
30 IEEE JOURNAL OF SELECTED TOPICS IN QUANTUM ELECTRONICS, VOL. 9, NO. 1, JANUARY/FEBRUARY 2003

Abnormal Wave Propagation in Passive Media
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Abstract—Abnormal velocities in passive structures such as
one-dimensional (1-D) photonic crystals and a slab having a
negative index of refraction are discussed. In the case of 1-D
photonic crystal, the frequency- and time-domain experiments for
waves tuned to the bandgap of the photonic crystal demonstrate
a positive group velocity exceeding the speed of light in vacuum
(superluminal). In the case of a medium with negative index of
refraction, our theoretical studies show that such a medium can
support positive group and negative phase velocities (backward
waves), as well as negative group and negative phase velocities.
The meaning of superluminal group velocity and negative group
velocity, or equally, positive superluminal group delay and neg-
ative group delay, are discussed. It is shown that despite their
counterintuitive meaning there are no contradictions with the
requirements of relativistic causality (Einstein causality). To
clearly demonstrate this, the important subject of the “front” is
reintroduced.

Index Terms—Meta materials, negative group velocity, negative
index of refraction, superluminal group velocity.

I. INTRODUCTION

T HE FACT that the group velocity of an electromagnetic
wave packet (pulse) can exceed the speed of light in

vacuum (described as “superluminal”) has been demonstrated
in experiments at microwave frequencies [1]–[7], at optical
frequencies [8], and in the single-photon limit [9], [10]. As
a starting point, an interested reader may consult the review
by Chiao and Steinberg [11]. Despite one’s initial impression,
superluminal group velocities are not at odds with the require-
ments of relativistic causality (Einstein causality), and indeed,
it can be shown that they must exist as a consequence of the
Kramers–Kronig relations, which in themselves are a statement
of the system linearity and causality [12]–[15].

The point that in the regions of anomalous dispersion group
velocity can become abnormal was first considered by Som-
merfeld and his student Brillouin [16]. In their studies, they
examined a sinusoidally modulated step function propagating
through a medium with Lorentz–Lorenz dispersion. They iden-
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tified and defined phase, group, energy, and “front”1 velocities.
However, for reasons unknown to the authors, while the first
three velocities have received much attention in both undergrad-
uate and graduate textbooks, the “front” velocity and the closely
related concept of the first or Sommerfeld forerunner has not en-
joyed the same status. This is even more surprising since, among
the aforementioned velocities, it is only the “front” velocity
alone that must satisfy the requirements of Einstein causality.
In other words, Einstein causality does not always equate the
group velocity with the velocity of information transfer, partic-
ularly when propagation of “attenuated traveling waves”2 is
involved.

Interestingly, while abnormal velocities have received much
attention within the “physics community,” and even have been
discussed in the new edition of the well-respected text book by
Jackson [18, pp. 325–326], the “engineering community” is less
aware of these developments. Ironically, this occurs in spite of
the fact that some of the earliest work in this subject was first
published in the microwave journals [19]–[21]. Unfortunately,
the cited work suffered from many misunderstandings and mis-
interpretations and was the subject of controversy for some-
time. For example, the authors in [19]–[21] did not describe
their work in terms of evanescent wave propagation, which is
the underlying physical mechanism for the observed superlu-
minal group velocities in passive medium and confused the no-
tions of phase, group, “front”, and information velocities, im-
plying that they have transmitted “radio messages faster than
light.” Interestingly, under appropriate circumstances, the ex-
perimental setup used by the aforementioned authors has been
used by others to demonstrate the superluminal group velocities
in undersized waveguides or slightly misaligned horn antennas
[4], [6], [22], [23].

In this paper, the term “abnormal velocity” is used to identify
two general categories. In one case, the group velocity is positive
and exceeds the speed of light in vacuum (superluminal), and in
the other case, the group velocity and, hence the group delay, is
negative. As an example of the former case, we experimentally
study the wave propagation through the bandgap of a one-di-
mensional photonic crystal (1-DPC), in both the frequency and
time domain. In the frequency domain we rely on measuring the
transmission phase and the group delay, and it is observed that
the group delay for the attenuated traveling waves propagating
through the 1-DPC, while positive, is less than the length of the

1To be complete, one has to add the term “signal velocity” defined as the
velocity of the half-maximum point to the above list. However, by their own
admission, such a definition is arbitrary and as discussed in [1] can become
superluminal.

2We have used the term “attenuated traveling waves” in the same sense as in
[17], although sometimes the term evanescent is used to signify the same thing.
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1-DPC divided by , hence implying a superluminal group ve-
locity. In the time-domain experiment, the time-of-flight for a
single tunneling wave packet tuned to the bandgap of the 1-DPC
is directly compared to a wave packet traveling an equal distance
in air (vacuum).

Wave propagation through a medium with negative index of
refraction (NIR) is an example of the second category of the ab-
normal velocities, in which the group velocity and group delay
can be negative. In light of the recent interests in such meta-
materials, also sometimes referred to as the left-handed-media
(LHM), and the confusion surrounding the meaning, necessity,
and existence of the negative group velocity for these meta-
materials [24]–[28], a systematic study of this subject is war-
ranted. In Section IV, we theoretically study the wave propaga-
tion through a slab or multiple slabs having an NIR. It is ob-
served that such media can in principle support both negative
phase and group velocities in addition to positive group and neg-
ative phase velocities, i.e., backward waves [29, pp. 263].

In light of the experimental and theoretical evidences for
superluminal and negative group velocities presented here and
elsewhere, a question remains to be answered. How do these
anomalous behaviors comply with the principles of special
relativity which require that no signal (information) travel faster
than . To answer this question the important subject of “front”
is reintroduced. It is argued that from a purely theoretical point
of view, genuine information carried by an electromagnetic
pulse (or pulses) is to be associated with the pulse “front” and
the field oscillations immediately following the “front”, i.e.,
the Sommerfeld forerunner.

This paper is organized as follows. In Sections II and III
the experimental evidence of superluminal behavior in the fre-
quency and time domain are presented. The subject of negative
group velocity and wave propagation in a medium having an ef-
fective NIR is discussed in Section IV. The important topic of
the “front” and its relation to the Einstein causality is discussed
in Section V. Our final thoughts and remarks are summarized in
Section VI.

II. M EASURING SUPERLUMINAL GROUP VELOCITY IN

FREQUENCYDOMAIN

Setup used to measure the group delay and hence the group
velocity for a 1-DPC in the frequency domain is shown in Fig. 1.

In order to properly measure the superluminal group veloci-
ties in the frequency domainaccurateandreliable knowledge
of the transmission phase is necessary. For anoncoaxialor free-
spacesetup shown in Fig. 1, the implementation of a conven-
tional short-open-load and thru (SOLT) calibration is difficult,
if not impossible [30]. Furthermore, in our measurement, it is
pivotal to ensure that insertion losses and phase delays associ-
ated with the setup (particularly the antennas, waveguide to an-
tennas transitions, and the air segments surrounding the 1-DPC)
are removed, and a reference plane is established at a point be-
tween the two antennas and at their respective far-fields. To
this end , a thru-reflect-line (TRL) calibration is used [31, pp.
217–222], [30], [32]. The “thru” standard is a free-space trans-
mission line of the length 58.9 cm, while the “line” standard is
a free-space transmission line of the length 59.24 cm, and the

Fig. 1. Setup used in the frequency domain. It consists of a standard horn
antenna (SHA), vector network analyzer (VNA), and collimating lenses.

“reflect” is a copper plate set midway between the transmitter
and receiver. The accuracy and precision of the setup and the
calibration scheme was tested by using the setup to measure the
transmission function and consequently obtaining the index of
refraction for slabs of Polycarbonate, Teflon, and PVC. At the
respective frequency range (18 to 26 GHz), the comparison be-
tween the published results and our measurements were very
good [33], implying the veracity of our technique.

By performing the TRL calibration, a reference plane of unit
magnitude and zero phase for the transmission, at the midway
point between the two standard horn antennas (SHA), was es-
tablished. The 1-DPC was then inserted between the two col-
limating lenses, and the receiver antenna was moved backward
a distance equal to the physical thickness of the 1-DPC .
Fig. 2(a) and (b) shows the measured and calculated transmis-
sion magnitudes and unwrapped phases for 1-DPC’s with one,
two, and three Eccostock® dielectric slabs .

The thickness and the index of refraction for the dielectric
slabs were 1.33 cm and , respectively, whereas the
air spacer region had a thickness of 1.76 cm and index of unity.
The theoretical curves were obtained using the procedure de-
scribed in [2].

We expect to observe the superluminal behavior for frequen-
cies within the bandgap of the 1-DPC, for which in the limit of
an infinitely long 1-DPC, the waves are evanescent and acquire
no insertion phase as they propagate. Clearly, as the number
of slabs is increased, our finite 1-DPC better approximates
the infinitely long 1-DPC. At the same time, due to the strong
attenuation of the transmitted signal [see Fig. 2(a)], it becomes
more difficult to accurately and reliably measure the trans-
mission magnitude and phase. Consequently, the comparison
between the detected and calculated transmission functions
worsens as the number of layers are increased.

The group delay and group velocity are related to the trans-
mission phase according to

(1)

and

(2)

where is the transmission function, is the radial frequency,
and is given by

(3)

In (3), and are the dielectric thickness and spacer thickness,
respectively.
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(a)

(b)

Fig. 2. Measured and calculated transmission magnitudes and unwrapped
phases for the 1-DPC with one, two, or three, Eccostock dielectric slabs:
(a) transmission magnitude and (b) transmission phase.

Equations (1) and (2) imply that in order to acquire the group
delay and group velocity from the measured phase information,
curves in Fig. 2(b) must be differentiated. However, differen-
tiating noisy3 data is a challenging task, and smoothing the
curves prior to differentiation is a notoriously arbitrary process
that may introduce artificial results. To avoid this, we have ob-
tained a nonlinear least square fit to the experimental phase data.
The best least square fit to the data can be obtained as a function
of the dielectric thickness , spacer thickness , and the
real part of the Eccostock® index of refraction . A Fortran
program based on the IMSL subroutine DBCLSF, which uses
a modified Levenberg–Marquardt algorithm and a finite-differ-
ence Jacobian, is used to obtain the best least square fit. Fig. 3
shows the result of the least square fit of the phase data together
with applying (1), in order to determine the group delay for
a 1-DPC with one, two, and three Eccostock dielectric slabs.

3Note that the vertical axis for the unwrapped phase in Fig. 2(b) spans a large
range (�200 to�1200 degree). Consequently, the effects of noise on the phase
data is not immediately evident from Fig. 2(b). A closer examination of the
wrapped phase for the frequencies within the stop-band, however, shows a small
yet detectable variation of the phase.

Fig. 3. Measured and calculated group delay for the 1-DPC. The parameters
used to obtain the fitted curves (measurement) and the calculated curves (theory)
are given in Table I.

TABLE I
FITTED AND MEASURED PARAMETERS FOR1-DPC WITH 1, 2,

AND 3 DIELECTRIC SLABS

The fitting parameters for the case of and the
measured values of these parameters are given in Table I.

Having acquired the group delay, the normalized group ve-
locity can easily be obtained from (2) and (3). This is shown in
Fig. 4, where in addition to velocities derived from the measure-
ments (dotted curves), the theoretical values for group velocities
are also shown (solid curves).

A closer examination of Fig. 4 reveals that while one di-
electric slab is inadequate to produce superluminal
group velocity, two slabs are sufficient to set up the interfer-
ences resulting in a group velocity exceeding. In the case of

, a maximum superluminal group velocity 2.1 times
is observed. Finally, for the normalized group velocities shown
in Fig. 4 a detailed analysis of the experimental errors can be
found in [33]. The conclusion of these analyses is the fact that
the maximum error due to the experimental uncertainties asso-
ciated with the index of refraction of the dielectric slab, the slab
thickness, and the spacer thickness are less than 0.14, with an
error even smaller than 0.14 in the range for which maximum su-
perluminal behavior is observed. In short, none of the above ex-
perimental uncertainties are large enough to place the depicted
superluminal group velocities below the “light line.”

From the theoretical and experimental results presented in
this section, it is evident that for the frequencies within the
bandgap of a passive structure such as 1-DPC, the group delay
while positive (see Fig. 3) is less than the physical length of the
1-DPC divided by . This in turn implies a
positive and superluminal group velocity for these frequencies

. In Section III, a setup is used to further measure
the superluminal group velocity directly in the time domain.
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Fig. 4. Normalized group velocity for the 1-DPC. The dotted curves are the
measured results obtained from the fitted curves in Fig. 3 and (2). The solid
curves are theoretically calculated.

III. M EASURING SUPERLUMINAL GROUPVELOCITY IN TIME

DOMAIN

In Section II, a frequency-domain setup was used to detect the
superluminal group delays and group veloci-
ties for a 1-DPC. A more elegant approach is to observe this ab-
normal behavior directly in the time domain, verifying the fact
that the envelope of a wave packettuned to the stop-bandof a
photonic crystal propagates superluminally. To accomplish this,
a 1-DPC consisting of five alternating layers of Polycarbonate

and air was designed to have a stop-band
at 9.68 GHz (the center frequency of our source). Fig. 5 shows
the experimental setup.

A backward wave oscillator (BWO) was used to generate
the microwave pulse, and a mode converter (MC) was used to
convert the mode of the BWO to a . The pulse was
then radiated via a conical horn antenna (CHA). The frequency
output of the source was tuned to the mid-gap frequency of the
1-DPC at 9.68 GHz (full-width at half-maximum (FWHM) of
100 MHz) and was detected by two HP 8470-B, Schottky diode
detectors (provided in pair). Two single-channel Tektronix
SCD-5000 fast oscilloscopes (4.5 GHz bandwidth) were used
to display the pulse traces. In order to ensure that the two
oscilloscopes were triggered as close to each other as possible,
a line from the accelerator section of the BWO was connected
to a fast Pico-second pulse generator, PSPL-model 4500E,
which in turn was used to trigger the Tektronix scopes. The
pulse generator was capable of producing trigger pulses with
very sharp raise time (10% to 90% rise time of roughly 100 ps)
and consequently was used to ensure that in the worst case
scenario the scopes were triggered within 20 ps from each
other.

The CHA radiation intensity was sampled along two distinct
directions (paths), referred to as “side” and “center.” A series

Fig. 5. Setup used in the time-domain experiment.

Fig. 6. The “center” and “side” pulses without the 1-DPC present. The
pre-existing delays between the two paths are electronically removed such that
the peaks of the two pulses arrive at the same time.

of microwave pulses were fired in order to measure and then
remove the time-delay differences between the two paths due
to differences in the cable lengths, internal detection of the os-
cilloscopes (Tektronix SCD 5000), and other incompatibilities.
Fig. 6 shows the normalized4 wave packets after the setup delay
has been compensated, such that the peaks corresponding to the
pulses traveling through the “center” and “side” paths, in the
absence of the 1-DPC, have arrived at the same time. At this
point, the 1-DPC was inserted along the “center” path and a se-
ries of single pulses were fired. Fig. 7 shows the result for the
average of five pulses. From the figure, it is clear that the peak
of the wave packet propagating along the “center” path and tun-
neling through the 1-DPC has arrived ps earlier than the
accompanying pulse propagating through the free-space along
the “side” path. For a well-behaved wave packet, the theoretical
value of the time-shift for the pulse peak can be obtained from
(4) in which the is the group delay

(4)

In the case of the 1-DPC studied here, the was 22.75 cm
and the was calculated to be 320 ps at 9.68 GHz. Using these
values in (4), a theoretical value of ps was obtained
which is in good agreement with the experimentally measured

4Each wave packet is normalized to its respective maximum amplitude.
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Fig. 7. The 1-DPC was inserted along the “center” path. The tunneling pulse
(“center”) has shifted to earlier times by(440� 20) ps.

value of . The advancement in time for the tunneling
pulse can easily be translated to a measure of the wave
packet group velocity according to

(5)

Equation (5) indicates that the tunneling wave packet propa-
gated with a group velocity as compared to the
theoretically calculated value of 2.37.

In order to assure that the observed superluminal behavior
is not the consequence of mere chance and random effects, the
curves depicted in Figs. 6 and 7 are each the average of five
pulses. However, in any averaging processes the point to be con-
cerned about is the similarity (in terms of the mean) between
the averaged quantity and its constituents. The quantity that best
measures the similarities or differences between multiple sets of
data is well known as thestandard error[34, pp. 609–610], and
for the data shown in Figs. 6 and 7 themaximumstandard error
was 0.0097 (corresponding to maximum variance of 0.09) for
the curve labeled “side,” depicted in Fig. 6. Clearly, the small
magnitude of our maximum standard error implies that the con-
stituents of our averaged curves closely resemble the resultant
averaged curves.

The traditional point of view has commonly regarded the
group velocity in the region of anomalous dispersion for which
a large amount of attenuation and dispersion accompanies the
wave packet, as an unphysical quantity. For example, Landau
and Lifshitz state: “When considerable absorption occurs. The
group velocity cannot be used, since in an absorbing medium
wave packets are not propagated but rapidly ironed out” [35].
Brillouin expresses the same sentiment when stating “…but if
absorption also occurs, a (the wave number) becomes complex
or imaginary and the group velocity ceases to have a clear phys-
ical meaning” [36, pp. 75].

For this reason, it is important to compare the waveforms
prior to and after tunneling in the experiment described above.
Fig. 8 shows that in contrast to this common belief, the tun-
neling wave packet of Fig. 7 suffers minimal dispersion such
that the FWHM of the pulse after tunneling was only increased
by 1.5%. In obtaining this figure, the tunneling wave packet was

Fig. 8. A comparison between the tunneling and the free-space pulse
propagating along the “center” path. The tunneling pulse has been manually
shifted to later times in order to make the comparison easier.

manually moved to later times in order to make the comparison
between the two pulses easier. The reader must note that, for the
purpose of comparison, the curves in Figs. 6–8 are normalized
to their respective maximum (note the arbitrary units). However,
in terms of the actual units the maximum amplitude of the curve
labeled “center”, Tunneling in Figs. 7 and 8, has been reduced
by a factor of 2.8 as compared to the maximum amplitude of
the curve labeled “center” in Fig. 6. This reduction in amplitude
is the result of evanescent propagation of the tunneling wave
packet through the bandgap of the 1-DPC.

The physical meaning of superluminal group velocities dis-
cussed in Sections II and III can be understood as the following.
For a well-behaved wave packet propagating through a medium
capable of supporting superluminal group velocities, the peak
of the wave packet (although reduced in magnitude) always ar-
rives sooner than a similar wave packet traveling the same dis-
tance in vacuum. In the cases studied so far, the group velocity
and group delay are positive and superluminal. In Section IV,
we consider the second category of the abnormal velocities for
which the group velocity and group delay are negative.

IV. NEGATIVE GROUPVELOCITY IN META MATERIALS

For the second category of our abnormal velocities, we con-
sider the case of negative group velocity and negative group
delay (a group advance). With the recent possibilities in man-
ufacturing a media having a negative index of refraction (NIR),
also referred to as LHM or meta-materials [25]–[27], [37], [38],
the subject of negative group velocity deserves some attention.

Unfortunately, this subject suffers from misunderstandings
and misconceptions, particularly as to the connection between
LHM and negative group velocities. For example, it has been
suggested that a negative group velocity is a necessary signa-
ture of the LHM [25] and has been stated that the term LHM
is to be understood as substances with negative group veloci-
ties [24] and that the left-handed medium has a band with neg-
ative group velocity [26]. On the other hand, experimental and
theoretical studies presented thus far only consider the case of
antiparallel phase and group velocities (backward waves) for
which thegroup velocity is positiveand points away from the
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Fig. 9. Real and imaginary parts of the effective index of refraction for
meta-material. The parameters used in obtaining this figure and the remaining
figures in this section are:! = 0, ! = 2� � 21, ! = 2� � 28,
! = 2� � 24:5 (GHz),  = 1:6 � 10 , and = 4 � 10 (1/s),
respectively.

radiating source, while the phase velocity is negative and points
toward the source [27], [37], [39]. While a full treatment of the
presence of positive and negative group velocities in meta-mate-
rials must rely on many considerations [40], [41], here, a simple
model is used to clarify some aspects of the problem.

Consider a medium having an effective electric and magnetic
responses characterized by [37]

(6)

and by

(7)

where , are the electric and magnetic plasma frequen-
cies and , are the electric and magnetic resonance fre-
quencies, respectively. The and are the phenomenolog-
ical electric and magnetic damping constants. In regions for
which the real parts of the effective permeability and permit-
tivity are both negative, the index of refraction is also negative
[26]. These regions are of particular interest to us. Fig. 9 shows
the real and imaginary parts of the effective index calculated
from .

To calculate the transmission coefficient through a slab of
NIR material of thickness , consider the geometry shown in
Fig. 10. The slab is irradiated by plane waves from a source lo-
cated to its left at negativevalues. The transmission coefficient
(magnitude and phase) can then be calculated according to

(8)

where and are the Fresnel transmission and reflection
coefficients corresponding to the slab boundaries andis given
by

(9)

In the following, we assume that the LHM is surrounded by
vacuum and is illuminated at normal incidence

.

Fig. 10. A slab of meta-material illuminated by a plane wave source.

Fig. 11. Transmission magnitude and phase for a 2.5-mm thick meta-material
slab.

Fig. 12. Group delay and the real part of the effective index for a slab of
meta-material 2.5-mm thick.

Fig. 11 shows the transmission function (magnitude and
phase) for a left-handed slab 2.5-mm thick. Note that in the
vicinity of minimal transmission, corresponding to the region
of anomalous dispersion, the slope of the transmission phase
changes sign, consequently implying a change of the sign for
the group delay .

The group delay and the real part of the index are plotted in
Fig. 12. From the figure it is evident that group delay, and hence
the group velocity, are negative within the region of anomalous
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dispersion and are positive away from it. Note that at frequency
GHz the group delay changes sign from negative

to positive, while the refractive index remains negative. This
implies that for frequencies greater thanthe group velocity
is positive, whereas the phase velocity remains negative, cor-
responding to the backward wave propagation discussed ear-
lier. The fact that the group velocity is positive for frequencies
greater than can also be seen from the behavior of the index of
refraction in Fig. 12. In this frequency range is pos-
itive and larger than , indicating a positive value for the group
velocity calculated from5

(10)

where is the group index. The existence of regions of nega-
tive group/negative phase velocities and positive group/negative
phase velocities (backward waves) are also verified by the full
wave simulations, the results of which will be presented else-
where.

Since, until now [42], none of the experimental and theoret-
ical work with the left-handed materials were carried within the
region of anomalous dispersion, they all present the operation
within the backward wave region. In this regard, the use of the
term negative group velocity in connection with these work is in-
correct. The concept of negative group velocity (negative group
delay) for a medium characterized by a transmission function

has a well-defined meaning. It simply means that the peak
of the output pulse is advanced in time (negative delay) such that
it appears before the peak of the input pulse [18, pp. 326].

The fact that within the regions of anomalous dispersion
group velocity can become negative was predicted by Garret
and McCumber [43] and has been experimentally verified by
some [44]–[46]. Therefore, in this respect, a reader may ask
how the regions of anomalous dispersion in meta-materials
may be different from the same regions in normal materials. To
answer this question two observations can be made. First, con-
sider the frequency range (or points) for which the dispersion
is minimal, i.e., . In the vicinity of these points the
group and phase velocities are approximately equal and given
by

(11)

which is clearly negative in contrast to the case of normal ma-
terials. Second, in the region of anomalous dispersion for ordi-
nary materials the phase velocity is positive and group velocity
is negative, whereas in the region of anomalous dispersion for
meta-materials both the phase and group velocities are nega-
tive. Away from the region of anomalous dispersion, the ordi-
nary materials behave normally with both positive group and
phase velocities, whereas the meta-material supports the back-
ward waves.

Finally, note that the negative refractive index is an artificial
dispersion in which the characteristics of the underlying sub-

5Equation (10) assumes perfect matching between the slab and the sur-
rounding media, i.e.,r = r = 0. The effects of mismatches which
produce positive delays will not alter the conclusions presented here. Note that
the expression for group velocity in (2) automatically takes the mismatches
into account.

Fig. 13. The Group delay for a multilayer made of seven LHM slabs. The
meta-material slab and the air spacer are each 2.5-mm thick. In the case of
detuned multilayer, the magnetic resonance of each layer has been changed
by 1%.

wavelength structures control the overall dispersive behavior of
the media. These underlying unit cells consist of split ring res-
onators and conducting rods in the University of San Diego ap-
proach [26] and are loaded inductor/capacitor elements in the
University of Toronto approach [2], [40], [47]. In both of these
approaches, it is possible to introduce closely placed resonances
(detuning) in order to increase the region of anomalous disper-
sion bandwidth and consequently increase the negative group
delay bandwidth. As a proof of the concept, in Fig. 13 we show
the case of the group delay for a 1-DPC consisted of seven al-
ternating layers of LHM and air (solid curve). In addition, the
figure also displays the group delay for the same structure, how-
ever, in which the magnetic resonance of each slab has
gradually been changed by 1% (dashed curve). As the figure
indicates, for this detuned multilayer, the frequency spectrum
over which the negative group delay is observed has increased
by approximately 80%, although the delay is less negative. In
short, where in the cases of anomalous dispersion in normal ma-
terials one ismorelimited by the underlying atomic-molecular
dipolar dispersions, for meta-materials in general, and within
the region of anomalous dispersion in particular, the subwave-
length macroscopic structures are analogous to the molecular
dipoles, but can more easily be tailored to meet a particular de-
sign requirement.

V. FRONT AND INFORMATION IN PASSIVE MEDIA

In Sections II–IV, we have discussed situations for which the
group velocities are abnormal, i.e., are superluminal or nega-
tive. Furthermore, many theoretical and few experimental work
have implied that it is possible to obtain these abnormal veloci-
ties without the attenuation observed here [11], [13], [44]–[46],
[48]. Therefore, it is natural to ask whether or not these ab-
normal behaviors are consistent with the requirements of spe-
cial relativity, which demands no information can be transmitted
faster than the speed of light in vacuum. To answer this ques-
tion, we must distinguish between the requirements of the first
principles (Einstein Causality), and what a “ practical” detection
system may use in order to extract the information conveyed by
an electromagnetic pulse or series of pulses. This section deals
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with the former aspect of the problem. Here, it is argued that
superluminal propagation of the envelope does not imply su-
perluminal transmission of information, since under no circum-
stances does the so-called “front” velocity exceed the speed of
light in vacuum. This means that the presence of genuine in-
formation should not be associated with the pulse maximum or
half-maximum, but must be related to the points of nonanalyt-
icity of the information carrying signal.

When discussing the “front” we must emphasize the fact that
anyphysically realizablesignal is restrictively time limited. In
other words, any electromagnetic signal generated must have a
beginning in time (i.e., a “front”). One can then always point to
a time prior to which the signal did not exist. For example, no
physically acceptable model can imply that the wave packets
displayed in Figs. 6 and 7 existed prior to the experimenter
pushing the button to discharge the BWO capacitance bank. In
fact, in the general discipline of signal processing, the signals
discussed here appropriately carry the name of “causal signals”
for which the ordinary limits of the convolution in-
tegral are replaced by zero and , as given in (11) [49, pp.
13, 85]–[52, pp. 35, 49–51]

(12)

In (12), is the input function (the incident wave packet),
where for and is the system response
function. Some authors have argued physical signals posses no
fronts since they are bandwidth limited [53], [54]. Clearly, ac-
cepting this definition for physically realizable signal, in which
the wave packet spectrum is identically zero above and below
a certain frequency (strictly bandwidth limited), would lead to
the conclusion that such a signal has existed from to

, 6 a condition unacceptable on the physical ground.
An analogous situation in designing an ideal filter also exists,
in which it is well known that ideal strictly bandwidth limited,
low-pass, high-pass, or band-pass filters are physically unreal-
izable [50, pp. 125], [52, pp. 95]. Finally, any signal used for
communication would have an “end-time, ” at which the signal
level has dropped below the noise floor. However, the existence
or lack thereof the “end-time” for a causal signal will not effect
our conclusions regarding the luminal speed of the “front.”

The proof that no signal (information) may be detected sooner
than can be seen via contour integration of an expres-
sion such as (13). Equation (13) describes the field at position
and time for a wave packet impinging at normal incidence on
a semi-infinitemedium characterized by an index of refraction,

[18]

(13)

6The reader may convince himself, by considering the Inverse Fourier Trans-
form of a frequency-domain Rectangular function, which produces aSinc func-
tion in the time domain.

Transforming the integral in (13) into the complex domain and
closing the contour over the upper-half-plane along with the
requirement that the medium characterized byis causal and
that the incident wave packet has a “front” are sufficient condi-
tions to show that the value of the integral is identically zero for

, or equally for velocities . The con-
dition that the medium characterized byis causal means that
for this medium the effect cannot proceed the cause. Mathemat-
ically this is expressed as for , where is
the susceptibility kernel given by

(14)

The importance of the points of nonanalyticity as the “true”
conveyers of information becomes clear by the following
thought experiment. Suppose a noiseless superluminal medium
(channel) is designed in which, while the peak of a well-be-
haved wave packet is shifted to earlier times, its amplitude
remains unchanged. One may think of such medium as a
combination of the passive and active structure described here
and in [45], [46]. We then use a set of two pulses, having the
maximum values of High (H) and Low (L), to convey a binary
information. For example, it is hot (H) or it is cold (L). If we
decide to present the information carrying signal as a truly
analytical function such as Gaussian, then by definition our
Gaussian posses infinite number of derivatives and as such is
granted a Taylor expansion about any one point in time. In
other words, given a point and a small neighborhood, we can
correctly predict the future behavior of the pulse including the
maximum amplitude of our Gaussian (H or L) or extrapolate
to the past and describe the wave packet behavior at an earlier
time. However, as stated earlier a true Gaussian extending from
( ) is not a causal signal, whereas a modified Gaussian
having a “front” can be used to present our causal information
carrying signal. Now, let us repeat or analytical continuation
argument for our causal Gaussian function. The question we
like to answer is the following. What is the earliest time interval
from which we can correctly predict the future value of our
information carrying signal (H or L). For this noiseless channel,
the earliest possible time is , since is by definition
a point of nonanalyticity for which the Taylor expansion does
not exist. Therefore, in this sense, the genuine information
regarding the correct value of our causal signal (H or L) is
contained within the time interval beginning with (the
“front”) and times immediately following it. In a practical noisy
channel, the duration of this time interval depends on many
experimental conditions such as the channel noise, the signal
amplitude, the detection system, the behavior of the signal at
the turn-on (the order of the discontinuous derivative), etc.
Times immediately after are the beginning of the field
oscillations known as the Sommerfeld and Brillouin forerunner,
a subject that deserves its own exclusive consideration.

VI. CONCLUSION

A frequency-domain setup is used to measure the group delay
and hence the group velocity at frequencies within the 1-DPC
stop band. It is observed that for these frequencies, the group
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delay (while positive) is less than the length of the 1-DPC di-
vided by . This implies a superluminal group velocity for fre-
quencies tuned to the stop band of the structure. To directly
verify these results, a time-domain setup is used to measure
the propagation time and hence the group velocity of a single
electromagnetic wave packet tunneling through a 1-DPC. Once
again, it is observed that the tunneling pulse, while preserving
its overall shape, travels faster than the companion wave packet
traversing the same distance in air (vacuum). Furthermore, with
recent interests in media having a negative index of refraction,
and the confusion surrounding the existence and the meaning
of negative group velocity in such materials, this subject is con-
sidered in some detail. In light of the unorthodox nature of the
superluminal behavior, the relation between the observed phe-
nomenon and the requirements of Einstein causality is investi-
gated. It is shown that under all circumstances the “front” ve-
locity is exactly luminal, and there are no inconsistencies with
the requirements of causality.
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