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Whether brain function is altered in patients with dry eye disease (DED) remains unclear.

Twenty patients with DED and 23 healthy controls (HCs) were scanned using resting-state

functional magnetic resonance imaging. Regional homogeneity (ReHo) and support

vector machine (SVM) were used to analyze the imaging data. Relative to the HCs, the

patients with DED showed significantly increased ReHo values in the left inferior occipital

gyrus (IOG), left superior temporal gyrus, and right superior medial prefrontal cortex, and

significantly decreased ReHo values in the right superior frontal gyrus/middle frontal gyrus

and bilateral middle cingulum (MC). SVM results indicated that the combination of ReHo

values in the left MC and the left IOG in distinguishing patients with DED from HCs had a

sensitivity of 95.00%, a specificity of 91.30%, and an accuracy of 93.02%. The present

study found that the patients with DED had abnormal ReHo values in the limbic-cortical

circuits. A combination of ReHo values in the left MC and the left IOG could be applied as

a potential imaging biomarker to distinguish patients with DED fromHCs. The dysfunction

of limbic-cortical circuits may play an important role in the pathophysiology of DED.

Keywords: dry eye disease, resting-state functional magnetic resonance imaging, regional homogeneity, support

vector machine, limbic-cortical circuits

INTRODUCTION

Dry eye disease (DED) is a common health problem because of its morbidity, prevalence (5–35%),
and cost implications (Smith, 2007; Messmer, 2015). DED is more frequently reported by women
than by men, and its likelihood increases with age (Moss et al., 2000; Schaumberg et al., 2003).
Dry eye (DE) is defined as “a multifactorial disease of the ocular surface characterized by a loss
of homeostasis of the tear film accompanied by ocular symptoms, in which tear film instability
and hyperosmolarity, ocular surface inflammation and damage, and neurosensory abnormalities
play etiological roles” by the Tear Film and Ocular Surface Society Dry Eye Workshop II (Craig
et al., 2017). “Neurosensory abnormalities” are indeed included in the DE definition, but the
neuropathophysiology mechanism of DED remains unclear.

The tear film plays an important role in providing a refractive interface for the optical light path,
and protection and lubrication for the ocular surface (Willcox et al., 2017). The major ingredients
of the tear film are aqueous tear, lipid components, and mucins. Aqueous tear is mainly produced
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by lacrimal glands. Lipid components are generally synthesized
by meibomian glands. Mucins are mainly synthesized by
conjunctival goblet cells (Ellingham et al., 1999) and stratified
squamous epithelial cells (Argüeso et al., 2003). DED may be
caused by the dysfunction of these glands and cells (Mathers,
2000; Mantelli and Argüeso, 2008) or the neuronal circuits
regulating tear secretion (van Bijsterveld et al., 2003; Dartt,
2009). In DED, aberrations and scattering induced by alterations
of the tear film directly cause disturbances in vision quality
(Benito et al., 2011; Tan et al., 2015). In addition to visual
disturbance, most patients with DED also complain of ocular
discomfort accompanied by increased blinks. Ocular discomfort
comprises ocular fatigue and unpleasant sensations such as pain,
itching, and dryness. The unpleasant sensations are induced
by the pathological processes affecting the trigeminal sensory
nerves innervating the ocular and periocular tissues. In some
studies, the terms “dryness,” “itching,” “foreign body sensation,”
and “burning” are applied to describe the ocular pain associated
with DED (Mertzanis et al., 2005; Kalangara et al., 2016).
Ocular pain is an uncomfortable and unpleasant sensory and
emotional experience induced by the interconnected peripheral
nervous system (PNS) and central nervous system (CNS). The
enhanced excitability of central pain pathways result from the
local activation of microglia and weakened inhibitory descending
modulation (Tulleuda et al., 2011). The inhibitory descending
control systems come from higher brain centers and modulate
ascending excitatory nociceptive pathways by influencing the
trigeminal and spinal sensory input (Tracey and Mantyh,
2007; Khasabov et al., 2015). However, the role of descending
control systems in DED has not been comprehensively studied.
Ocular pain in patients with DED is mainly induced by
peripheral insults to the innervated ocular and periocular tissues.
However, in certain circumstances, ocular pain in patients
with DED is induced by direct injuries to, or dysfunctions
of, the cortical and subcortical structures, which process the
peripheral nociceptive input, the peripheral nociceptive sensory
neurons located in the trigeminal and dorsal root ganglion,
and the higher-order neurons located in the spinal cord, brain
stem, and thalamus (von Hehn et al., 2012; Belmonte et al.,
2015). This pain is called “neuropathic pain.” An emerging
concern is that a subset of DED should be represented as a
chronic neuropathic pain (Kalangara et al., 2016). In DED,
the persistent deficiency of tears results in peripheral nerve
damage and ocular inflammation. Peripheral nerve damage
and ocular inflammation have complex interactions (Ordovas-
Montanes et al., 2015). Long-term peripheral nerve damage
and ocular inflammation induce alterations in the structures
and functions of PNS and CNS involved in ocular sensory
pathways (Belmonte et al., 2015, 2017; Rahman et al., 2015;
Levitt et al., 2017), thereby leading to neuropathic pain and
central sensitization. Central sensitization is caused by decreased
activation thresholds and abnormal amplifying signals within the
CNS through neuroplastic processes (Latremoliere and Woolf,
2009; Galor et al., 2015). In DED, the increased blinks result
from the enhanced activities of the ocular surface sensory nerve
evoked by the stimulation of an unstable tear film (Nakamori
et al., 1997) and/or from the redistribution of the tear film

over the cornea to obtain enhanced image quality (Tan et al.,
2015). The level of dopamine released by the basal ganglia can
modulate the blink rate in DED, as observed in a rat model study
(Kaminer et al., 2011).

In sum, one can reasonably hypothesize that abnormal brain
function plays an important role in DED symptoms’ maintenance
and development. Abnormal brain structure and function in
Sjögren syndrome, a subset of DED (Craig et al., 2017), have
been reported in many neuroimaging studies. A study applied
computed tomography and magnetic resonance imaging (MRI)
and identified 24 patients with white matter abnormalities from a
total of 49 patients with Sjögren syndrome with DE (Akasbi et al.,
2012). White matter hyperintensities were also found in patients
with Sjögren syndrome in the studies that appliedMRI and voxel-
based morphometry (Tzarouchi et al., 2011, 2014). In a study that
applied voxel-wise and global brain volume analyses, the patients
with Sjögren syndrome showed lower white matter volumes, not
gray matter volumes, than the healthy controls (HCs) (Lauvsnes
et al., 2014). Another study found decreased gray matter
volume in the cortex and cerebellum in patients with Sjögren
syndrome (Tzarouchi et al., 2011). A study applied resting-state
functional magnetic resonance imaging (rs-fMRI) and functional
connectivity analysis and found altered hippocampal functional
connectivity in patients with primary Sjögren syndrome (Zhang
et al., 2020). Another study applied rs-fMRI and regional
homogeneity (ReHo) analysis and found abnormal ReHo values
in the frontoparietal junction area and visual cortex in patients
with Sjögren syndrome (Xing et al., 2018). Nevertheless, whether
brain function is altered in DED remains unclear. Therefore, a
study on brain function will facilitate the understanding of the
underlying neuropathophysiology of DED.

Herein, we applied rs-fMRI to map functional brain and
decipher spontaneous cerebral neuro-activities. Since Bharat
Biswal et al.’s study using rs-fMRI (Biswal et al., 1995), rs-fMRI
has been widely used to map functional brain and decipher
spontaneous cerebral neuro-activities by measuring the blood
oxygen level-dependent (BOLD) signal. Relative to task-based
fMRI, rs-fMRI can observe cerebral neurophysiological processes
without requiring task performance. Therefore, applying rs-fMRI
avoids the potential limitation of applying task-based fMRI in
fMRI studies.

After accessing the neuroimaging data of patients with
DED and HCs via rs-fMRI, ReHo was utilized to depict
the local features of BOLD signals and thus reflect the
local synchronization of spontaneous brain activities. Kendall’s
coefficient concordance (KCC) of the voxel similarity of the
time series of a given voxel with the nearest neighboring voxels
was applied to measure the ReHo values (Zang et al., 2004).
ReHo has been successfully utilized to explore the abnormalities
of regional functional synchronization in some ophthalmologic
illnesses, such as glaucoma, amblyopia, and corneal ulcer (Lin
et al., 2012; Chen et al., 2017; Xu et al., 2019). However, whether
patients with DED have abnormal ReHo in certain brain regions,
particularly in the brain sensory and visual processing regions,
remains unclear.

Support vector machine (SVM) learning is a robust
classification tool. This supervised learning algorithm is
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usually used to recognize patterns and analyze data. Relative to
Bayesian networks, decision trees, and artificial neural networks,
SVM has significant strengths, such as high accuracy, direct
geometric interpretation, and excellent mathematical tractability
(Zhang and Wu, 2012). Moreover, SVM does not need large
training samples to avoid overfitting (Li et al., 2010); this feature
is particularly effective in classification when the sample size
is small (Chen and Chen, 2017). Therefore, SVM was applied
in this work to determine whether abnormal ReHo values in
certain brain areas could be used to distinguish patients with
DED from HCs.

We hypothesized that patients with DED would show
abnormal ReHo in certain brain regions, particularly in the
brain sensory and visual processing regions, and that such
abnormal ReHo in relevant regions might serve as possible
imaging biomarkers to distinguish patients with DED from HCs
via SVM.

MATERIALS AND METHODS

Participants
A total of 20 right-handed patients with DED (age ≥18
years) were eligible to participate in the whole study. The
diagnosis of DED was confirmed by an ophthalmologist by
using DED diagnostic guidelines published in 2007 by the Dry
Eye Workshop (Lemp, 2007). The exclusion criteria were as
follows: (1) patients with other ophthalmic diseases, such as
glaucoma, cataract, diabetic retinopathy, and amblyopia; (2)
patients with a history ofmetabolic encephalopathy, hypertensive
encephalopathy, CNS infection, and CNS lesions induced by
other causes; and (3) patients who were pregnant.

We recruited 23 right-handed HCs (age ≥18 years) from the
community. The sex ratio, age, and years of education of the HCs
and patients were group-matched. They were also interviewed
using the DED diagnostic guidelines published in 2007 by the
Dry Eye Workshop. They were excluded if they had a history of
neuropsychiatric illness or brain injury or if they were pregnant.

The ethics committee of the First Affiliated Hospital of
Guangxi Medical University approved the study. The study was
executed according to the Helsinki Declaration. All participants
provided an informed written consent.

Scan Acquisition
In this study, rs-fMRI was performed using a Siemens 3.0 T
scanner and a standard head coil. The participants lay on the
scanner bed with their eyes closed. They were instructed to
remain calm and awake. They used foam pads and soft earplugs
to reduce head motion and scanning noise. A gradient-echo-
planar imaging (EPI) sequence was used to acquire the imaging
data with the following parameters: repetition time = 2,000ms,
echo time = 30ms, 30 slices, 90◦ flip angle, 64 × 64 matrix,
240mm field of view, 4mm slice thickness, 0.4mm gap, and 250
volumes (500 s).

Data Preprocessing
Statistical parametric mapping software (SPM12; http://www.
fil.ion.ucl.ac.uk/spm/) and the Data Processing Assistant for

Resting-State fMRI were applied to preprocess the images. The
first 10 images of each participant were discarded due to unstable
initial MRI signals. We corrected the fMRI images for head
motion and acquisition delay between slices. The participants
must have translations of <2mm and rotations of <2◦ in
the x, y, or z axis. Thereafter, all imaging data were spatially
normalized to the standard Montreal Neurological Institute
(MNI) EPI template in SPM12 and sampled again to 3mm cubic
voxels. The resulting fMRI images were subjected to bandpass
filtering (0.01–0.08Hz) and time-course linear detrending to
reduce the influence of high-frequency physiological noise and
low-frequency drift.

ReHo Analysis
ReHo is an rs-fMRI measurement that is utilized to explore
regional functional synchronization. The Resting-State fMRI
Data Analysis Toolkit (REST, http://resting-fmri.sourceforge.
net) was utilized to conduct the ReHo analysis. Individual ReHo
maps were produced by calculating the KCC of the time series
of a given voxel with those of its nearest voxels (26 voxels).
The formula for calculating the KCC value was introduced in
a previous study (Zang et al., 2004). The ReHo maps were
normalized to reduce the influence of individual variations on
the KCC values by dividing the KCC values among each voxel
by the whole brain average KCC. Thereafter, the ReHo maps
were smoothed with a Gaussian kernel of 4mm full width at
half maximum.

Statistical Analysis
SPSS 18.0 (Chicago, IL) was used to compare the demographic
characteristics of the two groups. To assess the differences in sex
distribution, we performed a chi-square test on the two groups.
For the differences in ages and years of education, we performed
two-sample t-tests. The differences in the ReHo values of the HCs
and patients with DED were compared by two-sample t-tests
with years of education and age as the covariates of no interest.
The Gaussian random field method was utilized to correct for
multiple comparisons with the REST software (voxel significance:
P < 0.001, cluster significance: P < 0.05).

Correlation Analysis
To assess the possible relationship between abnormal ReHo
values and illness duration in patients with DED, we conducted
Pearson’s correlation analyses between the abnormal ReHo
values and illness duration (significance level: P < 0.05). In
the correlation analysis, the average values of the clusters with
abnormal ReHo were used.

Classification Analysis
Classification analysis was performed to examine whether ReHo
values and a combination of ReHo values in relevant regions
could serve as possible imaging biomarkers to distinguish
patients with DED from HCs. SVM analysis was applied to the
classification analysis by using the LIBSVM software package
(http://www.csie.ntu.edu.tw/~cjlin/libsvm/) in MATLAB. SVM
was performed to measure the capacity of the abnormal ReHo
values to distinguish patients with DED from HCs. In SVM,
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differences between groups are learned by a training dataset, and
classification performance in unobserved data is evaluated by a
test dataset. To train data, we provided label pairs (xi, ci) , i =

1, . . . , l. In the label pairs, xi ∈ Rn, with xi representing ReHo
values and ci represents class label. Class label “c = +1” was
assigned to the patients with DED, and “c = 0” was assigned
to the HCs. We applied Gaussian radial basis function kernel
and Grid search method to implement parameter optimization.
We also conducted a “leave-one-out” cross-validation approach
in the LIBSVM software to obtain the highest specificity and
sensitivity. The form of radial basis function kernel used in the

present study is “K
(

xi, xj
)

= e−y‖xi−xj‖2” (Liu et al., 2018).

RESULTS

Characteristics of Participants
A total of 20 patients with DED and 23 HCs were recruited in
the study. The two groups did not show significant differences in
sex ratio (P = 0.19), age (P = 0.23) or years of education (P =

0.10). The detailed characteristics of the participants are shown
in Table 1.

Differences in ReHo Values of Patients
With DED and HCs
Relative to the HCs, the patients with DED showed significantly
enhanced ReHo in the left inferior occipital gyrus (IOG),
left superior temporal gyrus (STG), and right superior medial
prefrontal cortex (MPFC), and significantly reduced ReHo in the
right superior frontal gyrus (SFG)/middle frontal gyrus (MFG)
and bilateral middle cingulum (MC). Detailed information is
presented in Table 2 and Figure 1.

Correlation Analysis Result
No correlation was observed between ReHo values and illness
duration in patients with DED at the P < 0.05 level.

SVM Result
Figure 2 presents the accuracies for distinguishing patients with
DED from HCs based on the ReHo values of six detected brain
regions and a combination of these clusters. In the combination
of ReHo values in the left MC and left IOG, 40 subjects were
correctly classified with the highest accuracy. This combination
was the optimal combination with a sensitivity of 95.00%, a
specificity of 91.30%, and an accuracy of 93.02% (Figure 3).

DISCUSSION

Relative to the HCs, the patients with DED showed abnormal
ReHo in the limbic-cortical circuits. Increased or decreased
ReHo values in the patients with DED, relative to the HCs,
indicated spontaneous brain activities in certain regions having
more or less synchronization. No correlation was found between
the ReHo values in these brain regions and illness duration
in the patients. Moreover, the SVM analysis showed that
a combination of ReHo values in the left MC and left
IOG could facilitate the differentiation of the patients with

TABLE 1 | Characteristics of participants.

Variables Patients (n = 20) Controls (n = 23) p-value

Age (years) 52.55 ± 8.66 49.70 ± 6.51 0.23b

Sex (male/female) 7/13 4/19 0.19a

Years of education (years) 10.20 ± 3.56 8.61 ± 2.27 0.10b

Illness duration (months) 20.75 ± 15.37

aThe p-value for sex distribution was obtained by a chi-square test.
bThe p-values were obtained by two samples t-tests.

TABLE 2 | Regions with abnormal ReHo values in patients.

Cluster location Peak (MNI) Number

of voxels

T-value

x y z

Left inferior occipital gyrus −45 −81 −12 36 3.8793

Left superior temporal gyrus −63 −15 6 30 4.2411

Right superior MPFC 18 39 51 79 3.9433

Right superior frontal

gyrus/middle frontal gyrus

24 3 48 30 −4.4578

Right middle cingulum 12 −21 36 84 −4.8042

Left middle cingulum −9 −6 36 33 −4.1881

ReHo, regional homogeneity; MNI, Montreal Neurological Institute; MPFC, medial

prefrontal cortex.

DED from the HCs with satisfactory sensitivities, specificities,
and accuracies.

Increased ReHo Values in Left IOG, Left
STG, and Right Superior MPFC
The occipital gyrus is the visual cortex, a crucial brain
region for visual processing. The IOG plays a critical role
in visual processing, particularly in visual processing of faces,
and is known as the occipital face area. In neuroimaging
studies, participants showed more activity in the IOG when
observing faces than when observing other stimuli (Sergent
et al., 1992; Liu et al., 2010). A damaged IOG results in
the impaired identity recognition of faces (Allison et al.,
1994; Rossion et al., 2003). The electrical stimulation of the
IOG induces impairments in the perception of facial features
and configurations (Pitcher et al., 2007; Jonas et al., 2012).
Moreover, the IOG has connections to the limbic system, and
a number of studies have shown neural networks consisting
of the amygdala and the IOG being responsible for the visual
processing of faces (Rossion et al., 2011; Sato et al., 2017). In
the present study, we found significantly increased ReHo in
the left IOG of the patients with DED relative to the HCs,
and this result indicated reinforced activities in this brain area.
Reinforced activities in the left IOG enhance visual processing.
DED impairs vision, especially functional vision, in patients
(Miljanović et al., 2007). Hence, increased ReHo values in the
left IOG may compensate for visual impairment in patients
with DED.
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FIGURE 1 | Regions with abnormal ReHo in patients with DED. Red and blue denote increased and decreased ReHo in patients with DED, respectively. DED, dry eye

disease; ReHo, regional homogeneity.

Repetitive transcranial magnetic stimulation creating “virtual
lesions” in the STG results in disturbed visual search (Ellison
et al., 2004). Another study applied intraoperative electrical
stimulation and found that the inactivation of the STG induces
a disturbed visual search (Gharabaghi et al., 2006). Event-related
potential (Reale et al., 2007) and fMRI (Robins et al., 2009)
studies have suggested that the STG plays an important role in the
integration of auditory—visual cues. The STG has connections to
the limbic system. The connection between the amygdala and the
STG may be correlated with auditory input and the transfer of
complex sensory information (Kosmal et al., 1997). Small STG
and amygdala were found in patients with schizophrenia relative
to HCs, and these features may be correlated with auditory
hallucinations (Barta et al., 1990; Yoshida et al., 2009). In the
present study, we found increased ReHo values in the left STG
of the patients with DED. Therefore, increased ReHo values in

the left STG may also account for visual impairment in patients
with DED.

MPFC plays a crucial role in fear extinction (Milad and
Quirk, 2002; Milad et al., 2004; Santini et al., 2004). A rat
under persistent stress shows structural and functional changes
in the MPFC (Radley et al., 2006, 2008). The MPFC is a
part of the brain’s reward system, and stimulating it can
induce an antidepressant effect (Tzschentke, 2000; Hamani et al.,
2010). The MPFC has connections to the limbic system. In
these connections, the amygdala–MPFC circuit is involved in
emotional processing (Delli Pizzi et al., 2017; Thijssen et al.,
2017). In the present study, we found significantly increased
ReHo in the right superior MPFC in the patients with DED.
Patients with DED often complain of negative moods, such as
depression or anxiety (Li et al., 2011; van der Vaart et al., 2015).
Therefore, significantly increased ReHo in the right superior
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FIGURE 2 | The accuracies in differentiating patients from controls of six brain regions with abnormal ReHo values and combinations of them. A represents the left

middle cingulum; B represents the right middle cingulum; C represents the right superior MPFC; D represents the right superior frontal gyrus/middle frontal gyrus; E

represents the left inferior occipital gyrus; F represents the left superior temporal gyrus. ReHo, regional homogeneity; MPFC, medial prefrontal cortex.

FIGURE 3 | SVM analysis of the combination of ReHo values in the left middle cingulum and the left inferior occipital gyrus. Sensitivity = 95.00%, specificity =

91.30%, and accuracy = 93.02%. SVM, support vector machines; ReHo, regional homogeneity.

MPFC may be correlated with a negative mood in patients with
DED, although anxiety and depression severity were not assessed
in the present study.

Decreased ReHo Values in the Right
SFG/MFG and Bilateral MC
The right SFG generally plays a crucial role in cognitive control
and emotion regulation (Rose et al., 2011; Tully et al., 2014;
McDonald et al., 2020). The SFG is also involved in the experience
of pain. Fulbright et al. found that the SFG, especially the

right SFG, shows pain-related activation when an individual
experiences pain stimuli (Fulbright et al., 2001). The frontal
cortex and cingulum are parts of the “pain matrix,” which
transforms nociceptive signals into a perception of pain and
perceived pain intensity (Rainville, 2002; Tracey and Mantyh,
2007; Legrain et al., 2011; Favilla et al., 2014). The MFG and
SFG play a vital role in modulating the nociceptive pathways of
the cortical and subcortical regions (Yang et al., 2013). Decreased
gray matter volume in the MFG (Absinta et al., 2012; Yang et al.,
2013) and SFG (Lutz et al., 2008) was observed in painful diseases,
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such as cluster headaches and fibromyalgia. In the present study,
we found significantly decreased ReHo values in the right SFG
and MFG in the patients with DED relative to the HCs. In a
majority of the patients with DED, ocular pain was a major
discomfort. Hence, the dysfunction of the right SFG and MFG
may be related to pain in patients with DED.

Mazzola et al. found that the stimulation of the insular cortex
can evoke a pain sensation around the eye (Mazzola et al.,
2006). A number of studies have found that ocular neurons have
projections to the posterior thalamus and the parabrachial area
and not to the main somatosensory thalamic areas (Meng et al.,
1997; Aicher et al., 2013). Connections exist across the insular
cortex, amygdala, and cingulate cortex, thereby suggesting the
crucial role of the cerebral limbic system in the autonomic aspects
of pain and affection of patients with DED (Bernard et al., 1996).
The cingulate cortex is a critical region of the “pain matrix”
(Favilla et al., 2014). The MC is a part of the limbic system,
which is involved in emotional processing when an individual
experiences pain (Zubieta et al., 2003). In the present study, we
found significantly decreased ReHo values in the bilateral MC of
the patients with DED relative to the HCs. In sum, the decreased
ReHo values of the bilateral MCmay be related to pain in patients
with DED.

In the present study, we found significantly increased ReHo
values in the left IOG and left STG, both of which may
compensate for visual impairment in patients with DED.
Increased ReHo values were also noted in the right superior
MPFC, and they may be correlated with a negative mood in
patients with DED. The IOG, STG, and MPFC have strong
connections to the amygdala. We also found significantly
decreased ReHo values in the right SFG/MFG and bilateral MC,
and they may be related to the pain of patients with DED; all
these four brain regions together make up the “pain matrix.”
The amygdala and cingulate gyrus are part of the limbic system.
The cerebral limbic system has a key role in the autonomic
aspects of pain of DED patients (Bernard et al., 1996). Hence,
the abnormal ReHo values found in these brain regions of
the patients with DED suggested that limbic-cortical circuits
may play a crucial role in the pathophysiology of DED. The
dysfunction of the limbic-cortical circuits and DED symptoms
may be reciprocal, and the heterogeneity of clinically observed
DED symptoms can be explained by the dysfunction of the
limbic-cortical circuits in combination with active intrinsic
compensatory processes.

A previous study suggested that a specificity or sensitivity
of more than 0.7 could be considered as an acceptable level
for establishing a diagnostic index (Swets, 1988), whereas a
specificity or sensitivity of <0.7 might lead to poor accuracy
as a diagnostic indicator (Gong et al., 2011; Zhu et al.,
2018; Li et al., 2019). In the present study, the SVM result
showed that the combination of ReHo values in the left MC
and left IOG in distinguishing patients with DED from HCs
had a sensitivity of 95.00%, a specificity of 91.30%, and an
accuracy of 93.02%. Therefore, this combination of ReHo values
is appropriately applied as a potential image biomarker to
distinguish patients with DED from HCs. In the correlation

analysis, no correlation was observed between the ReHo values
and illness duration of the patients with DED. This result
suggested that the illness duration had no effect on the
ReHo values.

Several limitations of the present study should be raised. The
sample size is small, and it may lead to low-reliability results.
Moreover, we cannot divide patients into different subgroups due
to the small sample size. Large sample size studies are needed.
The MNI template used in the present study was produced
from a Caucasian population, and the results may be biased to
Chinese subjects.

CONCLUSION

In the present study, patients with DED had abnormal ReHo
values in the limbic-cortical circuits. A combination of ReHo
values in the left MC and the left IOG could be applied as
potential imaging biomarkers to distinguish patients with DED
from HCs. The dysfunction of the limbic-cortical circuits may
play an important role in the pathophysiology of DED.
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