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Abstract

Objectives

To investigate if there is subspecies specific migration to the placenta by Fusobacterium

nucleatum (Fn) and to determine whether experimentally induced periodontitis results in ad-

verse pregnancy outcomes (APO) in mice.

Methods

Periodontitis was induced in pregnant mice using an inoculum of Fn and Porphyromonas

gingivalis. In parallel, four sub-species of Fn were individually injected into the circulatory

system. At day 18 of gestation, the placenta, liver, spleen and blood were harvested and lit-

ter size, number of viable fetuses and resorptions, maternal, fetal and placenta weights

were recorded. For the direct inoculation group, some mice were allowed to deliver for as-

sessment of length of gestation, litter size, maternal, placental and pup weight. The pres-

ence of Fn was assessed by PCR and inflammatory mediators were measured by ELISA or

multiplex analysis.

Results

Mice with alveolar bone loss, a marker of periodontitis, demonstrated significantly higher

fetal weights (p = 0.015) and fetal/placental weight ratios (p = 0.030). PCR analysis of ma-

ternal organs did not identify Fn in any extracted tissues. In mice that received direct injec-

tion of Fn subspecies, varying degrees of APO were observed including preterm birth,

intrauterine growth restriction, and fetal loss. Haematogenous spread of only Fn subsp.

nucleatum to the placenta was confirmed. Litter size was significantly smaller (p = 0.023)
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and the number of resorptions was higher in inoculated versus control groups. Mice injected

with subsp. nucleatum had significantly increased circulating CRP levels (p = 0.020) com-

pared to controls while the mice with induced periodontitis had increased levels of IL-6 (p =

0.047) and IL-8 (p = 0.105).

Conclusions

Periodontitis in mice elevated fetal weight and the fetal weight/placental weight ratio. This

study found that subsp. nucleatummigrated haematogenously to the placenta, leading to

APO in mice. The study supports the potential role of Fn in the association between peri-

odontitis and APO.

Introduction

Periodontal disease is the result of complex interactions between the host and certain microbial

species residing in the sub-gingival environment. It is an inflammatory disease where bacteria

and their products induce an inflammatory response within the periodontal tissues [1]. Al-

though the host response is primarily protective, in conjunction with bacterial virulence factors

it can result in the progressive destruction of the periodontal ligament, gingival recession, loss

of alveolar bone, tooth mobility and ultimately tooth loss. It is a serious disease which poten-

tially allows for oral bacteria to disseminate around the body and cause major complications to

human health including adverse pregnancy outcomes (APO) [2,3].

A recent review proposed that infection or challenge to the feto-placental unit by oral patho-

gens is the most important biological pathway leading to APO as it is thought that intrauterine

infection may account for 25–40% of pre-term births (PTB) [4]. The hormonal changes associ-

ated with pregnancy predispose women to periodontal disease and gingival bleeding allows for

the continual release of bacteria or their by-products into the circulatory system. Increased lev-

els of oestrogen and progesterone also increase the vascular permeability of the periodontium

facilitating transmission to the feto-placental unit [4].

Many epidemiological and intervention studies have been undertaken to assess the relation-

ship between periodontal disease and APO. However, methodological inconsistencies, popula-

tion differences, relative obstetric risk and sample size have led to equivocal results [4–14]. It

has been reported that the prevalence of periodontitis in the Australian female population is

19.0% [15] and as part of the US National Health and Nutrition Examination Survey cycle,

64.7 million adults (47% of the sample) had periodontitis distributed as 8.7% mild, 30% moder-

ate and 8.5% severe [16]. APO in humans are also a significant health concern, The World

Health Organisation in 2005 estimated that 12.9 million PTBs occurred world-wide and 42%

of these resulted in perinatal mortality [17]. Pregnancy complications can lead to respiratory,

cardiovascular and neurological disorders including auditory and ophthalmic impairments as

well as cognitive and learning disabilities and cerebral palsy that could affect the infant

throughout life [18]. The impact of periodontitis on human health is therefore potentially far

greater than its primary disease outcome.

APO caused by the haematogenous transfer of oral bacteria to the feto-placental unit chal-

lenges the predominant paradigm that infections originate from the lower genital tract and as-

cend to the sterile fetal membranes and placenta [19,20]. The hypothetical mechanistic model

[21] proposes that APO could result from either the direct transit of oral bacteria or their path-

ogenic products to the feto-placental unit leading to infection and /or a localised inflammatory
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response. Alternatively APO can result from indirect pathways whereby inflammatory cyto-

kines or acute phase reactants produced in the gingival tissue or liver, respectively, are released

into the circulation and reach the feto-placental unit causing an imbalance in the strictly regu-

lated innate pro-inflammatory immune status within the uterus [4,21,22]. More recently it has

been proposed that the placenta harbors its own microbiome and the colonisation of the pla-

centa by oral commensals may be facilitated by the immune suppression in the placenta during

pregnancy [20,23]. APO may occur as a result of a heightened inflammatory response caused

by the dysbiosis of the placental microbiome that may tip the balance in favour of fetal rejec-

tion [20]. Inflammation can also lead to other pregnancy complications, elevated levels of the

pro-inflammatory cytokines Interleukin-6 (IL-6) and Tumour Necrosis Factor—alpha (TNF-

α) for example interfere with insulin signalling and lead to glucose intolerance resulting in ges-

tational diabetes mellitus [4].

Investigation of the potential link between periodontitis and APO in many animal studies

has implicated certain microbial species which are among the 700 taxa which reside within the

oral milieu. During development of the periodontal biofilm species associated by the so-called

orange cluster of increase in number and are thought to induce environment al changes condu-

cive to the colonisation of the more pathogenic species associated with the red cluster [24]. The

ability to alter environmental conditions and invade human cells may be an important factor

which allows the orange cluster organisms to disseminate and grow in other biological niches

[25,26]. Fusobacterium nucleatum, a Gram-negative anaerobe, is ubiquitous in the oral cavity

and increases in number in periodontal disease [27]. F. nucleatum also forms aggregates with

other bacteria and acts as a bridge between colonisation of early and late bacteria during the de-

velopment of the sub-gingival biofilm [28].

F. nucleatum, is the most frequently isolated bacterial species in APO including PTB, still-

birth, and early-onset neonatal sepsis [2]. It is infrequently isolated from the vagina so its detec-

tion in amniotic fluid, fetal membranes, cord blood, neonatal gastric aspirates, fetal lung and

stomach suggests that the organism is capable of causing infection in sites distant from the oral

cavity and has led to its identification as an emerging pathogen of medical significance [29–

31]. More recent studies have also suggested that haematogenous migration of F. nucleatum

may be linked to heart disease, rheumatoid arthritis, colorectal cancer and inflammatory bowel

disease [32–35].

The reason why F. nucleatum is potentially capable of translocation to the feto-placental

unit is in part due to its metabolic diversity and ability to invade endothelial and epithelial cells

[36–39]. F. nucleatum also stimulates a toll-like receptor 4-mediated inflammatory response

that in itself is able to affect birth outcomes [25,40]. Genetically, the species is extremely hetero-

geneous. Five subspecies have been identified; nucleatum, (FNN) polymorphum, (FNP) vincen-

tii, (FNV) and fusiforme (FNF) and animalis (FNA) [41,42]. It is suggested that different

subspecies may vary in their pathogenesis and be related to different levels of disease activity

[43]. Genomic comparisons have shown that 919 genes account for the differences between

FNP, FNN, and FNV [44,45]. FNP represents a separate phylogenetic branch which also in-

cludes significant human pathogens [46].

The accumulating evidence suggests a plausible biological association between periodontal

disease and APO’s. However, evidence showing the causal link between APO and periodontal

disease in mice has, to date, relied on a short-term bacteraemia caused by the injection of oral

bacteria intra-venously (I.V.) into mice or by mimicking a chronic infection by injecting oral

bacteria into a cylinder placed subcutaneously [19,27,47]. Arce et al., (2009) used an oral infec-

tion model of periodontitis in pregnant mice to examine the effect on fetal growth, fecundity

and expression of TLR4 following an axenic or mixed inoculum containing Campylobacter
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rectus [25]. Evidence of alveolar bone loss typical of a chronic inflammatory response associat-

ed with periodontal disease was not performed however.

In the present study, we have experimentally induced periodontitis in pregnant mice to de-

termine if F. nucleatum and/or Porphyromonas gingivalis are able to migrate from the period-

ontium to the placenta and/or induce APO. In parallel we also followed published protocols

whereby four different F. nucleatum subsp. were injected I.V. into pregnant mice.

The first aim was to determine if the haematogenous migration of F. nucleatum to the mu-

rine placenta and its effect on APO was strain specific. The second aim of the study was to use

a murine oral gavage model of periodontitis to determine if APO could be significantly in-

creased as a result of inducing periodontitis. Thirdly, we aimed to compare the key immuno-

logical changes in pregnant mice following induced periodontitis or I.V. injection of different

F. nucleatum subsp. and relate these to observed APO. The results overall support the conten-

tion that periodontal disease increases maternal inflammatory activity potentially causing

APO.

Materials and Methods

This investigation was approved by the University of Adelaide Animal Ethics Committee (eth-

ics approval number M-2011-153 and M-2011-130).

F. nucleatum type strains

Subspecies, nucleatum (ATCC 25586 isolated from a cervico-facial lesion), vincentii (ATCC

49256 isolated from human periodontal pocket), polymorphum (ATCC 10953 isolated from

human inflamed gingiva) and fusiforme (ATCC 11326 isolated from sinusitis in upper jaw)

were purchased from the ATCC (Cryosite, NSW, Australia) and were maintained on anaerobic

blood agar (Oxoid, Vic. Australia) under an atmosphere of carbon dioxide, hydrogen and ni-

trogen mixed as a ratio of 5:5:90.

For the tail vein inoculation of mice, broth cultures were grown anaerobically overnight at

37°C in Brain-Heart Infusion broth (Oxoid). Contamination was periodically monitored by

Gram-staining and plating onto anaerobic blood agar containing vancomycin (Oxoid).

I.V. injection experiments

8–10 week old female BALB/c mice were mated at a ratio of 1female:1male. Mating was indi-

cated by the presence of a copulatory plug, and designated as day one of gestation. Fourteen

mice were inoculated via tail vein injection with an inoculum (100μL) of only one of each F.

nucleatum subspecies (suspended in 0.9% w/v NaCl) at day 16 of their 20–21 day gestation.

This time was chosen to mimic late gestation in women, (28–32 weeks). The inoculum was ad-

justed using a NanoDrop 2000c spectrophotometer (Thermo Scientific, Waltham, MA. USA)

to give an optical density of 1.0. 100μL was injected into the tail vein which was approximately

0.5% of the total body weight of the mouse. A serial dilution of the inoculum was performed to

determine the number of viable bacteria which was consistently in the range of 10 7
–10 8 cfu/

ml. Control mice were injected with 100μL saline and two mice were injected with 100μL heat

killed FNN suspended in saline. Heat killed cultures were prepared by placing the inoculum at

50°C for 30min. Aliquots were then plated onto anaerobic blood agar and incubated anaerobi-

cally to check for viability.

At day 18 of gestation, 3 pregnant mice from each group were sedated using a chamber con-

taining isoflurane so that blood could be collected by cardiac puncture before being humanely

euthanased and dissected to harvest samples of liver, spleen, all fetuses and placentas. Blood

was placed immediately into a heparin tube and liver, spleen and placenta were immediately

F. nucleatum and Pregnancy Outcomes in Mice
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placed into liquid nitrogen and stored until analysis of genomic DNA by Polymerase Chain Re-

action (PCR). The remaining 11 mice from each group were left to deliver to assess length of

gestation, litter size, maternal and pup weight. Mice were checked daily after injection for signs

of ill health or delivery and any pups born were weighed within 4–6 hours following delivery.

Intrauterine growth restriction (IUGR) and low birth weight (LBW) were defined as fetus

or pup weight respectively being 2 standard deviations smaller than average weight of

the controls.

Murine Periodontitis model

The murine model of periodontitis used in the present study was first described by Baker et al.

(2000) and subsequently modified by Bendyk et al. [48,49]. Following treatment with Kanamy-

cin (1mg/mL) twenty five BALB/c mice (5–7 weeks old) were inoculated over four weeks with

either an inoculum containing each of the four subsp. (FNN, FNP, FNF, FNV) and Porphyro-

monas gingivalis (W50) suspended in 2% (v/v) carboxymethyl cellulose (CMC) or CMC only

as previously described [49]. Mice were caged with soft, sterile bedding free of antibiotics and

fed powdered, sterile, non-granular food to prevent impaction of food around the gingiva. Fe-

male mice were then placed with males at a ratio of 1:1 for 3 days or until the identification of a

vaginal plug which was recorded as day 1 of gestation. During gestation, oral inoculations of

bacteria or CMC only were maintained twice weekly. At day 18 of gestation, all pregnant mice

were sedated so that blood could be collected before being humanely euthanased and dissected

to harvest samples of placenta, liver, spleen as previously described. In addition, weights of the

individual fetuses and placentas (with the endometrium removed) were also recorded.

The mandibles and maxillae of all mice were harvested by sharp dissection at the same time

as tissue dissection. The jaws were fixed in 10% formalin for a minimum of 48 hours before

being defleshed both mechanically and via the use of 1% sodium hydroxide solution (NaOH).

The jaw bones were washed in saline and dried at 40°C.

Measurement of alveolar bone loss

Alveolar bone loss was assessed with digital imaging on a Leica MZ16FA stereo microscope

with a magnification of 32X (Leica Microsystems, Wetzlar, Germany). The dried maxillae and

mandibles were stained with 1% aqueous methylene blue to highlight the cemento-enamel

junction (CEJ) and crest of the alveolar bone. They were mounted on a rotatable and lockable

stage that allowed all samples to be positioned identically under the microscope for comparison

between groups and between specimens. Bone loss was identified visually by an increased dis-

tance between the CEJ and alveolar bone crest of each sample as previously described [49]. The

exact quantitative assessment of bone loss was unable to be determined as the area originally

occupied by the biologic width (the connective tissue and epithelium that is located within the

CEJ and alveolar crest) is unknown, and therefore mice with alveolar bone loss greater than

0.12mm2 per tooth were only included in the experimental group.

Polymerase Chain Reaction

DNA isolation from tissues and blood were completed using the QIAamp DNAMini Kit (Qia-

gen, Limberg, Netherlands) as per manufacturer’s instructions with blood (200 μL), liver

(25mg), spleen (10mg) and placenta (50mg) to yield optimal DNA from isolation. A sample of

the placenta from the saline control group was “spiked” with FNN as a positive control. The

concentration and quality of the nucleic acid was obtained for each purified sample using the

NanoDrop 2000c spectrophotometer based on the 260/280nm ratio [50].

F. nucleatum and Pregnancy Outcomes in Mice
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PCR was initially performed on liver, spleen and blood samples. DNA extracted from tissue

samples was diluted to 10ng/μL. As a positive control, DNA extracted from each subspecies

were diluted to 1ng/μL. PCR was performed in a total volume of 25μl in strip PCR tubes (Axy-

gen, New York, NY, USA). ThermoPol Buffer, dNTPs and Taq polymerase were purchased

from New England BioLabs (MA, USA) and primers were purchased from Geneworks (Ade-

laide SA, Australia). PCR reaction mixtures contained, 1X ThermoPol buffer, 200μM dNTP’s,

400nM forward primer, 400nM reverse primer, 0.625 units Taq polymerase and 10ng genomic

DNA. To check for DNA contamination, every PCR run included a control which did not con-

tain genomic DNA (NTC-no template control). Mouse genomic DNA isolated from the pla-

centa from a control mouse was also included as a negative control.

Visualisation of PCR products was performed on a 2% agarose gel in 0.5X TBE buffer.

Wells were loaded with 5μL of a mixture containing 1.0μl 6X loading dye (New England Bio-

Labs) 1.0μL SYBR green (diluted 1:200, Life Technologies, NY. USA) and 5μL PCR reaction

mixture. Molecular size was estimated by comparison to the 2-Log DNA ladder standard (New

England BioLabs). PCR products were visualised by scanning with a Typhoon TRIO+fluores-

cence scanner (GE Healthcare, CA, USA).

The 16S rRNA gene was used initially to screen for the presence of F. nucleatum DNA. The

amplification reactions were performed in an automated thermal cycler (T100 Thermocycler,

BioRad, CA, USA), programmed for denaturation at 95°C, for 3 minutes, followed by 34 cycles

of denaturation at 95°C for 10 seconds, annealing at 48–60°C, for 30 seconds and extension at

68°C, for 30 seconds and a final extension at 68°C for 3 minutes. If the samples returned a posi-

tive result, primers specific for each sub-species [48] were substituted to confirm the presence

of the subsp. used in the inoculum (Table 1). For the detection of P. gingivalis, DNA specific

primers were used (Table 1) and PCR conditions remained the same as those used for F.

nucleatum.

Measurement of Inflammatory Mediators in Serum

Serum collected at day 18 of pregnancy was analysed for the presence of IFNγ, IL-1β, IL-6, IL-

10, TNF-α together with mouse homologues of IL-8 (KC, LIX, MIP-2) using a multiplex assay

according to the manufacturer’s protocol (Milliplex MAP kit, Merck Millipore, Billerica, MA,

USA). All standards and samples were assayed in duplicate using a Luminex 200™ System

Table 1. Primer sequences used to identify the presence of all or individual F. nucleatum subspecies and P. gingivalis.

F. nucleatum subspecies Primer sequence (5’–3’) Amplicon length

FNN FN-SL-F tggttggttcggtaagttc 383bp

FN-SL-R-nuc cgtatttcccttagcctcatttg

FNF Fs17-F14 gatgaggatgaaaagaaacaaagta 393bp

Fs17-R14 ccattgagaagggctattgac

FNP FN-SL-F tggttggttcggtaagttc 388bp

FN-SL-R-2poly tcatttgtatttcctttagcttg

FNV Fv35-R1 ataatgtgggtgaaataa 208bp

Fv35-F1 cccaaggaaaatactaa

All subspecies 16SrRNA-27F agagtttgatcctggctcag *400bp

FNUC-16SrRNA-R gtcatcgtgcacacagaattgctg

P. gingivalis (W50) PG16S-F aggcagcttgccatactgcg 404bp

FNN, subsp. nucleatum; FNF, subsp. fusiforme; FNP, subsp. polymorphum; FNV, subsp. vincentii.

doi:10.1371/journal.pone.0120050.t001

F. nucleatum and Pregnancy Outcomes in Mice
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(Luminex Corporation, Austin, TX, USA). Concentrations were determined from standard

curves and analysed using xPONENT version 3.1 software (Luminex Corporation).

Mouse C-Reactive Protein was measured in duplicate using a commercially available En-

zyme Linked Immunosorbent Assay (R&D Systems, Minneapolis, MN. USA) and optical den-

sity (450nm) read on a Powerwave microplate reader (BioTek Instruments, Winooski, VT,

USA). Standard curves were generated using KC4 software (BioTek Instruments) and used to

determine the concentration of CRP in each sample.

Statistical analysis

The data were analysed using IBM SPSS Version 17. Fetal weight to placenta weight ratios were

calculated. Linear mixed model ANOVA was used to assess the effect of inoculation on placen-

ta, fetus and pup data and these were adjusted for the number of viable fetuses and litter size. A

multivariate general linear model was used to analyse maternal data including maternal weight,

resorptions, stillbirths, gestational age, litter size, and fetal viability. Multiple comparisons were

assessed using SIDAK Post Hoc test.

Results

I.V. injection of F. nucleatum subspecies

When mice were inoculated with a single subspecies, only FNN was detected in the placenta of

80% of mice injected with this subspecies (Fig. 1; Table 2). This was also the only subspecies to

induce fetal miscarriage (resorption) 48 hours after injection (Table 2). FNF, FNP and FNV did

not show evidence of placental colonisation, (Fig. 1) although mice inoculated with FNP and

FNV exhibited adverse pregnancy outcomes such as LBW, stillbirth and PTB, (Table 2). None

of the F. nucleatum subsp. were detected in the blood or spleen of any mouse although a band

in one of the FNN liver samples was present (Fig. 1) suggesting a systemic infection. When

Fig 1. Detection of F. nucleatum in mouse placenta, blood, spleen and liver by PCR.Detection of F.
nucleatum after experimentally induced periodontal disease (PD) with all subspecies or I.V. injection of
subsp. nucleatum (FNN). polymorphum (FNP) fusiforme (FNF) and vincentii (FNV). Molecular weight (MW)
markers shown represent 500bp (darker band) and 400bp. NTC is no template control.

doi:10.1371/journal.pone.0120050.g001

F. nucleatum and Pregnancy Outcomes in Mice
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mice were inoculated with heat killed FNN, the placenta, liver, spleen and blood samples were

also negative and mice had no observed APOs.

When adjusted for litter size, in all mice challenged with F. nucleatum, fetal weight at day 18

(Fig. 2A) and pup weight (Fig. 2B), were significantly different when compared with the control

group. Maternal inoculation with FNV, FNN and FNP resulted in smaller fetuses and pups

compared to control mice. Inoculation with FNF resulted in newborn pups that were

Table 2. Summary of adverse pregnancy outcomes in mice following tail vein injection with F. nucleatum subspecies.

Group Placental colonisation Fetal resorption Low birth weight Preterm birth Stillbirth

Control N/A No No No No

FNN Yes 80% Yes 40% Yes No No

FNP No No Yes No Yes 11%

FNF No No No No No

FNV No No Yes Yes 87.5% Yes 0.05%

FNN, subsp. nucleatum; FNF, subsp. fusiforme; FNP, subsp. polymorphum; FNV, subsp. vincentii.

doi:10.1371/journal.pone.0120050.t002

Fig 2. Birth outcomes and CRP levels in pregnant mice following I.V injection of F. nucleatum. Estimated marginal mean of (A) fetal weight at day 18;
(B) delivered pup weight; (C) length of gestation of all mice; (D) C-Reactive protein concentration in serum of pregnant mice after inoculation with F.
nucleatum subsp. nucleatum (FNN), polymorphum (FNP), fusiforme (FNF), vincentii (FNV). Non-pregnant (NP), Saline control (C). Bars represent the
mean ± SEM. All statistically significant differences were in comparison to saline control *P� 0.001; **P� 0.02; ***P = 0.005; ****P = 0.020.

doi:10.1371/journal.pone.0120050.g002

F. nucleatum and Pregnancy Outcomes in Mice

PLOS ONE | DOI:10.1371/journal.pone.0120050 March 25, 2015 8 / 16



significantly heavier compared to controls (p< 0.001). Interestingly, FNF inoculation signifi-

cantly reduced placental weight, (0.089 ± 0.004g versus 0.114 ± 0.004g, p< 0.001) with no dif-

ference in litter size.

All mice receiving tail vein injection of FNN, FNP and FNF did not show a significant de-

crease in gestation time compared with the control group (Fig. 2C). In the group inoculated

with FNV, significant differences (p = 0.005) were observed as over 87% of pups were delivered

prematurely (Table 2).

Stillborn pups accounted for 11% of all pups born to mice challenged with FNP, and 0.05%

of pups born to mice challenged with FNV (Table 2). Neither were significantly different from

controls. Mean maternal weights at day 18, were not different between groups (p = 0.119).

Despite low pregnancy rates (50–66%) affecting the sample size, at day 18 of gestation, mice

injected with FNN but not other species, showed a significant (p = 0.020) increase in CRP

serum concentration compared to the pregnant control mice (Fig. 2D). There was also no sig-

nificant difference in CRP levels between pregnant and non-pregnant females.

Induced periodontitis model

Fifteen of the twenty-five experimental mice and ten of the twenty control mice became preg-

nant. Only pregnant mice were used for subsequent analyses. F. nucleatum or P. gingivalis was

not detected by PCR in any control or experimental liver, spleen or placental samples.

Alveolar bone loss as detected by increased distance from the CEJ to the alveolar crest in ei-

ther the maxilla or the mandible in each mouse was evident in 12 of the 15 pregnant experi-

mental mice and in none of the 10 pregnant control (mice that were inoculated with CMC

only) mice (Fig. 3).

After adjusting for litter size and experimental or control group replicates, the mean fetal

weight at day 18 of gestation was significantly (p = 0.015) higher in mice with alveolar bone

loss (0.808 ± 0.019g) compared to controls (0.744 ± 0.017 g, Fig. 4A). Mean placental weights

were similar between mice with and without alveolar bone loss. However, fetal weight:placental

weight ratio was 14.6% higher (p = 0.030) in mice with alveolar bone loss (5.839 ± 0.253) com-

pared with controls (5.094 ± 0.227, Fig. 4B). Mean litter size, numbers of viable fetuses and re-

sorptions and mean maternal weight at day 18 of gestation were similar between mice

and controls.

Fig 3. Experimentally induced alveolar bone loss. Buccal view of mandibular left molars in (A) control mouse (CMC inoculations); (B) experimental mouse
(P. gingivalis and F. nucleatum inoculations). Observable alveolar bone loss in (B) compared with (A) as indicated by the distance from the cemento enamel
junction (CEJ) and alveolar crest.

doi:10.1371/journal.pone.0120050.g003
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Circulating levels of IL-6 were increased by 28% (p = 0.047) in pregnant control mice

(Fig. 4C). In contrast, serum levels of KC (mouse homolog of IL-8) and CRP were not signifi-

cantly different between mice with experimentally induced periodontitis and controls.

Discussion

The hypothesis that periodontal disease may stimulate APO has been investigated for over 20

years [51]. Although there is not yet enough evidence to say unequivocally that periodontitis

can cause adverse pregnancy outcomes, data supporting this relationship continue to increase

[2,19,30,52]. Although the causality of APO’s are multifactorial, the predominant view has

been that the placental and fetal membranes are essentially sterile and that infection ascends

from the lower genital tract. However, more recently it has been proposed that the placenta has

its own microbiome and that colonisation and infection can occur by the haematogenous mi-

gration of bacteria from predominantly oral tissues [4,20].

The primary role of F. nucleatum in the aetiology of periodontal disease is to provide a sub-

gingival habitat which promotes the proliferation and colonisation of more aggressively viru-

lent organisms such as P. gingivalis. The ability to form a biofilm when under environmental

stress, survive in the oxygen rich circulation and proliferate in a new environment has been a

hallmark of the species and may be central to its ability to transmigrate haematogenously to

other organs in the body [26,53,54]. The level of genetic heterogeneity among the species is

comparatively large and may have resulted from a high level of horizontal gene transfer occur-

ring within the densely populated confines of the sub-gingival milieu [44,46,53]. Its ability to

aggregate with other bacteria and invade the endothelium also implies that F. nucleatummay

also be responsible for the haematogenous spread of other Gram negative anaerobes such as P.

Fig 4. Birth outcomes and IL-6, KC and CRP levels in pregnant mice following experimentally induced
periodontitis. (A) Mean fetal weight and (B) Mean fetal weight: placental weight ratio at day 18 of gestation in
mice with alveolar bone loss compared to no alveolar bone loss (*p = 0.015, ** p = 0.030) and (C) circulating
concentration of IL-6, KC in serum of pregnant mice with induced periodontitis compared to controls
(***p = 0.047). Bars represent the mean ± SEM.

doi:10.1371/journal.pone.0120050.g004
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gingivalis and Capnocytophaga which have also been found in neonatal gastric aspirates but

not in the maternal vagina [29,55].

The use of an experimental animal model to assess the relationship between periodontal dis-

ease and APO’s overcomes some of the limitations associated with studies using human sub-

jects as factors such as the duration of the disease and susceptibility are easier to control [56].

The oral gavage model used in the present study produced significant alveolar bone loss which

has been previously shown in BALB/c mice given a dual inoculum of P. gingivalis and F. nucle-

atum [57]. We also used published protocols [19,27] to introduce a transient bacteraemia of F.

nucleatum directly into the circulatory system of mice to determine whether the ability for hae-

matogenous transit, infection of the placenta and APO was subspecies specific. It is thought

that bacteraemia occurs with periodontal disease (which is predominantly a chronic infection)

as a result of gingival bleeding [4]. The absence of a significant difference between maternal

weights in each experimental group, or any systemic signs indicates that our findings are not

likely to be a result of systemic infection by F. nucleatum. FNN was detected in the placenta by

PCR 48 hours after tail vein injection and therefore was able to colonise it presumably facilitat-

ed by its immuno-tolerant state. FNN was also the only subspecies that caused significant fetal

miscarriage (resorption) in late gestation (day 16 equivalent to third trimester). Han et al.

(2004) found that F. nucleatum established stable colonisation in the placentas of mice and

proliferated rapidly over time [27]. By 48–72 hours post-injection, F. nucleatum had spread to

the amniotic fluid and fetuses which coincided with observed fetal death. In the present study,

48 hours after injection with FNN, mice were sacrificed and fetal death was noted in 40% of fe-

tuses. Han et al. (2004) also reported that placental infection was dose dependent and was pro-

portional to fetal death [27]. It has previously been reported that this ability may be strain

specific as Han et al., (2000) reported that strain 12230 (a clinical transtracheal isolate) FNN

and FNP were highly invasive and adhered strongly to KB cells while other strains were not

[36].

Although no evidence was found that FNP, FNV and FNF could migrate and infect the pla-

centa, injection of FNP, FNV and FNN resulted in significant APO which may have been due

to a systemic inflammatory reaction in response to the I.V. inoculation of bacteria. To test

whether the observed APO were due to the release of major components of the cell wall such as

LPS, we used heat killed FNN as an additional control group and found that the viable bacteria

were required as no APO were observed in these mice.

Inflammatory mediators/cytokines play a pivotal role in APO. Pregnancy is an immuno-tol-

erant state which is induced to accept foreign paternal antigens so that the conceptus is not re-

jected. Given the close relationship between inflammation and infection, it seems likely that

alterations to the levels of inflammatory mediators and cytokines resulting from a normal host

response to an infectious agent may cause an imbalance in cytokine levels. Therefore, if the in-

flammatory response reaches a certain threshold caused by the presence and abundance of bac-

teria, negative pregnancy outcomes may occur. Indeed a significant percentage of PTB,

particularly very early PTB, in humans is associated with infection [4].

Following I.V. injection, CRP levels were significantly higher in mice injected with FNN

compared to controls and non-pregnant females which may have been due to an increased in-

flammatory response to infection by FNN (Fig. 2D). This acute phase protein is a general mark-

er for systemic inflammation and increases in response to the release of pro-inflammatory

cytokines. It has previously been associated with PTB, IUGR and preeclampsia [4,58]. However

in the present study, PTB was not one of the APO associated with I.V. injection of FNN. It

should also be noted that I.V. injection of FNP, FNF and FNV did not produce significant

changes to serum CRP levels. However 3 mice were used from each group which may have

been insufficient to determine significance.
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IL-1β and IL-6 have been identified as the key inflammatory mediators in periodontal dis-

ease which lead to connective tissue degradation and alveolar bone resorption [59,60]. Circu-

lating TNF-α and IL-6 are also thought to become elevated as a result of intrauterine infections

in humans, [61] however our results showed that only IL-6 was significantly increased in mice

with induced periodontitis. This effect has been demonstrated previously using a Baboon

model of ligature induced periodontitis, whereby IL-6 levels were found to be directly propor-

tional to severity of periodontitis [62]. Increased levels of IL-6 are thought to be more destruc-

tive to the fetus earlier in gestation as animal studies have shown that the placental barrier is

more permeable mid gestation [63].

One of the factors influencing the outcome and therefore the level of APO is the numbers of

bacteria entering the circulation. The degree of bacteraemia has been shown to be related to the

gingival index, plaque index and the number of sites with bleeding on probing [64]. The preva-

lence of F. nucleatum in early gingivitis through to severe periodontitis and its ability to invade

the endothelium implies that the organism can gain access to the circulation irrespective of the

severity of periodontal disease [4,64]. This may explain why intervention studies where peri-

odontal therapy has been provided during pregnancy has not reduced the incidence of APO

[4]. We suggest that treatment prior to pregnancy would be more efficacious.

Given the delicate balance during pregnancy with a relatively immuno-suppressed state, the

magnitude of disturbances to the inflammatory response in the feto-placental unit is a signifi-

cant factor in APO. If the disruption of the inflammatory response is mild, pregnancy out-

comes may be less severe. Interestingly, we found that direct inoculation of FNF or mice with

induced periodontitis produced significantly larger pups. An increase in fetal weight is a preg-

nancy outcome most frequently associated with maternal glucose intolerance such as in gesta-

tional diabetes and uncontrolled diabetes mellitus [65–67]. The complications of fetal

macrosomia include trauma to the baby and mother during birth, fetal death and decreased

Apgar scores [68]. Other adverse health effects associated with glucose intolerance during preg-

nancy include preeclampsia and PTB, which have been reported in association with maternal

periodontitis [69]. In normal pregnancy the mother becomes relatively insulin resistant per-

mitting the transport of sufficient glucose from the maternal to the fetal circulations via facili-

tated diffusion along a concentration gradient. Although fasting blood glucose measurements

were not taken, we hypothesise that mice with periodontitis may have had elevated blood glu-

cose concentrations that would enhance fetal growth possibly due to sub-clinical systemic in-

flammation associated with periodontitis. An increase in fetal weight:placental weight ratio

also occurs in some cases of pregnancy-induced hypertension, although this is most notably

due to a reduced size of the placenta as opposed to increased growth of the fetus. In such cases,

it is hypothesised that cytokines are released into the maternal circulation in order to maximise

placental function by increasing maternal blood pressure [70]. This would increase placental

perfusion with maternal blood and facilitate greater nutrient transport to the fetus. These re-

sponses may be enhanced by periodontitis producing further systemic inflammatory responses

and potentially insulin resistance. This phenomenon may be associated with higher blood pres-

sure, increasing perfusion of the placenta and enhancing fetal growth. A causal role of peri-

odontitis in gestational diabetes and diabetes mellitus has been investigated in a number of

studies although results so far have not been conclusive [71]. Interestingly it has previously

been reported that women with gestational diabetes mellitus show elevated serum levels of

CRP, IL-6 and TNF-α. Thus prolonged elevated levels of IL-6 and TNF-α can interfere with

carbohydrate metabolism which can lead to glucose intolerance and diabetes mellitus [4]. In

mice with induced periodontitis we observed significantly increased levels of IL-6 which may

be consistent with the observed increase in fetal weight.
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It has also been reported that the timing of the microbial challenge can also lead to the acti-

vation of different inflammatory pathways by the same pathogen, and this may explain the dif-

ferences in APO seen in this and other animal studies [63]. In the present study, the induction

of periodontitis over a longer time frame compared to other studies and before pregnancy may

more closely reflect the situation in human populations.

Our findings have identified further areas of study and have contributed towards identifying

a causal mechanism between periodontitis and APO. There is an abundance of evidence for the

safe treatment of periodontal disease before and during pregnancy, enabling an improved oral

environment to reduce infection and inflammation that may act through the mother to harm

the unborn child. Improved communication between mothers, obstetricians and dental profes-

sionals may be an effective early strategy to reduce the risk of periodontitis and perhaps APO.
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