matrices Pij with N nodes and K edges. In each case the

nodes and the edges corresponded to the AAL areas and the

undirected connections between the pairs of AAL areas,

respectively. If the same correlations threshold had been applied

to the interregional correlation matrices of all the three groups, the

topology of the three cortical networks would have differed

markedly from each other. In that situation, the resulting graphs

would have been comprised of different numbers of edges, even

though they were based on the same threshold. Thus, the between-

group differences in the three groups would not have done a good

job of reflecting alterations in the cortical network topology. To

accommodate for this difficulty, sparsity (S) was applied to

threshold the interregional correlations matrices of the three

cortical networks into binarized matrices. Sparsity is defined as the

total number of edges, K, in a graph divided by the maximum

possible number of edges. In our case, the maximum possible

number of edges equals 90689/2 = 4005. Since no definitive way

for selecting a single threshold value exists, we thresholded each

interregional correlations matrix repeatedly over a range of

sparsities (15%ƒSƒ30%) [19]. Utilizing a lower sparsity would

not allow for the creation of a fully connected network with 90

nodes, but using a higher sparsity would introduce a lot of spurious

edges into each network. Therefore this range of sparsities was

chosen because it allows for the creation of fully connected

undirected graphs that permit a reasonable estimation of the

properties of the graphs. Furthermore, to investigate the abnormal

connectivity and hub regions in groups with MCI and AD, a fixed

sparsity (S~15%), which can minimize the number of spurious

edges, was used to construct the cortical networks of the three

groups [18,52]. Using this method the three resulting graphs had

the same numbers of nodes and edges.

Small-world properties analysis
Small-worldness is a ubiquitous property of complex real-life

networks that supports both modular and distributed dynamic

processing as a principle of brain topology [23]. Certain

measurements are usually used to describe small-world properties,

such as: mean network clustering coefficient (Cp) and mean

network shortest absolute path length (Lp). A shorter absolute path

length and a higher global efficient may indicate a higher speed of

information dissemination and more efficient information pro-

cessing [29]. In brief, the Cp is the average of the clustering

coefficient over all the nodes in a network, where the clustering

coefficient Ci of node i is defined as the number of existing

connections among the immediately connected neighbors of the

node divided by all their possible connections. Cp measures the

extent of local cliquishness or local efficiency of information

transfer of a network. Lp is the average of the mean shortest

absolute path length over all nodes in the network, where the

mean shortest absolute path length of node i is defined as the total

shortest absolute path length between node i and all the others

divided by N{1. A real network has been found to exhibit small-

word characteristics if it meets the following criteria:

c~Creal
p =Crandom

p ]1 and l~Lreal
p =Lrandom

p &1, where Crandom
p

and Lrandom
p are the mean network clustering coefficient and the

mean network absolute shortest path length of matched random

networks that have the same number of nodes, edges, and degrees

distribution (the degree Ki of a node i is the number of connections

to the node) as the real network [21].

Nodal centrality
We investigated the nodal characteristics of the cortical network

among the NC, MCI and AD groups. To do this, we introduced

the betweenness centrality of the nodes in the networks. Be-

tweenness is a measure of the centrality of a node in a graph.
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The betweenness, B, of node i is defined as the the number of

absolute shortest paths that are between any two other nodes and

that run through node i. For further comparison, the betweenness

Bi would be normalized as bi~Bi=B, where B is the average

betweenness of the network. Based on this concept, the hub nodes

that occur on many shortest paths between other nodes have

higher betweenness than those that have fewer paths between

them. In this study, a node i in which bi§2 was defined as a hub

of the network.

Statistical analysis
Interregional correlation differences. In order to test whether the

interregional correlations of the cortical networks were significantly

different among the NC, MCI and AD groups, Fisher’s z

transformation was applied to convert the correlation coefficients

to z values which were approximately normally distributed [53]. A z

statistic was used to compare these transformed z values to determine

the significance of the between-group differences in the interregional

correlations. To correct for multiple comparison, a false discovery

rate (FDR) test was performed using a q value of 0.01 [54].

Differences in network topology. We used a nonparametric

permutation test to test the statistical significance of the between-

group differences in the two characteristics of the cortical

networks, Cp and Lp. In this permutation test, we obtained a

reference distribution on which we calculated possible values of the

test statistic after repeatedly rearranging the observed data from

the NC, MCI and AD groups. First, we calculated the Cps and Lps

of the real cortical networks at a given sparsity for each of the three

groups separately. To test whether these measurements were

significantly different between the three groups, we pooled the

data from ADs with the data from the NCs. From this pooled

group, we randomly choose some of the subjects to be considered

as NCs and the rest to be considered as AD patients. The number

of supposed AD patients was equal to the number of actual

patients in the original group. We then calculated the differences

between the new groups and repeated this process 1000 times. In

each of the 1000 cases, we used the same sparsity threshold to

generate corresponding binarized matrices and computed the Cp

and Lp characteristics of the two cortical networks for each

randomized groups, obtaining the between-group differences. We

sorted the 1000 recorded differences and observed whether the

between-group differences in the real cortical networks were

contained within 95% (two-tailed) of the supposed between-group

differences. If they were, we accepted the null hypothesis that the

two groups had identical probability distributions at the 5%

significance level; otherwise we rejected the null hypothesis. This

permutation test procedure was repeated over the range of sparsity

threshold values from 15%ƒSƒ30%. This same procedure was

repeated comparing the MCI with the AD groups and comparing

the NC with the MCI groups.
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