
Frontiers in Human Neuroscience www.frontiersin.org January 2011 | Volume 4 | Article 237 | 1

HUMAN NEUROSCIENCE
Original research article

published: 19 January 2011
doi: 10.3389/fnhum.2010.00237

diagnostic power of the measures. A third study (Oller et al., 2010) 
found a lower frequency of proper speech expressions in a large 
sample of children with ASD in long durations of natural speech, 
thus providing the first quantitative and automatic measure for 
speech abnormalities in ASD. Similar findings, however, were also 
obtained in children with delayed speech development.

In the current study we sought to develop a speech spectrum-
based measure that will reliably discriminate between children with 
ASD and children with normal development. Such a bio-marker 
could add to the accumulating effort in developing quantitative and 
objective measures for ASD (e.g., Fan et al., 2009; Ecker et al., 2010) 
and might hopefully lead to early identification, which is thought 
to improve the effectiveness of treatment (Levy et al., 2009). We 
considered several speech measures that might discriminate those 
children with ASD from those having normal development. One 
such measure is the long-term average spectrum (LTAS), which 
provides an amplitude-by-frequency function of overall S behav-
ior, averaging across many individual spectra derived from various 
vocal tract configurations (Lofqvist and Mandersson, 1987). The 
LTAS can provide some reliable and consistent measures of voice 
quality, obtained without requiring a periodic or repeated voice 
signal (Kitzing and Akerlund, 1993; de Krom, 1995; Goberman 
and Robb, 1999; Tanner et al., 2005), including measures that can 
discriminate between preterm and full-term baby cries (Goberman 
and Robb, 1999). Other measures to consider include spectral vari-
ability across time, pitch variability as well as pitch range, previously 
reported to be abnormal in ASD (Hubbard and Trauner, 2007).

IntroductIon
The speech of many children with autism spectrum disorder (ASD) 
appears abnormal and is often described as machine-like, “monot-
onic,” or “sing-song.” These abnormalities of voice and speech were 
already noted in early descriptions of ASD (Kanner, 1943), but 
their exact characteristics and the underlying mechanisms, as well 
as their consistency and diagnostic power are currently unclear 
(e.g., McCann and Peppe, 2003; Paul et al., 2005). Thus, despite 
the potential for providing an objective and quantitative marker 
for ASD, the current diagnostic criteria do not include atypical 
vocalizations (DSM-IV, 2000).

Most previous studies focused on the abnormal supra-segmental 
aspects of speech production, or prosody, which were identified as 
a core feature of the autistic syndrome, for verbal individuals with 
ASD. Studies based on subjective ratings revealed “flat” intonation, 
deficits in the use of pitch and control of volume, deficiencies in 
vocal quality, and use of aberrant stress patterns (Tager-Flusberg, 
1981; Shriberg et al., 2001; Rapin and Dunn, 2003), as well as a 
greater proportion of syllables with atypical phonation in pre-
verbal children (Sheinkopf et al., 2000). More recent studies used 
objective measures to quantify speech abnormalities in ASD. These 
include a larger pitch range (Hubbard and Trauner, 2007; Sharda 
et al., 2010), a misplaced pitch peak in the sentence, and a flatter 
amplitude (Hubbard and Trauner, 2007), as well as a high inci-
dence of “pitch excursions,” similar to the child-directed speech of 
mothers (Sharda et al., 2010). These results were based on a rela-
tively small sample and effect size that do not allow assessing the 
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Our approach was to investigate speech vocalization of a large 
group of young children with ASD under conditions that reduce 
the effect of social interaction and communication known to be 
abnormal in ASD. For that purpose, we chose a picture-naming 
task rather than free conversation. In this way we hoped to uncover 
speech characteristics that are less related to social and communica-
tive expressions and examine effects that depend primarily on speech 
mechanisms and sensory motor processes. Our results compare favo-
rably with other such measures and should be considered as a positive 
step toward developing speech-based diagnosis for ASD.

MaterIals and Methods
PartIcIPants
The study group consisted of 83 children (41 with ASD and 42 con-
trols) ages 4–6.5 years, mean ± SD of 5.0 ± 1.1 and 5.1 ± 0.7 for the 
ASD and controls respectively. The autistic children were recruited 
from special-education preschools for ASD. All children had a clini-
cal diagnosis of ASD based on DSM-IV criteria and were all verbal. 
Among the controls there were 17 boys and 24 girls, whereas in the 
ASD group the majority (80%) were boys, thus reflecting the gender 
distribution in the preschools. This discrepancy between the groups 
was controlled by investigating the effect of gender (see Results). 
The study was approved by the ethics committee for human subject 
research at the University of Haifa. Informed consent was obtained 
from a parent before participation.

exPerIMental settIng and Procedures
All children were individually recorded in a quiet room in their pre-
schools, in the presence of their caretaker for a single period of about 
60 s including between-word silences. There were three and five dif-
ferent recording sites for the control and ASD groups, respectively. 
The children were asked to name (in Hebrew) 36 pictures presented 
in a chess-like board. The first response was triggered by an oral 
question (“what’s that?”); then the experimenter kept pointing at 
the pictures, one after the other (without vocal prompting to avoid 
recording the experimenter’s voice), while the child named the pic-
tures to which she pointed. To avoid potential stress, children were 
not instructed to read fast or complete reading the list of images. 
In the case of slow reading or breaks, the recording was extended 
for up to 90 s. The whole sequence was recorded with a digital 
audio recorder (SAFA, model SRM-160 used for all recordings) at 
a sampling rate of 8 ks/s. We noted that the lower sampling rate of 
8 ks/s was sufficient for our purposes, since we were interested in the 
frequencies around the fundamental frequency of speech.

data analysIs
Long-term average spectrum analysis
The 60-s time intervals, which included the between-word silences, 
were divided into successive (non-overlapping) 32-ms time win-
dows spanning the time interval. These windows, which comprised 
256 samples each, were transformed using a 256-point fast Fourier 
transform (FFT), and the square of the complex magnitude was 
taken of the first 64 frequency channels to form the power spectrum 
of the time window in the range 0–2000 Hz in steps of 31.25 Hz. The 
LTAS for the whole time interval was then computed as the channel-
by-channel average of the power spectra for all the time windows 
in the time interval. The variability (SD) of each frequency across 

time (within the 60-s recordings) was analyzed in an extended 
range of 0–3000 Hz (96 frequency points) and was normalized by 
dividing by the power for each frequency.

The reduced frequency range (0–2000 Hz) for the LTAS analysis 
was chosen because the extended range (2000–3000 Hz) showed 
very low power and insignificant group differences, and was omitted 
for clarity. To determine the statistical significance of differences 
found between average spectra, we used a paired t-test between the 
average power values for each frequency point in the spectrum, 64 
points in the range of 0–2000 Hz, and we applied False Discovery 
Rate analysis (FDR, α < 0.05) to determine the significance thresh-
old (Benjamini and Yekutieli, 2001).

Pitch analysis
We analyzed the fundamental frequency or pitch in short time win-
dows of 10 ms using the VoiceBox speech processing toolbox (M. 
Brookes, Imperial College, London), which provides an estimate 
of pitch across time. Preliminary analysis indicated that the pitch 
values were in part continuous, with small differences between 
adjacent (10 ms steps) measurements, and in part discontinuous 
with large pitch changes between adjacent estimates (20% of all 
changes >55 Hz, 10% >130 Hz), possibly reflecting a failure of the 
pitch detection algorithm, due to low signal at the border of words 
or due to noise. We analyzed the effect of these discontinuities 
separately by repeating all pitch analyses without the 20% largest 
ones, i.e., removing the two pitch samples around pitch changes 
larger than 55 Hz. Results with different discontinuity threshold 
were also investigated (see Results).

We computed the pitch range for each child as the difference 
between the maximum and minimum pitch values during the whole 
recording period, with and without the exclusion of pitch disconti-
nuities (defined above), as well as outliers (values outside an interval 
of 5-SD from the mean). We computed normalized (divided by the 
total number of pitch samples) histograms of pitch values in 12 bins 
that span the pitch range and used the maxima of these histograms 
and the pitch SD across time as markers of pitch stability. The choice 
of the number of bins was done to maximize the difference between 
the experimental groups, but different values were explored (see 
Results). The choice of the classification threshold was done auto-
matically for a single dimension (histogram maxima) by iteratively 
testing all potential values. For simplicity, we will use the term pitch 
hereafter to denote the estimated fundamental frequency.

noIse level estIMatIon
Since the recordings were conducted in eight different sites and despite 
an effort to minimize noise, the level of background noise could have 
been different and could have affected the results. We computed the 
signal-to-noise ratio (SNR) of the recordings by using the VoiceBox 
toolbox (see above) to detect speech (Voice Activity Detection func-
tion), computed the RMS energy of speech and silence periods, and 
their ratio (SNR) in dB according to the standard formula.

results
ProPertIes of readIng
Overall, the reading speed and fluency of the two groups appeared 
similar with some small differences. The average recording length 
of the ASD group was slightly longer, 70 vs. 66 s for the controls. 
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difference (p < 0.05 FDR corrected, see Materials and Methods) at 
certain frequencies: 300, 410–440, 1031, 1062, 1120, 1000–1300, 
and 1660–1750 Hz. Identical or very similar results were obtained 
with the silence periods removed. The difference between the group 
average spectra appears to reflect the shallower spectra of the ASD 
group, mainly around the first peak (around 250 Hz, corresponding 
to the fundamental frequency F0). On the other hand, the sharper, 
higher peaks of the controls average out owing to differences in 
peak positions.

We also considered alternative methods for quantifying the 
spectral differences between the ASD children and controls. In 
our first attempt, we used the normalized LTAS maxima since we 
observed that these maxima were generally higher in the controls 
(Figure 1A), and since an equivalent measure was previously used in 
LTAS studies (Goberman and Robb, 1999). The average LTAS peak 
was found to be significantly higher in the controls (p < 0.00001), 
but the optimal classification based on this measure achieved only 

The average number of words in 60 s (a measure of reading speed) 
was manually computed to be 27.9 for the ASD group and 31.7 for 
the controls (a significant difference, p < 0.002). The ASD children 
spoke longer words, 0.74 s on average vs. 0.62 s of the controls 
(p < 0.015). As a result of this, the total recorded speech content was 
somewhat larger for the ASD children, 30.8 s on average vs. 25.8 s 
for the controls (insignificant difference, p = 0.2). We shall refer 
to the potential effect of these differences on the observed spectral 
differences in the results section for pitch variability.

long-terM average sPectruM
The results for the LTAS analysis appear in Figure 1. Figure 1A 
presents 10 examples of the normalized LTAS, five children with 
ASD, and five controls. Note that the controls generally have sharper 
and more numerous peaks in these power spectra, whereas the 
ASD spectra are shallower. The group average LTAS for the 41 ASD 
children and 42 controls appear in Figure 1B with a significant 

B

A

C

N

N

Figure 1 | Long-term average spectrum (LTAS) analysis of 1-min speech 
(naming) of ASD and control children. (A) Examples of normalized LTAS of 
five controls (C1–C5) and five ASD children (A1–A5). Note that the controls have 
higher and more numerous spectral peaks, whereas the ASD curves are 
shallower. (B) Group average of normalized LTAS for 42 controls and 41 ASD 

children. Error bars denote one SE of the mean. (C) Group average of the 
stability of the spectra across time (SD divided by the power) for each frequency. 
Note in (A) that the controls exhibit sharper peaks and a more periodic 
(harmonic) structure of the spectra. Note in (C) that the ASD spectra are in 
general more variable across time.
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histogram-maxima dimension (x-axis) was found iteratively by 
the analysis program and yielded 86% success in classifying ASD 
in the sample (dashed line in Figure 2E). This distinction between 
the groups is further shown in Figure 2F by plotting normalized 
distribution histograms for the x-axis values in Figure 2E. The 
difference between the two peaks corresponds to a d′of 1.76 (dis-
tance in SD units). With this classification, there were four control 
children that were classified as ASD and eight ASD children clas-
sified as controls. This implies a sensitivity of 80% (33 of 41 ASD 
successfully detected), a specificity of 90% (38 of 42 controls suc-
cessfully rejected) and a positive predictive value (PPV) of 89%. 
(33 true ASD “positives” out of 37 “positives”).

The results, presented in Figure 2, were obtained with pitch esti-
mates that were filtered from regions around large discontinuities 
(see Materials and Methods); however, we also applied the analysis 
without this filtration and found similar results but with somewhat 
degraded classification (80%). This implies that large pitch discon-
tinuities are not the source of the increased pitch variability we 
found in ASD. Overall, we found that the different quantification 
methods of the pitch variability and the different parameters such as 
the pitch discontinuity threshold and the number of histogram bins, 
all yield between 80 and 85% classification accuracy, so the finding 
is quite robust. Our specific choice of parameters was optimized for 
classification accuracy of this specific (relatively large) sample and 
therefore might not represent a realistic performance.

To rule out the possibility that the results could have been affected 
by the difference in the percentage of girls in the two groups, we 
compared boys and girls in the control group in terms of the LTAS 
(as in Figure 1B), the average pitch histogram (as in Figure 2C), 
and variability, and found no significant differences.

To rule out the possibility that the results could have been 
affected or modulated by the observed small differences in reading 
speed and accumulated speech duration, we repeated the analysis 
with equalized speech duration, which was obtained by propor-
tionally cutting down the recorded speech length of each child in 
the ASD group. The results were similar (d ′ = 1.81, 84% correct 
classification).

We also investigated the possibility that the results could have 
been affected by the difference in noise level at the different record-
ing sites (see Materials and Methods). We found a similar average 
RMS power of the voice segments in the two groups, while the ASD 
group had elevated average power during the voiceless (silence) 
periods, yielding a lower SNR for the ASD group (24.9 ± 5.0 dB 
for ASD, 28.8 ± 4.65 dB for the Controls, p < 0.004). Since the 
SNR difference was only affected by non-vocal background noise 
(not detected as voice, e.g., air-condition noise, see Materials and 
Methods), it is unlikely to have affected pitch. Moreover, we found 
that the SNR was not correlated with the pitch variability across 
children within group (r2 = 0.008 in both groups) and thus was not 
the source for its variance. We therefore conclude that the small 
difference in SNR cannot explain the differences in pitch variability 
between groups.

dIscussIon
We reported here on simple quantitative measures for determin-
ing speech abnormalities observed in ASD, which are based on the 
basic spectral properties of speech. We tested these measures on a 

72% success. We then quantified the LTAS shape differences (less 
harmonic structure in ASD; see Figure 1A) using spectral analysis 
of the individual LTAS (spectrum of spectrum). The results were 
reported in abstract form (Adini et al., 2007) and showed that such a 
measure could be used for classifying ASD in the sample with >80% 
success. In the following sections, we present alternative quantifica-
tion methods using measures of spectral variability that produce 
similar or better results but with a simpler interpretation.

sPectral varIabIlIty
It is possible that the difference in the average spectra results from 
larger spectral variability in the ASD group, which “blurs” or 
averages out the harmonic structure. We investigated the spectral 
variability across time by computing the SD for each frequency, 
excluding silence periods. Since higher spectral power normally 
produces higher variance, we normalized the SD by dividing it by 
the average spectral power for each frequency. The results appear in 
Figure 1C. Overall, the SD of the ASD children was higher in almost 
all frequencies and its mean across frequency differed significantly 
from the controls (p < 0.00008).

PItch varIabIlIty
The results appear in Figure 2. Figure 2A presents examples of 
15-s pitch time courses of two children: one control and one ASD. 
The larger pitch variability, apparent for the ASD child (see also 
Figure 2B for child A5), is primarily derived from short periods of 
continuous changes in pitch (upward or downward sweeps), rather 
than random values. Figure 2B presents the group averages of pitch 
range (top) and (SD, bottom). The pitch range was obtained while 
excluding periods around large pitch discontinuities and outliers 
(see Materials and Methods).The ASD children had a significantly 
larger pitch range (p < 0.005) and SD (p < 0.0004) than did the 
control children. However, when the outliers were included, the 
difference between groups was still significant (p < 0.04). When 
the pitch values around discontinuities were not excluded, the dif-
ference between groups became insignificant. We also found that 
the pitch range and variability were correlated across all children 
(r2 = ∼0.6), and pitch SD was moderately correlated with the pitch 
itself (r2 = ∼0.25), although no significant difference across groups 
was found for the average pitch (255 Hz for ASD, 248 Hz for con-
trols). Overall, the pitch SD was a better discriminating parameter 
than pitch range, but we obtained an even better measure using 
the pitch histograms.

Figure 2C presents examples of the normalized pitch histograms 
for a representative set of five ASD children and five normal con-
trols. Quite strikingly, all histograms of the controls have a sharp 
peak between 200 and 300 Hz, whereas the pitch histograms of the 
ASD children are shallower and variable. The group averages of the 
normalized histograms are presented in Figure 2D. Interestingly, 
there is a marked discrepancy between groups, with points around 
200 Hz displaying a highly significant difference (p < 0.0005; 
Bonferroni corrected significance is p < 0.0025).

The difference between the groups can be quantified more accu-
rately by taking maxima of individual histograms and a pitch SD 
for each child and plotting them in the x and y axes of a scatter 
plot (Figure 2E). The two populations are distinct but with some 
overlap. An optimal classification threshold of 0.344 along the 
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Figure 2 | Pitch analysis of 1-min speech (naming) of ASD and control 
children. (A) Examples of 15-s pitch time courses for one control (top) and 
one autistic (bottom) children, demonstrating the difference in variability. 
(B) Group averages of pitch range and SD. (C) Examples of pitch occurrence 
histograms (across time in 10-ms windows) in five ASD children (A1–A5) and 
five controls (C1–C5); the same 10 children shown in Figure 1. The x-axis 
denotes pitch frequency (Hz) and the y-axis denotes a normalized occurrence 
histogram across time. (D) Group average of the pitch histograms for 41 ASD 
children and 42 controls. Error bars denote one SE of the mean, with points 

around 220 Hz showing a highly significant difference (p < 0.002). (e) A scatter 
plot for the pitch histogram height (log units, x-axis) and pitch SD (y-axis), with 
each point corresponding to one child. (F) Occurrence histogram for the data 
in (e) along the x-axis (pitch histogram maxima) with a Gaussian fit for each 
group, presented in SD units (average across groups) around the average of 
the means. The difference between the groups corresponds to a d′ of 1.76 and 
a threshold criterion allows 86% success in classification, with a sensitivity of 
80%, a specificity of 90%, and a positive predictive value of 89% (four 
controls classified as ASD and eight ASD as controls).
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production (see Houde et al. (2002) for the normal brain), which 
would be consistent with recent theories of autism that attribute 
the syndrome to abnormal cortical connectivity (Belmonte et al., 
2004). Pitch variability could also reflect a compensation strategy 
of deliberate generation of large pitch changes to overcome a noisy 
channel assumed to transfer “efference copy” information for pro-
duction error correction (e.g., Houde et al., 2007).

The current study should be regarded as a first step, which needs 
to be further elaborated. First, the results could have been affected 
by delayed development of expressive language, leading to reduced 
experience with speech, and delayed speech development in the 
ASD children. Although we did not assess expressive language in 
this pilot study, we noted that all children in both groups were 
able to name all the presented pictures. A second important issue 
is the specificity of the findings to ASD in comparison with other 
disorders such as specific language impairment (SLI) and dyslexia. 
Although this is a very important question to investigate, even 
if the outcome shows that our finding is not specific to autism 
but also encompasses other impairments, the entire spectrum of 
developmental language disorders would most likely benefit from 
an early risk assessment tool [see Herbert and Kenet (2007) for a 
suggested relation between language disorders and ASD]. A third 
issue to investigate is the possible relation between speech spectrum 
abnormalities and autism severity and its sub-classification. Future 
work should determine whether pitch variability or other spectral 
measures are correlated with the severity of autistic symptoms 
and whether the ASD children classified as non-ASD (20% by our 
current measure) represent a specific sub-classification of ASD. A 
fourth issue to investigate is the relation between speech abnormali-
ties and auditory processing deficits. Evidence for such a relation 
would strengthen our interpretation of abnormal processing of 
auditory feedback as a cause for speech abnormalities.

Finally, we consider our measure of speech abnormalities in 
ASD and the derived classification as a step toward developing a 
battery of bio-markers for ASD, which are both quantitative and 
objective. Several recent studies indicate the plausibility of such a 
battery. These include the latency of pupil dilation with 92% success 
(Fan et al., 2009), a quantitative measure of atypical gaze patterns 
with 87% success (Nakano et al., 2010), and structural MRI dif-
ferences with 90% success (Ecker et al., 2010). A combination of 
these and other measures has the potential of providing a reliable 
tool for early diagnosis.
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large sample (N = 83) of young children (age ∼ 5 years) and under 
conditions that normally minimize social expressions and emotions 
(1 min of picture naming). Our results indicate that the long-term 
average spectra of ASD children differed significantly from those 
of the controls with an overall larger spectral variability. We also 
analyzed pitch (F0) and found a larger pitch range and variability 
across time in the ASD group. In addition, we used measures of 
pitch variability to classify ASD in the sample with over 80% suc-
cess. Our optimally tuned threshold yielded 86% success, a high 
specificity (90%, only four control children were classified as ASD), 
and good sensitivity (80%, eight children with ASD classified as 
controls). While 86% success might reflect a fit to a specific sam-
ple and not the actual performance of this method, the method 
appeared quite robust to the choice of parameters for producing 
above 80% success.

Our results could be compared with two recent studies of ASD 
speech (Hubbard and Trauner, 2007; Sharda et al., 2010), both 
reporting increased pitch range in ASD children, as we found here 
(Figure 2B). Sharda et al. (2010) studied a smaller sample of autistic 
children (15 ASD and 10 controls) with a wider age range (4–10) 
recorded during natural speech (compared to a naming task in 
our case). In addition to increased pitch range, they found that the 
pitch changes in the ASD group were characterized by exaggerated 
intonation contours, or pitch “excursions.” They identified these 
abnormal pitch patterns as similar in shape to those observed in 
the child-directed speech of mothers (“motherese”), presumably 
also similar to the speech of young children under 2 years, and 
suggested that the ASD children had a delayed developmental tra-
jectory of speech. Our results reveal a similar pattern of exagger-
ated continuous pitch changes or “excursions” in some ASD cases 
(Figure 2A), which are likely to be a major source for the pitch 
variability we measured (in comparison, large pitch discontinuities 
had a negative effect on classification, see Results). However, we 
also observed some ASD cases whose pitch time course appeared 
different from a “motherese” pattern. Moreover, the hypothesis of 
a delayed developmental trajectory is inconsistent with the more 
general finding of aberrant rather than delayed development of 
language and prosody in ASD (Rapin and Dunn, 2003).

An alternative explanation for the increased pitch variability in 
the ASD group is a deficit in the mechanisms that control pitch. 
This deficit could stem from a problem at the reception level, at the 
production level, or at the connection between the two that provides 
the error signal for adjusting the speech. There is a growing body 
of evidence for abnormal auditory processing in autism (Rosenhall 
et al., 1999; Boddaert et al., 2004), which could cause a problem in 
speech reception (Gervais et al., 2004) and perhaps also an abnormal 
phonological representation in the cortex. There is also evidence of a 
general impairment in motor functioning (e.g., Freitag et al., 2006), 
which could suggest “clumsy speech.” Another possibility is that 
there is a fault in the functional connectivity between reception and 
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