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Abstract—Power system has been incorporating increasing
amount of unconventional generations and loads such as re-
newable resources, electric vehicles, and controllable loads. The
induced short term and stochastic power flow requires high
resolution monitoring technology and agile decision support tech-
niques for system diagnosis and control. In this paper, we discuss
the application of micro-phasor measurement unit (µPMU) for
power distribution network monitoring, and study learning based
data-driven methods for abnormal event detection. We first
resolve the challenging problem of information representation
for the multiple streams of high resolution µPMU data, by
proposing a pooling-picking scheme. With that, a kernel Principle
Component Analysis (kPCA) is adopted to build statistical models
for nominal state and detect possible anomalies. To distinguish
event types, we propose a novel discriminative method that
only requires partial expert knowledge for training. Finally,
our methods are tested on an actual distribution network with
µPMUs, and the results justifies the effectiveness of the data
driven event detection framework, as well as its potentials to serve
as one of the core algorithms to ensure power system security
and reliability.

I. INTRODUCTION

A. Background

Historically, power distribution networks have not been

equipped with sophisticated monitoring systems similar to

what is implied in transmission networks. However, the growth

of distributed renewable energy resources, electric vehicles and

controllable loads introduces more short-term and unpredicted

disturbances in the power flow [16]. This suggests a need for

more accurate measurement devices with higher resolution.

This paper specifically discusses high-precision synchropha-

sors, or micro-phasor measurement units (µPMUs) for high-

fidelity measurement of voltage and current waveforms [1],

which are designed to capture dynamic behavior of power dis-

tribution networks in order to support a range of diagnostic and

control applications. All measurements are GPS time stamped

to provide time-synchronized observability. µ-PMUs used in

this research provide 120 samples per second for three-phase

voltage and current magnitude and phase angle with a 0.05%

Total Vector Error [15]. The accuracy and resolution available

from this µ-PMU monitoring network enables operators to

detect dynamic events that would otherwise be unobservable

in distribution networks. Topology detection[2], phase labeling

[17] and linear state estimation[13] are among applications of

time synchronized µ-PMU data that are implemented so far.

Events of interest in distribution networks are sinusoidal

or non-sinusoidal transients in voltage and current waveforms

that may be caused by faults, topology changes, load behav-

ior and source dynamics. These events include, but are not

limited to, voltage sags, voltage swells, fault currents, voltage

oscillations, and frequency oscillations. For the sake of power

systems reliability and stability, it is crucial to monitor the

operating states in real time and detect anomalies quickly as to

avert disturbances and disruptions[7]. Moreover, µ-PMU based

monitoring system in distribution networks provides accurate

and high fidelity data for a wide range of control strategies in

different scales.

B. Learning Based Event Detection Methods

This paper proposes a novel framework for event detection

using µPMU data streams. Within a larger scope, the paper

aims to leverage advances in pattern recognition techniques

and time-series data analysis for data-driven operation of

distribution networks.

In literature, the model-based event detection has been

very popular and successful in many applications as [10],

[8]. However, it would be prone to overwhelming system

randomness and dynamics in our context owing to the high

time resolution and dimensionality. Therefore, the focus of the

present work is to detect abnormal events based on µPMU

measurements by considering only the empirical data per

se. A wide variety of model-less detection and classification

tools has been development recently developed in the machine

learning/artificial intelligent community [6][9]. Most of model-

less approaches require (1) useful information that is well

presented and extracted as input “features”, and (2) training

data that is well labeled with expert knowledge for super-

vised pattern recognition. However, these two prerequisites

are becoming more challenging due to the nature of µ-PMU

data that comes from the power distribution network with

various components and diverse events. Moreover, identifying

abnormal events in power distribution networks requires expert

intervention which is not always available.

To resolve the first issue, we propose a pooling& picking

scheme. Initially, all potential features are extracted with
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Fig. 1: Raw data visualization. 1 minutes PMU measurement for voltage and current that contains a short duration high

impedance faults and transmission level voltage disturbanceis.

a sliding window and are pooled together as candidates.

Secondly, a “Minimum Redundancy and Maximum Rele-

vance (mRmR)” selection procedure is applied to pick useful

information streams for each event. For the second issue,

we propose two machine learning algorithms that perform

unsupervised and semi-supervised detection depending on the

availability of the labeled event data. The proposed procedure

has following steps:

(1) Assumes only knowledge of the system’s “stable state”

or nominal condition is available. The kernel Principal Com-

ponent Analysis (kPCA) is performed on the transformed

Hilbert space to generate a tight non-linear description of

the empirical distribution. Then the squared distance to the

corresponding principal subspace is used as the measure of

“abnormality” for a testing data point.

(2) Assuming that a small amount of data labeling can

be achieved from the domain expertise, we propose a new

variation of Support Vector Machine, the Partially Hidden

Structured SVM (pSVM). The key idea is to incorporate

information from all labeled, unlabeled and partially labeled

data in a unified and large margin learning framework to reveal

the hidden structures and capture relations among “stable

state” and different “events”.

The rest of the paper is organized as follows. In the next

section, we discuss the pooling and picking procedure for

information representation of the µPMU data. The event detec-

tion algorithms are described in Section III, and experimental

results are given in Section IV.

II. POOLING AND PICKING: INFORMATION

REPRESENTATION AND FEATURE SELECTION

The multi-stream high resolution PMU measurement data

provides unprecedented observability of the system. Since all

artificial intelligent methods are “garbage in, garbage out”, the

raw data that records values of a sensor measurement, must

be properly processed for event related information before it

is thrown into any machine learning algorithm. However, in

this case facing milliseconds µPMU data that has not been

explored before, we have limited prior knowledge on the

effectiveness of different feature extraction methods. In this

work, we propose a pooling& picking scheme: all plausible

ways of feature extraction are firstly conducted on the µ

PMU data, then the mRmR criterion is used to selected most

informative ones for each type of events.

A. Pooling Candidate Features

Here we enumerate various information representation, i.e.

feature extraction techniques that are related to the purpose

of event detection. Notation-wise, the multi-stream time series

µPMU data are written as {X1, · · · , XT }. Each Xt is a M×C

dimensional vector where M is the number of µPMUs and

C is the number of channels of each µPMU. To get some

intuition, two raw data sets containing 1 minutes 3 phase

voltage and current measurements are shown in Figure 1 for a

short duration high impedance (HI) faults and a transmission

level voltage disturbance (VD).

Because the raw data is in millisecond’s resolution and

almost all practical events happens at a larger time scale, one

can safely use a sliding window to extract useful information.

The window size L should be chosen according to the time

scale of the event of interest. For example, in order to detect

certain transient event in 0.1s scale, one takes L = 12 and

processes the data in each window. For ease of notation let

wi
t , {xi

t, · · · , x
i
t+L} be the tth window of stream i.

Now we consider diverse techniques to construct feature

candidates. Intuitively, some events, such as voltage sag or

voltage disturbance, could be revealed by investigating sin-

gle streams (voltage magnitude or phase) fluctuations, while

other events, such as high impedance fault and voltage os-

cillation, might be more obvious by analyzing the inter-

behavior/dependence of multiple voltage and current streams.

For the purpose of detecting different types of events, we

include both single stream and inter-stream feature extract with

a variety of metrics. To be specific, we consider

1) Single Stream Features Extraction:

- Classic statistics: including mean, variance, and range of

voltage/current magnitude in each window. These features

capture the average voltage/current values as well as their

fluctuations in the time slot. The median is also included

as it is a more “robust” metric of average value from a

statistical viewpoint. To further characterize the variations

of magnitude in each window, the distributional features,

including entropy and histogram are calculated.

- First order difference: We compute xi
t+1 − xi

t for each

stream and take the corresponding mean and variance in



TABLE I: Extracted Features Candidates

Single Stream
Statistics

mean(wi
t), var(wi

t), range(wi
t)

median(wi
t), entropy(wi

t), hist(wi
t)

Difference ui
t = Diff(xi

t); Statistics

Transformation fft(wi
t),wavelet(wi

t)

Inter Stream
Deviation xi − xj ∀i, ∀j ∈ N (i)

Correlation corr(xi, xj) ∀i, ∀j ∈ N (i)

each window. The intuition is that some transient events

may exhibit significant “jumps” in voltage and current

magnitude, which can be well captured by “spikes” in

the first order difference. As for streams associated with

phase information, the average difference is an indicator

of voltage/current frequency and is also an important

indicator of system stability.

- Transformation: Notice that many distribution side events,

such as ON/OFF of reactive loads, usually lead to os-

cillations in both magnitude and phase measurement,

we propose to use Fast Fourier Transform (FFT) to

capture this frequency domain information. Also, Wavelet

transformation is adopted to capture local fluctuations and

abrupt changes, as is suggested in [14].

2) Inter-stream Features: For streams that corresponds to

voltage/current of the same node, we compute

- Deviation: the difference between any two of the three

phases, for both voltage and current. The resulted time

sequences are processed as single streams in each win-

dow with classic statistics. In this way, we incorporate

information for the events that exhibit phase imbalance.

- Correlation between any two of the three phases, for both

voltage and current. The correlation constitutes a metric

of dependence for these time series, and is also helpful in

providing information related with inter-phase behavior.

A summary of feature extraction candidates are given in

Table I. Note that the inter-stream features for different nodes

(hence from different µPMUs) should be very interesting for

sub-systems width event detection, for which one can include

not only correlation as dependence metric, but also causal

information [20] that pinpoints the propagation of the event.

The task of identifying sub-system scale events and their

influence on neighboring nodes is one of our future work.

In this work, we will focus on data-driven method for local

event detection.

B. Picking Informative Features

With the presented feature extraction procedure, a total

number of 26C features have been pooled together. Obviously,

some of them may be redundant as there are significant

similarities among extracted features, for example, when the

three phases are balanced, their single stream mean, variation,

etc are almost the same. For another instance, the first order

difference and wavelet transformation of one specific stream

might have very similar pattern as they both reflect the

sudden change of the same time series. From a machine

learning point of view, adding redundant features does not

help detection/classification, but instead would introduce extra

learning noise and cause computational difficulties.
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Fig. 2: Selected Features for HI

More importantly, for a particular event, or type of events, in

practice only subsets of the calculated features are relevant, as

it is mentioned earlier when those feature extraction techniques

are proposed. After all, it is always beneficial to find out

the “fingerprint” of each types of the event, not only for

algorithmic concern, but also for system diagnosis purposes.

In effect, the problem of feature selection, or variable subset

selection, has long been an active research topic for statis-

tics and machine learning. Existing methodologies could be

divided into two categories and their combinations. The first

type of methods define a feature contribution metric as an

objective function, usually in terms of the dependency between

candidate features and the target (data labels), thus reduce

the problem into a combinatorial optimization. The second

category views feature selection as trading off fitness and

complexity of the learning model, based on which a series of

regularized learning machines and optimal criteria have been

proposed.

In this work, we adopt a combined method recently

developed in [11], called Minimum-redundancy-maximum-

relevance (mRMR). The procedure uses mutual information

as the metric of goodness of a candidate feature set, and

resolve the trade-off between relevancy and redundancy. To

be specific, let I(X;Y ) be the mutual information between

random variable X and Y , the first part of feature selection

objective is to maximize the average dependence of selected

feature set S on the target label c, i.e.

max
S∈X

D(S) ,
1

|S|

∑

xi∈S

I(xi; c) (1)

where we have denoted S as the set variable for a collection

of features, and X = {x1, ·, xd} as the set of all candidate

features. Considering that features selected only according

to Max-Relevance criterion could have rich redundancy, a

second objective, a penalty on average first order redundancy

is introduced

min
S∈X

R(S) ,
1

|S|2

∑

xi,xj∈S

I(xi, xj) (2)

Combining the above two consideration yields the mRmR

feature selection objective

max
S∈X

{D(S)−R(S)} (3)



Fig. 3: Illustration of kPCA

which is approximately solved with a greedy heuristic: sup-

pose we already have Sm−1, the feature set with m−1 features,

then the next feature is found by optimizing the following one

variable problem:

max
xj∈X\Sm−1


I(xj ; c)−

1

m− 1

∑

xi∈Sm−1

I(xj ;xi)


 (4)

The mRmR procedure is implemented in C++, with a multi-

layer discretization technique for mutual information estima-

tion [3]. For each events, we perform the selection method

to choose 20 most informative features. The top 4 selected

features for HI are shown in Figure 2.

III. EVENT DETECTION ALGORITHMS

Depending on the availability of expert knowledge, we

consider two goals of event detection with µPMU, and for

each task we propose a corresponding algorithm to achieve

data-driven decision making. The first task is to differentiate

stable state and abnormal state, which is essentially a binary

detection problem. In the second task, a more challenge

problem of distinguishing event types is considered.

A. Abnormal Detection based on kPCA

The binary detection case has been extensively studied in

literature and is referred to as abnormal (or novelty) detection.

Indeed, many classic machine learning tools, such as Principle

Component Analysis (PCA), Partial Least Squares (PLS),

Independent Component Analysis (IDA), and Fisher Discrim-

inant Analysis (FDA) have been widely applied in various

fields. Readers are referred to [12] and the references therein

for a comprehensive survey. In this work, we adopt kernel

PCA [5] for the binary detection problem. Similar to PCA

and IDA, the main idea is still to generate a simplified model

(hence noise is removed) for the distribution support of the

stable state, however with kernel method the computation is

performed in a transformed space for non linear distributions.

An illustration of the kernel mapping (feature transformation)

and principle component models in the transformed space is

shown in Figure 3.

Mathematically, we first map the data non-linearly into a

higher dimensional space F with Φ ∈ H, yielding xj →

Φ(xj). After centering in the transformed space with Φ̃(xj) =

Φ(xj) − 1
N

∑N

j=1 Φ(xj), the kPCA solves the following

eigenvalue problem:

λ
(
Φ̃(xk) · V

)
=

(
Φ̃(xk) · C̃V

)
∀k (5)

where C̃ = 1
N

∑N

j=1 Φ̃(xj)Φ̃(xj)
T is the covariance matrix in

the transformed space. Since all solutions V lie in the span of

Φ̃(x1), · · · , Φ̃(xN ), with the kernel trick we arrives at solving

Nλα = Kα (6)

where Ki,j , κ(xi,xj) , Φ̃(xi) · Φ̃(xj). Based on the

solution and the relation

V l =

N∑

i=1

αl
iΦ̃(xi) (7)

one can compute the reconstruction error of a testing data
sample z as

E
(
Φ̃(z)

)
=

(
Φ̃(z) · Φ̃(z)

)
−

(
V

QΦ̃(z) · V QΦ̃(z)
)

(8)

= κ(z, z)−
2

N

N∑

i=1

κ(z,xi) +
1

n2

N∑

i,j=1

κ(xi,xj)−

Q∑

l=1

pl(z)
2

with the projection of Φ̃(z)

pl(z) =

N∑

i=1

α
l
i

[
κ(z,xi)−

1

N

N∑

r=1

κ(xi,xr)

−

1

N

N∑

r=1

κ(z,xr) +
1

N2

N∑

r,s=1

κ(xr,xs)

] (9)

The reconstruction error is used as abnormality measure, as

it represents the “deviation” of Φ̃(z) to the top Q principle

components of the normal case in F . And a simple user

specified threshold could be used as the decision rule.

B. Semi-supervised Event Detection

In order to distinguish not only stable state from events

but also different events types, more advanced data-driven

machinery for multi-class classification is required. In the

traditional supervised learning framework, data samples are

firstly collected and labeled with expert knowledge for detailed

system state (stable or event type), then a model is trained to

describe the feature/label relationship. However, in the current

µPMU based event detection application, expert knowledge

for distribution system diagnosis is limited and scant. Hence,

the availability of fully labeled data set is quite limited, which

may cause insufficient learning and eventually lead to degraded

detection performance. To alleviate this problem, we propose

to incorporate information from partially labeled data, which

does not require close scrutiny, as well as information from

unlabeled data which is available in large quantity simply by

collecting µPMU measurement of the system. To formalize

the idea, let’s define the following three data formats:

1 Completely labeled data samples, denoted as {xi, yi, zi},

where i is the sample index, xi is the extracted features,

yi is the label indicating “stable” (y = +1) or an “event”

(y = −1) with its type indicator zi ∈ {1, · · · ,K}.

2 Partially labeled data samples, denoted as {xi, yi, ·},

where yi is still the indicator for “event”, but no infor-

mation about the event type is available.

3 Unlabeled data samples, denoted as {xi, ·, ·}, where only

features xi is accessible.



(a) Completely labeled (b) Partly labeled

(c) Unlabeled data (d) Porposed pSVM

Fig. 4: Different data format and intuition for pSVM

An illustration of these different situations is given in

Figure 4. Intuitively, the partially labeled samples should be

helpful: at least it provides discriminating information for

binary decision making. The role of unlabeled data might be

ambiguous at first glance since it does not carry any expert

knowledge. However, it does contain distribution information

in term of “clusters”, as can be seen in Figure 4(c). To

combine all three information sources and make best use of

partial knowledge for event type identification, in this work we

propose a new variation of the consensus learning framework

[19], called the partial SVM (pSVM). Two new techniques are

introduced to incorporate the effect of partially labeled data

and unlabeled data.

For partially labeled samples, we see from Figure 1(a) and

1(b) that they could be viewed as data with “hidden event

type”. To compensate for this implicit information, we propose

to describe the stable state by the intersection of the acceptance

region of multiple base decision rules, while the events class

by the union of their complements, as is illustrated in Figure

1(d). Mathematically, we write a composed classifier g(·) in

terms of multiple base classifiers fk(·) as follows:

g(w,x) > 0 ⇔ min{f1(w,x), · · · , fK(w,x)} > 0

where K is the number of all possible event types. The

multiple base classifiers performs implicit “clustering” for the

event class, so as to capture hidden subgroups. Moreover, the

classifier construction inherently emphasizes the sensitivity

to event class as event is detected with any one of the

base classifier, and it maintains the specificity to stable state

class, as all base classifiers have to “agree” for a positive

prediction. Again to consider non-linearity, a feature mapping

φ : Rd → H is applied. In the new Hilbert space a hyperplane

classifier is written as f(w,x) = 〈w, φ(x)〉H + b , w · φ(x)
for short hand notation. Then the proposed classifier is

g(w,x) = min
k

{w · φk(x)}.

and the hinge loss for a partially labeled data sample {xi, yi, ·}
is just [1− yi mink{w · φk(xi)}]+.

To include information provided by unlabeled data,

the idea is to use a tentative labeling strategy ŷi =
sign (mink{w · φk(xi)}), then the corresponding hinge loss

has the form
[
1− ŷi min

k
{w · φk(xi)}

]

+

=

[
1−

∣∣∣∣min
k

{w · φk(xi)}

∣∣∣∣
]

+

Putting things together we propose the following regularized

hinge loss minimization for event detection that incorporates

all explicit and partial expert knowledge:

min
w

1

2
||w||2H + c1

∑

i∈L+

[
1−min

k
{w · φk(xi)}

]

+

+ c21
∑

i∈L−

1

[1 +w · φzi(xi)]+

+ c22
∑

i∈L−

2

[
1 + min

k
{w · φk(xi)}

]

+

+ c3
∑

i∈U

[
1−

∣∣∣∣min
k

{w · φk(xi)}

∣∣∣∣
]

+

(OPT1)

where we have denoted L+ as the index set of all data samples

that has yi = +1, including both completely and cursorily

labeled samples, L−
1 as the index set of completely labeled

samples with yi = −1 and event type zi (hence the hinge

loss only involves the corresponding individual classifier fzi ).

The index set L−
2 contains partially labeled samples in the

event class, and U is the index of all unlabeled data samples.

The loss penalty hyper-parameters c1-c3 weight each loss term

differently, and should be chosen by taking into account the

imbalanced cost for each scenarios.

The first three terms in the learning objective are convex

in decision variables, the last two terms, however are not.

To solve this challenging optimization problem, we transform

OPT1 into a joint optimization problem:

min
η,ζ

min
w

1

2
||w||2H + c1

∑

i∈L+

[
1−min

k
{w · φk(xi)}

]

+

+ c21
∑

i∈L−

[1 +w · φzi(xi)]+

+ c22
∑

i∈L−

H

K∑

k=1

ηik [1 +w · φk(xi)]+

+ c3
∑

i∈U

K∑

k=1

ζik [1 +w · φk(xi)]+

+ c3
∑

i∈U

ζi(K+1) max
j

{0, 1−w · φj(xi)}

subject to ηi ∈ S
K , ∀i ∈ L−

H ; ζi ∈ S
K+1, ∀i ∈ U

The interchange of two minimization is justified because the

optimization is bi-convex (quadratic in w and linear in ηi, ζi)

and is strictly feasible in both sets of decision variables.

Interestingly, we see that for partially labeled data, we need K
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Fig. 5: Event Detection based on kPCA: voltage sag

indicators while for unlabeled samples, K + 1 indicators are

needed to distinguish 1 stable state plus K events. With the

above bi-convex learning objective, many existing optimiza-

tion heuristics can be readily used, such as group Alternating

Optimization (AO) or Concave-Convex Procedure (CCCP),

also more advanced tools can be adopted to approximate

global optimum or reduce the computational time [4] [18].

IV. EVALUATION

The authors are collaborating in the ”Micro-Synchrophasor

for Power Distribution Networks” project [1] to install a num-

ber of µPMU devices at a number of distribution feeders. In

this paper, actual data from some of the feeder installations are

used to validate the proposed algorithm. The event detection

by proposed two algorithms is performed for three phase

voltage and current measurements at a substation on one of

our installations.

A. Performance of kPCA

Due to the page limits, only one representative result for the

binary detection with kPCA are presented here in Figure 5. In

the experiment, we focus on the detection of potential voltage

faults/fluctuation. Hence feature selection is performed for

voltage related streams, and ten minitus data containing “stable

state” samples are collected for building principle components

in the transformed space. As for the calculation of reconstruc-

tion error, 20 principle components with largest eigenvalues

are used. To test the distribution model we have built for stable

state, we choose a new µPMU measurement sequence which

contains a voltage sag from index 55 (t = 5.5s) to index 68

(t = 6.8s), shown as shaded area in the top plot of Figure 5.

The kPCA reconstruction errors for the testing sequence is

shown on the bottom plot of Figure 5. We observe that the

reconstruction errors for the abnormal region is significantly

higher than the rest of the sequence. Hence with the algorithm

one could easily identify the abnormality by specifying a

simple threshold, which should be chosen with cross validation

technique to balance the trade-off between sensitivity (which

increases false alarm rate) and specificity (which increases

miss detection rate). Moreover, it is also seen that the method

could detect certain small scale voltage disturbances, such as

TABLE II: Comparison of Detection Performance
Method pSVM Ada Boost. Decision Tree QDA

Accuracy 93.721 83.10 75.54 70.22

the one around index 93 (t = 9.3s), as spikes can be found in

the corresponding reconstruction errors.

B. Performance of pSVM

Next we evaluate the event detection performance of the

proposed pSVM. In this experiment, we are interested in

identify 4 different events, namely Voltage Disturbance (VD)

and Voltage Sag (VS), Motor Start (MS), High Impedance

fault (HI). The training set contains about 10 minutes µPMU

records with detailed labels, and the testing data set also

contains similar events, but is collect at a different time. For

the training of pSVM, another 5 minutes partially labeled data

and 10 minutes unlabeled data is included.

We compare the performance of pSVM with other popular

multi-class classification methods, including Ada Boost, De-

cision Tree, and Quadratic Discriminate Analysis. Confusion

matrices (contingency table) for all methods is shown in Figure

6. Each row of the table/figure represents the samples in

predicted class while each column represents the samples

in actual (true) class. The accuracy of each row/column is

summarized in the left/bottom cell of the table, and the relative

portion of the instances in percentage is shown underneath the

main digit in each cell. We see that pSVM performs extremely

well in distinguishing stable state and events, with 0% false

alarm rate and only 1.4% miss alarm rate. Our method also

works well in differentiating event types, especially VS, MS,

and HI with an accuracy at least 90%. The only issue is that

it tends to confuse VD with VS, which is somewhat expected

as certain VD events are indeed quite similar to VS.

Comparing the results of pSVM to other methods, it is

seen that in terms of overall accuracy, the proposed pSVM

outperforms all the other methods, by at least 10.6% with

respect to the runner-up Ada Boost, while a generic mixed

Gaussian model used by QDA only yields 70.2% classification

accuracy. When it comes to the performance of identifying

event types, we see from the confusion matrices that pSVM

is still the best algorithm: significant improvement is achieved

for detecting VD and VS. and for MS and HI pSVM also has

similar accuracy compared to the best of the other methods.

The results justified the effectiveness of the proposed pSVM,

as well as the idea of incorporating partial information for

event detection.

V. CONCLUSION AND FUTURE WORK

In summary, with the help of high resolution µPMU mea-

surement, we have designed a pure data-driven framework for

distribution network event detection in a refined granularity.

The challenging problem of information representation of

the raw data has been resolved with a pooling & picking

procedure. Depending on the availability of expert knowledge,

kPCA algorithm is adopted for binary decision making, and a

novel learning method pSVM is developed to also distinguish

event types by including information from both partially
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Fig. 6: Confusion Matrix for comparison of methods

labeled and unlabeled data. The evaluation results justified the

proposed methods.

For future work, we will implement kPCA and pSVM meth-

ods for a large volume of µPMUs from our site installations,

as well as developing online learning pSVM. More recorded

events will be used to train our algorithm and perform feature

selection. More importantly, we will investigate the spatial-

temporal characters of large scale events in power systems,

and study data analytic tools for the corresponding detection

problem.
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