
Abnormal Event Detection at 150 FPS in MATLAB

Cewu Lu Jianping Shi Jiaya Jia

The Chinese University of Hong Kong

{cwlu, jpshi, leojia}@cse.cuhk.edu.hk

Abstract

Speedy abnormal event detection meets the growing

demand to process an enormous number of surveillance

videos. Based on inherent redundancy of video structures,

we propose an efficient sparse combination learning frame-

work. It achieves decent performance in the detection phase

without compromising result quality. The short running

time is guaranteed because the new method effectively turns

the original complicated problem to one in which only

a few costless small-scale least square optimization steps

are involved. Our method reaches high detection rates

on benchmark datasets at a speed of 140∼150 frames per

second on average when computing on an ordinary desktop

PC using MATLAB.

1. Introduction

With the increasing demand of security, surveillance

cameras are commonly deployed. Detecting abnormal

events is one critical task based on what cameras capture,

which is traditionally labor-intensive and requires non-stop

human attention. What makes this interminable and boring

process worse is that abnormal events generally happen

with a frustratingly small chance, making over 99.9% of

the effort for one to watch videos wasted.

This predicament catalyzes important research in com-

puter vision, aiming to find abnormal events automatical-

ly [8, 1, 13, 23, 16, 21, 11, 22, 5]. It is not a typical

classification problem due to the difficulty to list all possible

negative samples. Research in this area commonly follows

the line that normal patterns are first learned from training

videos, and are then used to detect events deviated from this

representation.

Specifically, in [8, 20], extracted trajectories were u-

tilized by tracking object-of-interest to represent normal

patterns. Outliers are regarded as abnormal. Another line is

to learn normal low-level video feature distributions, such

as exponential [1], multivariate Gaussian mixture [13] or

clustering as a special case [23, 16]. Graph model normal

event representations were proposed in [21, 11, 10, 3, 19,

15, 6, 2], which utilize co-occurrence patterns. Among

these methods, normal patterns were fitted in a space-

time Markov random field in [21, 11, 10, 3]. Kwon and

Lee [9] used a graph editing framework for abnormal event

detection. Topic models, such as latent Dirichlet allocation,

were employed [19, 15]. Recently, sparse representation

[12, 17] has attracted much attention and sparsity-based

abnormality detection models [22, 5] achieved state-of-the-

art performance reported in many datasets.

Although realtime processing is a key criterion to an

practically employable system given continuously captured

videos, most sparsity-based methods cannot be performed

fast enough. The major obstruction to high efficiency is

the inherently intensive computation to build the sparse

representation. Note a slow process could delay alarm and

postpone response to special events.

We provide brief analysis below about this issue with

respect to the general sparsity strategies and present our

new framework with an effective representation. It fits

the structure of surveillance video data and leads to an

extremely cheap testing cost.

1.1. Sparsity Based Abnormality Detection

Sparsity is a general constraint [22, 5] to model normal

event patterns as a linear combination of a set of basis atom-

s. We analyze abnormality detection in one local region

to show that this process is computationally expensive by

nature.

Given training features [x1, . . . ,xn] extracted from the

history video sequence in a region, a normal pattern dic-

tionary D ∈ R
p×q is learned with a sparsity prior. In

the testing phase for a new feature x, we reconstruct it by

sparsely combining elements in D, expressed as

min
β

‖x−Dβ‖22 s.t. ‖β‖0 ≤ s (1)

where β ∈ R
q×1 contains sparse coefficients. ‖x −Dβ‖22

is the data fitting term; ‖β‖0 is the sparsity regularization

term; and s (≪ q) is a parameter to control sparsity. With

this representation, an abnormal pattern can be naturally

defined as one with large error resulted from ‖x − Dβ‖22.

2013 IEEE International Conference on Computer Vision

1550-5499/13 $31.00 © 2013 IEEE

DOI 10.1109/ICCV.2013.338

2720

Figure 1. Our testing architecture. X denotes testing da-

ta. {S1, . . . ,SK} are learned combinations, with each Si ∈
R

p×s(s ≪ q). Ei is the corresponding least square reconstruction

error. The final error is the minimum among all combinations.

Previous work verified that this form can lead to high

detection accuracy.

Efficiency Problem A high testing cost is inevitable

when adopting Eq. (1), which aims to find the suitable

basis vectors (with scale s) from the dictionary (with scale

q) to represent testing data x. The search space is very

large, as (qs) different combinations exist. Although much

effort has been put to reducing the dictionary size [5] and

adopting fast sparse coding solvers [22], in general, seconds

are needed to process a frame as reported in prior papers.

The efficiency problem is thus critical to address before

this type of methods can be deployed practically. A realtime

process needs to be 100 times faster than the current

fastest sparsity-based methods, which is difficult without

tremendous hardware advancement. We tackle this problem

from an algorithm perspective. Our method yields decent

performance and naturally accelerates sparse coding by

400+ times even using MATLAB implementation.

1.2. Our Contribution

We propose sparse combination learning for detection.

With high structure redundancy in surveillance videos,

instead of coding sparsity by finding an s basis combination

from D in Eq. (1), we code it directly as a set of possible

combinations of basis vectors. Each combination here

corresponds to a set with s dictionary bases in Eq. (1).

With this change, other than searching s bases from p of

them for each testing feature, we only need to find the most

suitable combination by evaluating the least square error.

The testing framework is shown in Fig. 1.

This framework is efficient since only small-scale least

square optimization is required in detection with simple

matrix projection. In our experiments, testing is on a small

number of combinations, each takes 10−6 ∼ 10−7 second

in MATLAB.

The effectiveness of our approach is well guaranteed by

the inherent sparsity constraint on the combination size.

Figure 2. Pyramid region architecture. A frame is resized into 3

different scales. In each scale the frame is partitioned into several

regions.

Compared to original sparse coding, our model is more

faithful to the input data. When freely selecting s basis vec-

tors from a total of q vectors by Eq. (1), the reconstructed

structure could much deviate from input due to the large

freedom. But in our trained combinations, it is unlikely

to happen, since each combination finds its corresponding

input data, better constraining reconstruction quality. Our

method therefore is robust to distinguish between normal

and abnormal patterns.

We have verified our model on a large set of surveillance

videos in Sec. 3.2. We also benchmark it on existing

datasets for abnormal event detection. It reaches 140∼150

FPS using a desktop with 3.4GHz CPU and 8G memory in

MATLAB 2012.

2. Method

We describe our framework that learns sparse basis com-

binations. To extract usable data, we resize each frame into

different scales as [5] and uniformly partition each layer

to a set of non-overlapping patches. All patches have the

same size. Corresponding regions in 5 continuous frames

are stacked together to form a spatial-temporal cube. An

example is illustrate in Fig. 2. This pyramid involves local

information in fine-scale layers and more global structures

in small-resolution ones.

With the spatial-temporal cubes, we compute 3D gradi-

ent features on each of them following [11]. These features

in a video sequence are processed separately according to

their spatial coordinates. Only features at the same spatial

location in the video frames are used together for training

and testing.

2.1. Learning Combinations on Training Data

For each cube location, 3D gradient features in all frames

are denoted as X = {x1, . . . ,xn} ∈ R
p×n, gathered

temporally for training. Our goal is to find a sparse basis

combination set S = {S1, . . . ,SK} with each Si ∈ R
p×s

containing s dictionary basis vectors, forming a unique

combination, where s ≪ q. Each Si belongs to a closed,

convex and bounded set, which ensures column-wise unit

2721

norm to prevent over-fitting.

Our sparse combination learning has two goals. The

first goal – effective representation – is to find K basis

combinations, which enjoy a small reconstruction error t.

It is coarsely expressed as

t � min
S,γ, β

n∑

j=1

K∑

i=1

γi
j‖xj − Siβ

i
j‖

2

2

s.t.

K∑

i=1

γi
j = 1, γi

j = {0, 1}

(2)

where γ = {γ1, . . . ,γn} and γj = {γ1
j , . . . , γ

K
j }. Each

γi
j indicates whether or not the ith combination Si is chosen

for data xj . βi
j is the corresponding coefficient set for repre-

senting xj with combination Si. The constraints
∑

γi
j = 1

and γi
j = {0, 1} require that only one combination is

selected. The objective function makes each training cube

x constructible by at least one basis combination in S .

The second goal is to make the total number K of combi-

nations small enough based on redundant surveillance video

information. It is natural and inevitable because a very large

K could possibly make the reconstruction error t in Eq. (2)

always close to zero, even for abnormal events.

2.2. Optimization for Training

Our two objectives contradict each other in a sense.

Reducing K could increase reconstruction errors. It is not

optimal to fix K as well, as content may vary among videos.

This problem is addressed in our system with a maximum

representation strategy. It automatically finds K while not

wildly increasing the reconstruction error t. In fact, error t

for each training feature is upper bounded in our method.

We obtain a set of combinations with a small K by

setting a reconstruction error upper bound λ uniformly for

all elements in S . If the reconstruction error for each feature

is smaller than λ, the coding result is with good quality. So

we update function (2) to

∀j ∈ {1, · · · , n}, tj =

K∑

i=1

γi
j{‖xj − Siβ

i
j‖

2

2 − λ} ≤ 0,

s.t.

K∑

i=1

γi
j = 1, γi

j = {0, 1}

(3)

Algorithm Our method performs in an iterative manner.

In each pass, we update only one combination, making it

represent as many training data as possible. This process

can quickly find the dominating combinations encoding

important and most common features. Remaining train-

ing cube features that cannot be well represented by this

combination are sent to the next round to gather residual

maximum commonness. This process ends until all training

data are computed and bounded. The size of combination

K reflects how informative the training data are.

Specifically, in the ith pass, given the leftover training

data Xc ⊆ X that cannot be represented by previous

combinations {S1, . . . ,Si−1}, we compute Si to bound

most data in Xc. Our objective function becomes

min
Si,γ, β

∑

j∈Ωc

γi
j(‖xj − Siβ

i
j‖

2

2 − λ)

s.t.

K∑

i=1

γi
j = 1, γi

j = {0, 1}

(4)

where Ωc is the index set for Xc. It is easy to prove that this

cost satisfies condition (3) and the resulting Si can represent

most data. Specifically, if ‖xj − Siβ
i
j‖

2
2 − λ ≥ 0, setting

γi
j = 0 yields a smaller value compared to setting γi

j =

1. Contrarily, γi
j should be 1 if ‖xj − Siβ

i
j‖

2
2 − λ < 0,

complying with condition (3).

In each pass i, we solve the function in Eq. (4) by

dividing it into two steps to iteratively update {Si
s,β} and

γ using the following procedure.

Update {Si
s,β} With fixed γ, Eq. (4) becomes a quadrat-

ic function

L(β,Si) =
∑

j∈Ωc

γi
j‖xj − Siβ

i
j‖

2

2. (5)

Following the traditional procedure, we optimize β while

fixing Si for all γi
j
= 0 and then optimize Si using block-

coordinate descent [14]. These two steps alternate. The

closed-form solution for β is

βi
j = (ST

i Si)
−1

S
T
i xj . (6)

S
i
s finds its solution as

Si =
∏

[Si − δt∇Si
L(β,Si)], (7)

where δt is set to 1E−4 and
∏

denotes projecting the basis

to a unit column. Block-coordinate descent can converge

to a global optimum due to its convexity [4]. Therefore,

the total energy for L(β,Si) decreases in each iteration,

guaranteeing convergence.

Update γ With the {Si,β} output, for each xj , the

objective function becomes

min
γi
j

γi
j‖xj − Siβ

i
j‖

2

2 − λγi
j

s.t. γi
j = 0 or 1 .

(8)

γi
j has a closed-form solution

γi
j =

{
1 if ‖xj − Siβ

i
j‖

2
2 < λ

0 otherwise
(9)

The update step guarantees condition (3).

2722

Algorithm 1 Training for Sparse Combination Learning

Input: X , current training features Xc = X
initialize S = ∅ and i = 1
repeat

repeat

Optimize {Si,β} with Eqs. (6) and (7)

Optimize {γ} using Eq. (9)

until Eq. (5) converges

Add Si to set S
Remove computed features xj with γi

j = 0 from Xc

i = i+ 1
until Xc = ∅
Output: S

Algorithm Summary and Analysis In each pass, we

learn one Si. We repeat this process to obtain a few

combinations until the training data set Xc is empty. This

scheme reduces information overlap between combinations.

We summarize our training algorithm in Algorithm 1. The

initial dictionary Si in each pass is calculated by clustering

training data Xc via K-means with s centers.

Our algorithm is controlled by λ, the upper bound of

reconstruction errors. Reducing it could lead to a larger

K. Our approach is expressive because all training normal

event patterns are represented with controllable reconstruc-

tion errors under condition (3). We train 20K-sample data,

whose scales are in R
100, in 20 minutes on a PC with 8GB

RAM and an Intel 3.4GHz CPU.

2.3. Testing

With the learned sparse combinations S = {S1 . . .SK},

in the testing phase with new data x, we check if there exists

a combination in S fitting the reconstruction error upper

bound. It can be quickly achieved by checking the least

square error for each Si:

min
βi

‖x− Siβ
i‖22 ∀ i = 1, . . . ,K (10)

It is a standard quadratic function with the optimal solution

β̂i = (ST
i Si)

−1
S
T
i x. (11)

The reconstruction error in Si is

‖x− Siβ̂
i‖22 = ‖(Si(S

T
i Si)

−1
S
T
i − Ip)x‖

2

2, (12)

where Ip is a p × p identity matrix. To further simplify

computation, we define an auxiliary matrix Ri for each Si:

Ri = Si(S
T
i Si)

−1
S
T
i − Ip. (13)

Reconstruction error for Si is accordingly ‖Rix‖
2
2. If it is

small, x is regarded as a normal event pattern. The final

testing scheme is summarized in Algorithm 2.

Algorithm 2 Testing with Sparse Combinations

Input: x, auxiliary matrices {R1, . . . ,RK} and thresh-

old T

for j = 1 → K do

if ‖Rkx‖
2
2 < T then

return normal event;

end if

end for

return abnormal event;

It is noted that the first a few dominating combinations

represent the largest number of normal event features,

which enable us to determine positive data quickly. In

our experiments, the average combination checking ratio

is 0.325, which is the number of combinations checked

divided by the total number K. Also, our method can be

easily accelerated via parallel processing to achieve O(1)
complexity although it is generally not necessary.

2.4. Relation to Subspace Clustering

Our approach can be regarded as enhancement of sub-

space clustering [7] with the major difference on the work-

ing scheme. The relationship between subspace clustering

and our method is similar to that between K-means and

hierarchical clustering [18]. Specifically, subspace cluster-

ing method [7] takes the number of clusters k as known

or fixed beforehand, like K-means. In video abnormality

detection applications, it is however difficult to know the

optimal number of bases in prior. Our approach utilizes the

allowed representation error to build combinations, where

the error upper bound is explicitly implemented with clear

statistical meaning. There is no need to define the cluster

size in this method. Our extensive experiments manifest

that our strategy is both reliable and efficient.

3. Experiments

We empirically demonstrate that our model is suitable

to represent general surveillance videos. We apply our

method to different datasets. Quantitative comparisons are

provided.

3.1. System Setting

In our method, size of Si ∈ R
p×s controls the sparsity

level. We experimentally set s = 0.1×p where p is the data

dimension. λ in Eq. (4) is the error upper bound, set to 0.04
in experiments.

Given the input video, we resize each frame to 3 scales

with 20×20, 30×40, and 120×160 pixels respectively and

uniformly partition each layer to a set of non-overlapping

10× 10 patches, leading to 208 sub-regions for each frame

in total shown in Fig. 2. Corresponding sub-regions in 5

2723

Figure 3. A few frames from the surveillance videos used for

verification.

0 20 40 60 80 100 120

1000

2000

3000

4000

5000

6000

Figure 4. Different numbers of basis combinations to represent

normal events in 31,200 groups (x-axis: K; y-axis: number of

groups that use K combinations).

continuous frames are stacked together to form a spatial-

temporal cube, each with resolution 10 × 10 × 5. We

compute 3D gradient features on each of them following

[11]. Those gradients are concatenated to a 1500-dimension

feature vector for each cube and are then reduced to 100
dimensions via PCA. Normalization is performed to make

them mean 0 and variance 1.

For each frame, we compute an abnormal indicator V by

summing the number of cubes in each scale with weights.

It is defined as V =
∑n

i=1
2n−ivi, where vi is the number

of abnormal cubes in scale i. The top scale is with index

1 while the bottom one is with n. All experiments are

conducted using MATLAB.

3.2. Verification of Sparse Combinations

Surveillance videos consist of many redundant patterns.

For example, in subway exit, people generally move in

similar directions. These patterns share information coded

in our sparse combinations. To verify it, we collect 150

normal event surveillance videos with a total length of 107.8

hours. The videos are obtained from sources including

dataset UCSD Ped1 [15], Subway datasets [1] (excluding

abnormal event frames), 68 videos from YouTube, and 79

videos we captured. The scene includes subway, mall,

traffic, indoor, elevator, square, etc. We show a few example

Figure 5. Spatial distribution of combination numbers to represent

normal structures in the Avenue data.

Run Loiter Throw False Alarm

Ground Truth 4 5 5 N/A

Ours 4 4 4 1

Table 1. Detection results in the Avenue dataset.

frames in Fig. 3.

Each video contains 208 regions as illustrated in Fig. 2.

With the 150 different videos, we gather a total of 31,200

(208 × 150) groups of cube features with each group

corresponding to a set of patches (cubes). They are used

separately to verify the combination model. Each group

contains 6,000-120,000 features. The number of combina-

tions for each group is denoted as K. We show in Fig. 4 the

distribution of K in the 31,200 groups. Its mean is 9.75 and

variance is 10.62, indicating 10 combinations are generally

enough in our model. The largest K is 108. About 99% of

the Ks are smaller than 45.

We illustrate the K distributions spatially in the Avenue

data (described below) in Fig. 5. Many regions only need

1 combination because they are static. Largely varying

patches may need dozens of combinations to summarize

normal events. The statistical regression error is as small as

0.0132±1.38E−4, which indicates our dictionaries contain

almost all normal patterns.

3.3. Avenue Data Benchmark

We build an avenue dataset, which contains 15 se-

quences. Each sequence is about 2 minutes long. The total

number of frames is 35,240. There are 14 unusual events

including running, throwing objects, and loitering. 4 videos

are used as training data with 8,478 frames in total.

A video sequence and its abnormal event detection result

are demonstrated in Fig. 6. Fig. 7 contains two important

frames and their abnormal event regions in two image

scales. We list the detection statistics in Table 1. The

performance of our method is satisfactory with the average

detection rate of 141.34 frames per second.

2724

0 100 200 300 400 500 600
0

50

100

Figure 6. Detection results in a video sequence. The bottom plot is the response. A peak appears when an abnormal event – paper throwing

– happens. The x value indexes frames and y-index denotes response strength.

(a) events (b) maps (c) maps

Figure 7. Two abnormal events and their corresponding abnormal

patches under two different scales in the Avenue dataset.

WD LT MISC Total FA

Ground Truth 9 3 7 19 0

[22] 9 3 7 19 2

[10] 9 3 7 19 3

[5] 9 - - - 2

subspace 6 3 5 14 4

Ours 9 3 7 19 2

Table 2. Comparison with other sparsity-based methods [22, 5] on

the Exit-Gate Subway dataset. WD: wrong direction; LT: loitering;

FA: false alarm. “-” means the results are not provided. Subspace:

results by replacing our combination learning by subspace cluster-

ing [7].

3.4. Subway Dataset

We conduct quantitative comparison with previous meth-

ods on the Subway dataset [1]. The videos are 2 hours long

in total, containing 209,150 frames with size 512 × 384.

There are two types of videos, i.e., “exit gate” and “entrance

gate” videos.

Exit Gate The subway exit surveillance video contains

19 different types of unusual events, such as walking in

the wrong direction and loitering near the exit. The video

sequence in the first 15 minutes is used for training. This

configuration is the same as those in [10, 22].

The abnormal event detection results for a few frames

are shown in Fig. 8. Table 2 lists the comparison with other

methods. Our false alarm rate is low mainly because each

combination can construct many normal event features, thus

(a) events (b) maps (c) maps

Figure 8. Subway dataset (Exit-Gate): Three abnormal events and

their corresponding detection maps in two different scales in the

Subway-Exit video.

WD NP LT II MISC Total FA

GT 26 13 14 4 9 66 0

[22] 25 9 14 4 8 60 5

[10] 24 8 13 4 8 57 6

[5] 21 6 - - - - 4

subspace 21 6 9 3 7 46 7

Ours 25 7 13 4 8 57 4

Table 3. Comparison using the Subway-Entrance video with sever-

al previous methods. GT: ground truth; WD: wrong direction; NP:

no payment; LT: loitering; II: irregular interactions; MISC: misc;

FA: false alarm. “-” means results are not provided. Subspace:

replacing our combination learning by subspace clustering [7].

Second/Frame Platform CPU Memory

[22] 2 MATLAB 7.0 2.6 GHz 2.0GB

[5] 4.6 - 2.6 GHz 2.0GB

Ours 0.00641 MATLAB 2012 3.4 GHz 8.0GB

Table 4. Running time comparison on the Subway dataset.

reducing the chance of constructing an abnormal structure

with a small error. This representation tightens feature mod-

eling and makes it not that easy to misclassify abnormality

as normal events. In this dataset, our combination number

K varies from 1 to 56 for different cube features.

Entrance Gate In this video, again, the first 15 minutes

are used for training. Detection statistics are listed in Table

3. Our results are comparable to those of [22, 10, 5]. The

proposed method yields high detection rates together with

2725

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

FPR

T
P

R

Sparse

DMT

SF

MPPCA

MPPCA+SF

Adam

Antic

Saligrama

Subspace

Ours

Figure 9. Frame-level comparison of the ROC curves in UCSD

Ped1 dataset. Method abbreviation: MPPCA+SF [13], SF [13],

MDT [13], Sparse [5], Saligrama [16], Antic [2], Subspace:

replacing our combination learning by subspace clustering [7].

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

1.2

FPR

T
P

R

Sparse

DMT

SF

MPPCA

MPPCA+SF

Adam

Subspace

Ours

Figure 10. Pixel-level comparison of the ROC curves in UCSD

Ped1 dataset. Method abbreviation: MPPCA+SF [13], SF [13],

MDT [13], Sparse [5], Saligrama [16], Antic [2], Subspace:

replacing our combinations learning by subspace clustering [7].

low false alarm.

Running Time Comparison We compare our system

with other sparse dictionary learning based methods [22, 5]

in terms of running time on the Subway dataset in Table 4.

The speed of methods [22, 5] is reported in their respective

papers. The difference on detection speed is much larger

than that of working environment.

3.5. UCSD Ped1 Dataset

The UCSD Ped1 dataset [13] provides 34 short clips

for training, and another 36 clips for testing. All testing

clips have frame-level ground truth labels, and 10 clips have

pixel-level ground truth labels. There are 200 frames in

each clip.

Our configuration is similar to that of [13]. That is, the

performance is evaluated on frame- and pixel-levels. We

show the results via ROC curves, Equal Error Rate (EER),

and Equal Detected Rate (EDR).

Second/Frame Platform CPU Memory

[13] 25 - 3.0 GHz 2.0GB

[5] 3.8 - 2.6 GHz 2.0GB

[2] 5 ∼ 10 MATLAB - -

Ours 0.00697 MATLAB 2012 3.4 GHz 8.0GB

Table 5. Running time comparison on the UCSD Ped1 dataset.

ROC Curve Comparison According to [13] in frame-

level detection, if a frame contains at least one abnormal

pixel, it is considered as successful detection. In our

experiment, if a frame contains one or more abnormal

patches, we label it as an abnormal event. For frame-level

evaluation, we alter frame abnormality threshold to produce

a ROC curve shown in Fig. 9. Our method has a reasonably

high detection rate when the false positive value is low. It is

vital for practical detection system development.

In pixel level evaluation, a pixel is labeled as abnormal,

if and only if the regions it belongs to in all scales are

abnormal. We alter threshold for all pixels. Following [13],

if more than 40% of truly anomalous pixels are detected,

the corresponding frame is considered as being correctly

detected. We show the ROC curve in Fig. 10. Besides

all methods that are compared in [13], we also include

the performance of subspace clustering [7]. Our method

achieves satisfactory performance.

EER and EDR Different parameters could affect detec-

tion and error rates. Following [13], we obtain these rates

when false positive number equals to the missing value.

They are called equal error rate (EER) and equal detected

rate (EDR). We compute the area under the ROC curve

(AUC). We report EER, ERD and AUC in the pixel-level

comparison (Table 6) and calculate EER and AUC in the

frame-level (Table 7). These results indicate that our results

are with high quality in both measures.

We compare the running time in Table 5. The detection

time per frame and working platforms of [13, 5, 2] are

obtained from the original papers.

3.6. Separate Cost Analysis

Our testing includes two main steps: feature extraction

(3D cube gradient computing and PCA) and combination

testing using Algorithm 2. Other minor procedures are

frame resizing, matrix reshape, etc. We list the average

running time spent for each step to process one frame in

the three datasets in Table 8.

4. Conclusion

We have presented an abnormal event detection method

via sparse combination learning. This approach direct-

ly learns sparse combinations, which increase the testing

speed hundreds of times without compromising effective-

2726

SF [13] MPPCA [13] SF-MPPCA [13] MDT [13] Sparse[5] Adam[1] Antic [2] Subspace [7] Ours

EDR 21 % 18 % 18 % 45 % 46 % 24 % 68 % 39.3% 59.1 %

AUC 19.7 % 20.5 % 21.3 % 44.1 % 13.3% 46.1 % 76 % 43.2 % 63.8 %

Table 6. Comparison of pixel-level EDR and AUC curves on the UCSD Ped1 dataset.

SF-MPPCA [13] SF [13] MDT [13] Sparse[5] Saligrama [16] Antic [2] Subspace [7] Ours

EER 40 % 31 % 25 % 19 % 16 % 18 % 29.6% 15 %

AUC 59 % 67.5 % 81.8% 86 % 92.7 % 91 % 68.4 % 91.8 %

Table 7. Comparison of frame-level EER and AUC curves on the UCSD Ped1 dataset.

Feature extraction (ms) Combinations testing (ms) Others (ms) All (ms) FPS

Avenue 4.513 1.792 0.770 7.075 141.34

UCSD Ped1 4.496 1.724 0.743 6.965 143.57

Subway 4.634 1.409 0.625 6.412 155.97

Table 8. Average running time of processing one frame in each step on the three datasets. “ms” is short for millisecond.

ness. Our method achieves state-of-the-art results in several

datasets. It is related to but differ largely from traditional

subspace clustering. Our future work will be to extend

the sparse combination learning framework to other video

applications.

Acknowledgments

This research has been supported by General Research

Fund (No. 412911) from the Research Grants Council of

Hong Kong.

References

[1] A. Adam, E. Rivlin, I. Shimshoni, and D. Reinitz. Ro-

bust real-time unusual event detection using multiple fixed-

location monitors. IEEE TPAMI, 30(3):555–560, 2008.

[2] B. Antic and B. Ommer. Video parsing for abnormality

detection. In ICCV, pages 2415–2422, 2011.

[3] Y. Benezeth, P.-M. Jodoin, V. Saligrama, and C. Rosenberg-

er. Abnormal events detection based on spatio-temporal co-

occurences. In CVPR, 2009.

[4] D. Bertsekas. Nonlinear programming. Athena Scientific

Belmont, MA, 1999.

[5] Y. Cong, J. Yuan, and J. Liu. Sparse reconstruction costs

for abnormal event detection. In CVPR, pages 3449–3456,

2011.

[6] X. Cui, Q. Liu, M. Gao, and D. Metaxas. Abnormal detection

using interaction energy potentials. In CVPR, pages 3161–

3167, 2011.

[7] E. Ehsan and R. Vidal. Sparse subspace clustering. In CVPR,

2009.

[8] F. Jianga, J. Yuan, S. A. Tsaftarisa, and A. K. Kat-

saggelosa. Anomalous video event detection using spa-

tiotemporal context. Computer Vision and Image Under-

standing, 115(3):323–333, 2011.

[9] K. Jouseok and L. Kyoungmu. A unified framework for event

summarization and rare event detection. In CVPR, 2012.

[10] J. Kim and K. Grauman. Observe locally, infer globally:

a space-time mrf for detecting abnormal activities with

incremental updates. In CVPR, pages 2921–2928, 2009.

[11] L. Kratz and K. Nishino. Anomaly detection in extremely

crowded scenes using spatio-temporal motion pattern mod-

els. In CVPR, pages 1446–1453, 2009.

[12] C. Lu, J. Shi, and J. Jia. Online robust dictionary learning.

In CVPR, 2013.

[13] V. Mahadevan, W. Li, V. Bhalodia, and N. Vasconcelos.

Anomaly detection in crowded scenes. In CVPR, 2010.

[14] J. Mairal, F. Bach, J. Ponce, and G. Sapiro. Online learning

for matrix factorization and sparse coding. The Journal of

Machine Learning Research, 11:19–60, 2010.

[15] R. Mehran, A. Oyama, and M. Shah. Abnormal crowd

behavior detection using social force model. In CVPR, 2009.

[16] V. Saligrama and Z. Chen. Video anomaly detection based

on local statistical aggregates. In CVPR, pages 2112–2119,

2012.

[17] J. Shi, X. Ren, G. Dai, J. Wang, and Z. Zhang. A non-convex

relaxation approach to sparse dictionary learning. In CVPR,

pages 1809–1816, 2011.

[18] H. Trevor, T. Robert, and J. H. Friedman. The elements of

statistical learning. Springer New York, 2001.

[19] X. Wang, X. Ma, and E. Grimson. Unsupervised activity

perception by hierarchical bayesian models. In CVPR, pages

1–8, 2007.

[20] S. Wu, B. E. Moore, and M. Shah. Chaotic invariants

of lagrangian particle trajectories for anomaly detection in

crowded scenes. In CVPR, 2010.

[21] D. Zhang, D. Gatica-Perez, S. Bengio, and I. McCowan.

Semi-supervised adapted hmms for unusual event detection.

In CVPR, 2005.

[22] B. Zhao, L. Fei-Fei, and E. Xing. Online detection of unusual

events in videos via dynamic sparse coding. In CVPR, 2011.

[23] H. Zhong, J. Shi, and M. Visontai. Detecting unusual activity

in video. In CVPR, 2004.

2727

