
Citation: Yin, X.; Liu, Y.; Yang, L.;

Gao, W. Abnormal Data Cleaning

Method for Wind Turbines Based on

Constrained Curve Fitting. Energies

2022, 15, 6373. https://doi.org/

10.3390/en15176373

Academic Editor: Davide Astolfi

Received: 10 July 2022

Accepted: 30 August 2022

Published: 31 August 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

energies

Article

Abnormal Data Cleaning Method for Wind Turbines Based on
Constrained Curve Fitting
Xiangqing Yin, Yi Liu, Li Yang and Wenchao Gao *

School of Mechanical Electronic and Information Engineering, China University of Mining and
Technology-Beijing, Beijing 100083, China
* Correspondence: gaowc@cumtb.edu.cn

Abstract: With the increase of the scale of wind turbines, the problem of data quality of wind turbines
has become increasingly prominent, which seriously affects the follow-up research. A large number of
abnormal data exist in the historical data recorded by the wind turbine Supervisory Control And Data
Acquisition (SCADA) system. In order to improve data quality, it is necessary to clean a large number
of abnormal data in the original data. Aiming at the problem that the cleaning effect is not good in the
presence of a large number of abnormal data, a method for cleaning abnormal data of wind turbines
based on constrained curve fitting is proposed. According to the wind speed-power characteristics of
wind turbines, the constrained wind speed-power curve is fit with the least square method, and the
constrained optimization problem is transformed into an unconstrained optimization problem by using
the external penalty function method. Data cleaning was performed on the fitted curve using an improved
3-σ standard deviation. Experiments show that, compared with the existing methods, this method can still
perform data cleaning well when the historical wind turbine data contains many abnormal data, and the
method is insensitive to parameters, simple in the calculation, and easy to automate.

Keywords: data cleaning; wind turbine; wind power; constrained curve fitting

1. Introduction

Currently, with the development of the world economy and society, the emphasis
on environmental protection is getting higher and higher, and the new energy power
generation industry has also developed rapidly. As stated in the “Global Green Energy
Status Report”, 26.2% of the energy in electricity production is green energy, and wind
energy accounts for 5.5% of the green energy [1], so the collection and use of wind energy
has become particularly important. The number of studies on wind power generation
is also increasing. The historical operation data and operation data of wind turbine are
regarded as the basis of wind power research. Through the historical operation data of wind
turbines, not only is output prediction possible [2,3], but also condition monitoring [4,5]
and fault diagnosis [6–8]. The Supervisory Control And Data Acquisition system (SCADA)
of wind turbines records a large amount of wind historical operation data and process
control information, including wind speed, power, wind direction, rotation speed, etc. It is
of great significance to study the operation law of wind turbines and predict early failures.
However, due to human errors, sensor failures, or communication failures, SCADA data
may contain a large amount of abnormal data, which reduces data quality and hinders
subsequent research. Therefore, the data quality of wind turbines has also been paid more
and more attention [9,10]. Data cleaning is of great significance for improving data quality
and promoting follow-up research.

In order to improve the quality of data, many methods have been proposed to clean
abnormal data. According to the method used for data cleaning, it can be divided into the
following categories.
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(1) Image method. The basic idea of the image method is to convert scattered data into
digital images and transform the data cleaning problem into an image segmentation
problem. Huan Long et al. [11] proposed an abnormal data cleaning algorithm based
on 3D images. Su Y et al. [12] and Liang G et al. [13] used an image thresholding
algorithm to identify anomalies. Wang Z et al. [14] propose an efficient acceleration
algorithm that can convert data into images for cleaning. The disadvantage of the
image method is that the required computing resources are too large.

(2) Power curve modeling method. The power curve modeling method is to establish a
wind speed-power curve model through a series of methods, compare the real data
with the power curve model, and then clean out abnormal data. The methods include
quantile power curve [15], interval extreme probability density [16], maximum likeli-
hood estimation [17], Artificial Neural Network (ANN) algorithm [18], etc. Based on
the ideal curve, Joon-Young Park et al. [19] used a monitoring power curve to automat-
ically calculate the limit of the power curve value method. Yongning Zhao et al. [20]
proposed an algorithm combining the quartile algorithm and the Density-Based Spa-
tial Clustering of Applications with Noise (DBSCAN) to optimize the power curve,
in which the quartile algorithm was used to eliminate sparse abnormal data, and
DBSCAN was used to eliminate accumulated abnormal data. According to different
wind characteristics, Yang Mao et al. [21] used the Copula function to obtain the
probability power curve and combined the time series characteristics of the abnormal
data to summarize three types of abnormal data, and established the abnormal data
identification model, which improved the modeling accuracy. The disadvantage of
the power curve modeling method is that when there are a large number of abnormal
data, the abnormal data will greatly affect the accuracy of the established power curve.

(3) Statistical methods. Statistical methods compare the statistical value of data or data in
each interval with a preset threshold to achieve the purpose of data cleaning. Statistical
methods include sample entropy [22], cloud segmentation optimal entropy [23],
bin algorithm [24,25], quartile method [26], etc. Lou Jianlou et al. [27] used the
optimal intra-group variance method for data cleaning, which is good at dealing with
abnormal data with low power in the wind speed range. Wang S et al. [28] adopted
the combination of 3σ-median criterion to effectively identify abnormal data points
in the data. Tao L et al. [29] use the gray relational algorithm and the support vector
regression algorithm to effectively solve the problem of dimensional explosion. There
are some algorithms that divide abnormal data into multiple types and use different
algorithms according to the characteristics of the types [30,31]. The statistical data
generated by statistical methods will be affected by abnormal data, and there is a
problem of difficulty in threshold selection.

In summary, in order to improve the data quality, it is necessary to effectively clean a
large number of abnormal data in the original data. Therefore, the abnormal data cleaning
method for wind turbines based on constrained curve fitting is proposed. Aiming at the
problems existing in the existing methods, including a large amount of calculation, difficult
parameter selection, and poor cleaning effect when a large number of abnormal data exist,
the following work is done in this paper. (1) Firstly, the wind speed-power scattergram
of historical data of wind turbines is analyzed, and each wind speed interval and power
interval is preprocessed by quartile. (2) According to the wind speed-power characteristics
and the ideal curve, the constraint function is set, and the least square method used to fit
the wind speed-power data constrained curve. The constrained optimization problem is
transformed into an unconstrained optimization problem by using the exterior penalty
function method. (3) The modified 3-σ standard deviation is used for the fitted curve to
extract normal data. In the remaining data, the data within the rated wind speed range
are classified as normal data, and the rest are classified as abnormal data. (4) Taking the
real data of the wind turbine as a sample, the experiments show that the method can still
perform data cleaning well in the presence of a large number of abnormal data, the method
is not sensitive to parameters, and the method is easy to calculate and realize automation.
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This article has five sections. Section 2 discusses the wind speed-power characteristics
of wind turbines, shows the ideal wind speed-power curve, and defines what is abnormal
data. In Section 3, the methods used are briefly introduced, including the quartile algorithm,
the constrained least squares curve fitting algorithm, the external penalty function method,
and the 3-σ algorithm. An abnormal data cleaning process for wind turbines based on
constrained curve fitting is established. In Section 4, the effectiveness of the algorithm
is verified in experiments and the robustness of the algorithm is discussed. Entropy and
hyper entropy are used as indicators to evaluate the stability of the cleaned data. Compared
with the traditional algorithm, it shows that the method is insensitive to parameters and
has the advantages of small calculation amount. Section 5 is the conclusion of this paper.

2. Wind Speed-Power Characteristics

Wind turbines have the function of converting wind energy into electric energy. The
principle of wind power generation is that wind turbine blades rotate through wind, and
the wind energy is converted into mechanical work to drive the rotor to rotate, so that
the generator generates electricity. The wind speed-power curve of the wind turbine is a
function representing the performance of the wind turbine and represents the relationship
between the output power P0 of the wind turbine and the wind speed v. The ideal wind
speed-power curve can be written in this form [32]:

P0(v) =
1
2

ρAv3CP0(v) (1)

where ρ is the air density; A is the area swept when the fan blade rotates; and CP0(v) is the
ideal power index, which can be regarded as a function of wind speed.

In the wind turbine, for the purpose of protecting the wind turbine to generate elec-
tricity continuously and stably, and avoid accidents such as tower collapse when the wind
speed is too high, the function of the actual output power P and the wind speed v can be
seen as:

P =


0 v< vin, v >vout

P0(v) vin 6 v < vr
Pr vr 6 v < vout

(2)

where vin is the cut-in wind speed; vout is the cut-out wind speed; vr is the rated wind
speed; and Pr is the rated power.

The cut-in wind speed of the wind turbine is the lowest wind speed at which the
external power transmission starts, and the cut-out wind speed is the highest wind speed
for grid-connected power generation. When the wind speed is not within the range of
vin and vout, it is not integrated into the grid, and the output power is 0. When the wind
speed is within the range of cut-in wind speed and rated wind speed, the wind turbine
generates power stably, and when the wind speed changes, the output power changes
accordingly. When the wind speed v reaches the rated wind speed vr, the wind turbine
reaches the preset maximum output power, that is, the rated power. When the wind speed
is within the range of rated wind speed and cut-out wind speed, wind turbine keeps the
rated power unchanged.

However, due to the influence of unstable wind speed, turbulence, and yaw error,
there is a large difference between the ideal output power and the actual output power,
and it is meaningless to directly apply the ideal wind speed-power curve. However, the
ideal wind speed-power curve reveals the relationship between wind speed and output
power, and the purpose of identifying abnormal data can be reached by fitting the wind
power curve. The actual wind speed-power scatter and ideal wind speed-power curve of a
wind turbine located in eastern China are shown in Figure 1.

In the wind turbine operation data, the data that do not conform to the wind speed-
power characteristics are called abnormal data. It can be seen from Figure 1 that there are
mainly two types of abnormal data within the range of cut-in wind speed and cut-out wind
speed: (1) upper abnormal data: data with low wind speed and high power; (2) limited
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power abnormal data: high wind speed with low output power. In actual operation, a large
number of abnormal data may be generated and the distribution of different abnormal data
may affect the effect of data cleaning.
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3. Abnormal Data Cleaning Method for Wind Turbines Based on Constrained
Curve Fitting

The monitoring and data acquisition system (SCADA) of the wind turbine records a
large amount of historical wind operation data. According to Formula (2), the data part of
the wind speed greater than the cut-in wind speed and less than the cut-out wind speed
is selected for data cleaning. The process of the abnormal data cleaning method for wind
turbines based on constrained curve fitting is shown in Figure 2.
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3.1. Quartile Outlier Data Detection Algorithm

The quartile is a type of statistical quantile. All data are arranged from small to large.
The number in the quarter is called the lower quartile Q1, and the number in the third
quarter is called the upper quartile Q3. The upper quartile minus the lower quartile is
called interquartile range IQR = Q3 − Q1. For any data, if it is less than Q1 − 1.5IQR, it
can be considered that the data value is too small; if it is greater than Q3 + 1.5IQR, it can
be considered that the data value is too large. Data values that are too small or too large
can be called outliers, and the quartile algorithm can be used to identify and clean outliers.

3.2. Constrained Least Square Curve Fitting Algorithm

Observing the ideal wind speed-power curve in Figure 1, it is found that the ideal wind
speed-power curve of the wind turbine is similar to the sigmoid function S(x) = 1

1+e−x .
The graph of the sigmoid function and its derivative is shown in Figure 3.
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Therefore, the Sigmoid-like function can be used to fit the data processed by the
quartile method, and the fitting function can be expressed as:

h
(→

x , v
)
=

x0

x1 + e−(x2v+x3)
(3)

∂h
(→

x , v
)

∂v
=

x0x2e−(x2v+x3)(
x1 + e−(x2v+x3)

)2 (4)

Among them, v is the wind speed;
→
x (x0, x1, x2, x3) is the parameter; h

(→
x , v

)
is the

output power of the wind speed v under the condition of the parameter
→
x (x0, x1, x2, x3);

and
∂h
(→

x ,v
)

∂v is the partial derivative of the wind speed v with respect to h
(→

x , v
)

.

For any real data (vi, Pi), the value of h
(→

x , vi

)
− Pi is called the residual, and the

purpose of the least square method is to find the parameter
→
x (x0, x1, x2, x3) that mini-

mizes the sum squared residual of all the data in the sample. Denoting the sum squared
residual as the objective function f

(→
x
)

, the objective of unconstrained curve fitting can
be expressed as:

min f
(→

x
)
= min

n

∑
i

(
h
(→

x , vi

)
− Pi

)2
= min

n

∑
i

(
x0

x1 + e−(x2vi+x3)
− Pi

)2
(5)

Since the dataset contains a large number of abnormal data, if the Formula (5) is
directly used for fitting, the curve fitting result will be shifted due to the influence of the
abnormal data, so the curve fitting process needs to be constrained. Figure 4 shows the
unconstrained curve fitting error under the influence of abnormal data.
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Due to communication errors, sensor errors, etc., the actual maximum power Pmax of
the wind turbine may not be exactly equal to the rated power Pr, so the error value is set as
∆ = 5%×Pr; it can be considered that the actual maximum power is within the error range of the
rated power, that is, Pr−∆ ≤ Pmax ≤ Pr +∆. Let any data in the dataset be (vi, Pi), the set of this
part of the data can be expressed as S = { (vi, Pi) | Pr−∆ ≤ Pi ≤ Pr + ∆, vin ≤ vi ≤ vout}. In
the case of not knowing the rated wind speed, it can be considered that the power corresponding
to the average value of the wind speed of the data whose power is within the error range of
the rated power is the maximum power. The partial derivative corresponding to the mean
wind speed should be a small value. For Formula (3), x0, x1, x2 should all be positive numbers.
Therefore, constrained curve fitting can be transformed into a constrained optimization problem:

min f
(→

x
)

s.t. g1

(→
x
)
= h

(→
x , vmean

)
− Pr + ∆− δ ≥ 0

g2

(→
x
)
= Pr + ∆− h

(→
x , vmean

)
− δ ≥ 0

g3

(→
x
)
= α−

∂h
(→

x , v
)

∂v |vmean − δ ≥ 0

g4

(→
x
)
= x0 − δ ≥ 0

g5

(→
x
)
= x1 − δ ≥ 0

g4

(→
x
)
= x2 − δ ≥ 0

(6)

Among them, vmean is the average value of the wind speed within the error range

of the rated power, which can be expressed as vmean =
{

∑n
i v
n |(vi, Pi) ∈ S

}
; α is the upper

limit of the partial derivative when the wind speed is vmean; and δ is the constraint margin,
which ensures that the optimal solution is close to the feasible point.

3.3. Exterior Penalty Function Method for Solving the Constrained Optimization Problem

The exterior penalty function method transforms constrained optimization problem
into unconstrained optimization problem by setting a penalty function. The penalty func-
tion can be expressed as:

ϕ
(→

x , M(k)
)
= f

(→
x
)
+ M(k)

6

∑
i

min
(

gi

(→
x
)

, 0
)2

(7)
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Among them, M(k) represents the exterior penalty factor at the k-th iteration, which is an
increasing sequence of positive numbers. The larger the M(k), the more severe the penalty.

Therefore, Formula (6) can be transformed into an unconstrained optimization problem:

min ϕ
(→

x , M(k)
)

(8)

When all constraints g
(→

x
)

satisfy the constraints, min
(

g
(→

x
)

, 0
)2

= 0, then the
penalty function is equal to the objective function, and solving the penalty function is
equivalent to solving the objective function. When any constraint gi

(→
x
)

does not satisfy

the constraint, min
(

gi

(→
x
)

, 0
)2

= gi
2, the penalty function is penalized, and the more

gi

(→
x
)

does not satisfy the constraint, the more severe the penalty. The algorithm flow of
the exterior penalty function method is shown in Algorithm 1.

Algorithm 1 Exterior Penalty Function Method

Input
→
x : initial parameters; M(1): initial exterior penalty factor; c: amplification factor; ε1,
ε2: precision; R: penalty factor control factor

Output →
x
∗
: optimal parameters

1: k = 1.
2: Solve the unconstrained optimization problem min ϕ

(→
x , M(k)

)
, and get

→
x
∗
.

3: If min
{

gi

(→
x
∗)∣∣∣i = 1, 2 · · ·m

}
≥ ε1, go to step 7, otherwise go to step 4.

4: If M(k) > R and
∣∣∣∣∣∣→x ∗ −→x ∣∣∣∣∣∣≤ ε2 , go to step 7, otherwise go to step 5.

5: →
x =

→
x
∗
, M(k+1) = cM(k).

6: k = k + 1, go to step 2.
7: output

→
x
∗
.

The exterior penalty function is defined outside the feasible region and gradually
approaches the optimal solution, so there is no requirement for the value of the initial
parameter

→
x . The exterior penalty factor M(k) is gradually increased by the amplification

factor c, and generally c is 5–10. When the penalty factor M(k) is too small, the penalty effect
is weak and the number of iterations is too large; when the penalty factor M(k) is too large,
the penalty effect is strong, the numerical solution is difficult, and the optimization may
fail [33]. Therefore, setting penalty factor control factor R. ε1 and ε2 are generally selected
from 10−3–10−4. If min

{
gi

(→
x
∗)∣∣∣i = 1, 2 · · ·m

}
≥ ε1, then

→
x
∗

is close to the constraint
boundary, stop iterate.

3.4. Improved 3-σ Data Cleaning Method

The optimal parameter
→
x
∗

is obtained by solving the exterior penalty function and
brought into the fitting function h

(→
x
∗
, v
)

to obtain the fitting curve. For any wind speed

interval Ui
v, find the standard deviation of its power. In the traditional 3-σ method, whether

the data are within 3 times the standard deviation of the power is directly used as the
criterion to distinguish normal data from abnormal data. In Formula (6), the constraint
condition g1

(→
x
)

can be regarded as the distance from the theoretical maximum power to

the lower limit of the rated power error range, and g2

(→
x
)

can be regarded as the distance
from the theoretical maximum power to the upper limit of the rated power error range.
Therefore, the power upper limit Phigh

j
i and the power lower limit Plow

j
i of any data point(

vj
i , Pj

i

)
in any wind speed interval Ui

v can be expressed as:
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Phigh
j
i = h

(→
x
∗
, vj

i

)
+

3σi g2

(→
x
∗)

g1

(→
x
∗)

+g2

(→
x
∗)

Plow
j
i = h

(→
x
∗
, vj

i

)
−

3σi g1

(→
x
∗)

g1

(→
x
∗)

+g2

(→
x
∗)

(9)

Among them,
→
x
∗

is the optimal parameter obtained by the exterior penalty function
method; σi is the standard deviation of the power in the wind speed interval Ui

v.
For any data point

(
vj

i , Pj
i

)
in any wind speed interval Ui

v, when Pj
i is not within the

range of
[

Plow
j
i , Phigh

j
i

]
, it can be considered as abnormal data. The process of the abnormal

data cleaning method for wind turbines based on constrained curve fitting is shown
in Algorithm 2.

Algorithm 2 Abnormal Data Cleaning Method for Wind Turbines Based on Constrained
Curve Fitting

Input: original dataset: D = {(v1, P1), (v2, P2), · · · (vn, Pn)}
Output: normal dataset: Dn
1: Dn = ∅

2:
Get the cut-in wind speed vin, cut-out wind speed vout, and rated power Pr from
dataset D

3:
D0 = {(v, P) ∈ D|P = 0 ∧ (v ≤ vin ∨ v ≥ vout)}
D1 = {(v, P) ∈ D|vin < v < vout} //Select runtime data

4: Dn = Dn ∪ D0
5: D2 = quartile(D1) //Quartile method to remove abnormal data

6:
→
x
∗
= sumt(D2) //Exterior penalty function method solves constrained fitting

7: ∀(v, P) ∈ D2, calculate its power upper limit Phigh and power lower limit Plow.

8: D3 =
{
(v, P) ∈ D2

∣∣∣Plow ≤ P ≤ Phigh

}
//Improved 3-σ method data cleaning

9: Dn = Dn ∪ D3

10:
Bring the maximum wind speed vmax of the dataset D3 into the fitting function to get

the actual power maximum value Pmax = h
(→

x
∗
, vmax

)
.

11: D4 =
{
(v, P) ∈ D1

∣∣∣vmax < v < vout ∧ 0.95 Pmax ≤ P ≤ 1.05Phigh

//Handling the wind speed cut-off part
12: Dn = Dn ∪ D4
13: output Dn

4. Experimental Validation and Analysis

Using real data, establish a wind turbine abnormal data cleaning model to realize
automatic cleaning of abnormal data.

4.1. Dataset Description

The dataset comes from a wind farm in eastern China. It records the SCADA operation data
of 12 wind turbines for one year, which is recorded every 10 min. The information contained
in the data is shown in Table 1. Different wind turbines face different problems. Three wind
turbines with typical abnormal data distribution are selected as #1, #2, and #3. The original data
wind speed-power scatter diagram of the three wind turbines is shown in Figure 5.

In Figure 5, the #1 wind turbine contains some upper abnormal data and a small
amount of limited power abnormal data, and the abnormal data account for a small
proportion; the #2 wind turbine contains lots of limited power abnormal data, and a large
amount of abnormal data changes the statistical characteristics of the original data, the
proportion of abnormal data and normal data is equal; #3 wind turbine also contains a large
number of limited power abnormal data, but abnormal data account for a larger proportion
than normal data. The abnormal data cleaning model for wind turbines needs to deal with
these three different abnormal data distributions at the same time.
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Table 1. SCADA data information.

Name Unit

Wind Number
Time Stump
Wind Speed m/s

Power kW
Rotor Speed r/min

Wheel Diameter m
Wind Cut-in m/s

Wind Cut-out m/s
Rated Power kW

Rotor Speed Range r/min
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4.2. Algorithm Experiment Process

According to Formula (2) wind speed-power characteristic, the data are preprocessed.
The following types of data that do not conform to the wind speed-power characteristics
can be regarded as abnormal data: (1) data with wind speed less than zero; (2) data with
power not zero when the wind speed is not within the range of cut-in wind speed and
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cut-out wind speed; (3) when the wind speed is within the range of cut-in wind speed
and cut-out wind speed, the power is zero. Select the data part of the wind turbine that is
normally connected to the grid for subsequent data cleaning.

4.2.1. Quartile Preprocessing

According to the quartile method in Section 3.1, for the three wind turbines, the wind
speed interval is divided at 0.5 m/s intervals from the cut in wind speed to the cut in wind
speed, and the power in each wind speed interval adopts quartile method, data with too
low power in the interval is marked as abnormal data. From zero to the highest power,
the power intervals are divided at intervals of 1.25% of the rated power, the wind speed in
each power interval adopts the quartile method, and the data with excessive wind speed
are marked as abnormal data.

Because the quartile method depends on the statistical characteristics of the data,
when lots of centrally distributed abnormal data change the statistical characteristics of
the original data, normal data may be mistaken for abnormal data. The quartile method is
used for the three wind turbines as shown in Figure 6.
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In Figure 6, the proportion of abnormal data of #1 wind turbine is less, so the quartile
method can clean out abnormal data very well. However, in the #2 and #3 wind turbines,
because the abnormal data of the #2 wind turbine have the same proportion as the normal
data, the quartile method cannot identify the abnormal data; #3 wind turbine has a large
amount of limited power abnormal data, and the proportion of abnormal data is large,
so the normal data are mistakenly marked as power too high (purple in Figure 6c), and
the limited power abnormal data are mistakenly marked as normal data. Because a large
number of upper abnormal data and limited power abnormal data will cause marking
errors, only the data with power too low in each wind speed interval and the data with
wind speed too high in each power interval (green and yellow in the Figure 6) are removed
by the quartile method in this method.

4.2.2. Constrained Wind Speed-Power Curve Fitting

For the #1, #2, and #3 wind turbines, according to the Formula (6) in Section 3.2, set the
upper limit of the partial derivative α = 150, the constraint margin δ = 0.001, and construct
the constrained optimization problem. According to Formula (7) in Section 3.3, set the initial
parameter

→
x = (0, 0, 0, 0), the initial exterior penalty factor M(1) = 1, the amplification factor

c = 8, the precision ε1 = ε2 = 0.001, the penalty factor control factor R = 1000, and the
exterior penalty function method is applied to solve the optimal parameter

→
x
∗
. The optimal

parameters
→
x
∗

are substituted into the constraint functions g1

(→
x
∗)

and g2

(→
x
∗)

as shown in
Table 2. The fitting curves of the #1, #2, and #3 wind turbines are shown in Figure 7.

Table 2. The result of solving for the optimal parameters.

Wind
Number Optimal Parameters

→
x

*
Constraint Function g1(

→
x

*
) Constraint Function g2(

→
x

*
)

1
(
1.108× 10+00, 5.222× 10−04, 6.147× 10−01, 2.286× 10+00) 2.514× 10+01 1.749× 10+02

2
(
6.742× 10−01, 2.833× 10−04, 3.915× 10−01, 3.530× 10+00) 2.116× 10−02 1.999× 10+02

3
(
1.256× 10+00, 5.930× 10−04, 7.648× 10−01,−1.476× 10−01) 7.126× 10−03 1.999× 10+02

4.2.3. Improved 3-σ Division of Abnormal Data

According to Formula (9) and the values of constraint functions g1

(→
x
∗)

and g2

(→
x
∗)

in Table 2, the upper and lower limits of power are obtained for each data point in each
wind speed interval. Those that are not within the upper and lower limits can be regarded
as abnormal data. In Figure 7, the fitting curves of #2 and #3 wind turbines cannot fully fit
the normal data even under the constrained condition due to the influence of abnormal
data. However, according to Table 2, the g1

(→
x
∗)

values of the #2 and #3 wind turbines are
very small, so the lower limit of the power is very close to the fitted curve, and the normal
data and abnormal data can still be well divided. The results of the improved 3-σ division
of abnormal data are shown in Figure 8.

Observe the result of the improved 3-σ division of abnormal data in Figure 8. For
the #2 wind turbine, the result of the improved 3-σ division of abnormal data results in
the truncation of the wind speed. Parts of data below the fitted curve with power within
the rated power error are considered normal data. The power Pmax corresponding to
the maximum wind speed vmax in the normal data after the improved 3-σ division can
be considered as the actual rated power. For any data point (vi, Pi) in the data set, if
vmax < vi < vout and 0.95Pmax < Pi < 1.05Pmax, then the data point (vi, Pi) can still be
considered as normal data. The final abnormal data cleaning result is shown in Figure 9.

Under the condition that other parameters remain unchanged, the value of the upper
limit of the partial derivative α in Formula (6) ranges from 50 to 300, and each step is 50.
The result of quadratic fitting of the cleaned data is shown in Figure 10. It can be seen from
Figure 10 that the curve can be well fitted under different parameter α values, which shows
that the method is not parameter-sensitive.
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4.3. Algorithm Comparison

The results obtained by the algorithm in this paper are compared with the Optional
Interclass Variance algorithm (OIV) [27], the Cloud Segment Optimal Entropy algorithm
(CSOE) [23], and the Density-Based Spatial Clustering of Applications with Noise algorithm
(DBSCAN) [20]. The comparison results are shown in Figures 11–13.
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Figure 11. Abnormal data cleaning results using the OIV algorithm: (a) #1 wind turbine; (b) #2 wind
turbine; (c) #3 wind turbine.

The results of the three methods are compared as follows: (1) The OIV algorithm needs
to select different variance thresholds S according to the slip curve for different wind speed
intervals. When S = 100, because the #1 wind turbine has a small amount of limited power
abnormal data, the abnormal data cleaning is good; but when there is a large amount of
limited power abnormal data such as #2 and #3 wind turbines, the effect is not good, and
the upper abnormal data is not processed. (2) The CSOE algorithm also needs to select
different thresholds R and r according to the change of the entropy set curve for different
wind speed intervals. The CSOE algorithm processing #1 wind turbine is not as effective
as the OIV algorithm and contains a large number of scattered points that have not been
removed; however, the processing effect of #2 and #3 wind turbines is better than the OIV
algorithm, but there are still some limited power abnormal data that have not been cleaned,
and still failed to clean the upper abnormal data. (3) The DBSCAN algorithm needs to
select the clustering radius eps and the minimum number of samples MinPts for each
wind speed interval. Take 0.3 m/s to divide the wind speed interval, when eps = 0.02 and
MinPts = 40, the DBSCAN algorithm has the best processing effect on the #1 wind turbine,
and can clean upper abnormal data and limited power abnormal data at the same time; but
for #2 and #3 wind turbines, it does not work very well with large amounts of anomalous
data changing the data density. It is found that the three methods all have the problem of
difficult parameter selection, and it is not easy to realize automation. For #2 and #3 wind
turbines with a large amount of limited power abnormal data, all three methods cannot
clean abnormal data very well.

Compared with Figure 9, the abnormal data cleaning method for wind turbines based on
constrained curve fitting can effectively clean the abnormal data of #1, #2, and #3 wind turbines
at the same time, and the cleaned normal data conform to the wind speed-power characteristics
and the ideal wind speed-power curve; it can process upper abnormal data and limited power
abnormal data at the same time, and it can also run well in the presence of a large number of
abnormal data; the parameter selection is fixed; and it is easy to realize automation.
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The time taken by the algorithm and the average of entropy and hyper entropy are of
great significance for practical applications, where the time taken by the algorithm evaluates
the computational effort of the algorithm. Entropy is used to measure the uncertainty of
qualitative concepts, which is determined by the randomness and fuzziness of concepts.
Hyper entropy is used to measure the uncertainty of entropy, that is, the entropy of entropy,
which is determined by the randomness and ambiguity of entropy [3]. In any wind speed
interval Ui

v, the entropy En, and hyper entropy He of power can be expressed as:

E =
∑N

j=1 Pj
i

N

c2 =
∑N

j=1

(
Pj

i − E
)2

N − 1

c4 =
∑N

j=1

(
Pj

i − E
)4

N − 1

En =
4

√
9c22 − c4

6
(10)

He =

√
c2 −

√
9c22 − c4

6
(11)

Among them, N is the total amount of data in the wind speed interval Ui
v; Pj

i is the
power value of the jth data in the wind speed interval Ui

v; E is the mean value of the power
in the wind speed interval; c2 is the second-order central moment of the power; and c4 is
the fourth-order central moment of power.

The average entropy is the average value of the entropy of the power in each wind
speed interval of the cleaned data. In the wind speed interval, it reflects not only the degree
of dispersion of the power but also the value range of the power, which can be applied to
evaluate the stability of the segmented sequence data. The larger the average entropy and
the average hyper entropy, the greater the fluctuation of power in each wind speed interval
of the cleaned data, and the less thorough the cleaning.

Table 3 records the time used for data cleaning by applying the abnormal data cleaning
method for wind turbines based on the Constrained Curve Fitting (CCF) algorithm, the OIV
algorithm, the CSOE algorithm, and the DBSCAN algorithm to the three wind turbines,
respectively, and the average entropy and the average hyper entropy of the cleaned data.

Table 3. Algorithm comparison.

Algorithm Name Wind Number Time (s) The Average Entropy The Average
Hyper Entropy

CCF
#1 1.29 46.73 6.27
#2 1.73 50.99 12.24
#3 1.53 63.71 20.18

OIV
#1 3.15 111.93 38.03
#2 3.14 375.16 45.21
#3 3.35 171.34 130.37

CSOE
#1 35.52 322.64 92.32
#2 34.62 210.87 50.16
#3 40.21 259.60 125.48

DBSCAN
#1 0.27 99.34 31.49
#2 0.25 381.05 23.92
#3 0.27 171.20 124.40
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It can be seen from Table 3 that the algorithm in this paper processes each wind turbine
within 2 s, which meets the actual industrial needs; and the average entropy and the average
hyper entropy of the three wind turbines are far lower than other algorithms. It shows that
the power fluctuation in each wind speed interval of the cleaned data is small and the power
is stable. This conclusion is consistent with that shown in Figures 9 and 11–13.

To sum up, the CCF algorithm has the following advantages over other traditional
methods: (1) The cleaned data are more in line with the wind speed-power characteristics
and the ideal wind speed-power curve; (2) the parameters are easy to select, have high
robustness, and are easy to satisfy automation requirements; (3) the algorithm has a small
amount of calculation and meets the needs of practical applications; (4) it can process the
upper abnormal data and the limited power abnormal data at the same time, and can still
work efficiently in the case of a large amount of abnormal data.

5. Conclusions

There are a lot of abnormal data in wind turbines and the abnormal data distribution of
different wind turbines is different. According to the wind speed-power characteristics, the
abnormal data cleaning method for wind turbines based on constrained curve fitting is pro-
posed. Furthermore, the metric entropy and hyper entropy are used to evaluate the stability
of the cleaned data, and the feasibility of the proposed model is verified experimentally.

(1) Compared with the traditional data cleaning method, the wind turbine abnormal data
cleaning method based on constrained curve fitting has the advantages of insensitivity
to parameters and less computation. Experiments show that the method can still
perform data cleaning well in the presence of a large number of abnormal data.
Compared with the traditional data cleaning method, the cleaned data are more in
line with the wind speed-power characteristics and the ideal wind speed-power curve.

(2) We use entropy and hyper entropy to evaluate the stability of the cleaned data. The
rationality of the index is verified by comparing the index with the data scatter-
plots of three wind turbines in a wind farm in eastern China after cleaning with
different algorithms.

(3) Experiments show that the abnormal data cleaning method for wind turbines based
on constrained curve fitting can effectively clean the data and improve the data quality,
which is of great significance to the follow-up research. The next step should focus on
further improving the running speed of the algorithm, improving the fitting degree of
the cleaned data and the ideal wind speed-power curve, and further improving the
operating efficiency.
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