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Abstract: In the article, the existence of solutions for the Van der Pol differential equation is proved,
and the approximate structure of such solutions in the analyticity domain is obtained. In the proof,
the majorant method was applied not to the right side of the differential equation, as per usual, but
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1. Introduction

Some problems of the theory of nonlinear oscillations lead to the necessity to solve
the nonlinear Van der Pol differential equation [1–6]. The given equation describes both
self-oscillations and the process of their establishment [1]. The energy for self-oscillations is
supplied with small-amplitude oscillations [3–6]. For instance, this equation arises in the
study of chains containing vacuum tubes. The Van der Pol equation describes the universal
mechanism of the appearance of self-oscillations through the Andronov–Hopf bifurcation
and proves the possibility of both quasi-harmonic and relaxation oscillations [7,8]. Relax-
ation oscillations reduce to the study of solutions of the corresponding differential system
of two first-order equations with a small parameter at the derivative [9]. This equation is a
mathematical model (with a number of simplifying assumptions) of a triode tube study of
solutions of the corresponding differential system of two first-order equations with a small
parameter at the derivative [9]. This equation is a mathematical model (with a number
of simplifying assumptions) of a triode tube oscillator in the case of a cubic characteristic
of the lamp. In studying the Van der Pol equation, qualitative and asymptotic theories
of ordinary differential equations are widely used [7–11]. In recent decades, the Van der
Pol equation has been used in modeling the vibrational movements of a human limb, in a
model of exciting and inhibiting neural interactions, in modeling a bipedal musculoskeletal
system, in plasma oscillations, and in neural networks when processing and transmitting
information, etc. [2,12].

When studying the Van der Pol equation by methods of the qualitative theory of
differential equations, the expression for solutions themselves remains behind the scenes
and is often ignored [7]. The application of the asymptotic theory of differential equations
faces a serious question: what should we do with moving singular points? Thus far, there is
no answer to this question. As all the numerical methods for solving differential equations
do not work effectively in the complex domain, we apply an analytical approximate method,
when the structure of the solution is expressed as some terms of power series. Since the Van
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der Pol equation is nonlinear, the existence region for solutions is divided into two parts:
analyticity regions and the neighborhoods of moving singular points. In this paper, we
propose a modification of the classical majorant method [13] for the domain of analyticity,
which was effectively implemented to study a number of classes of nonlinear differential
equations [14–18]. The author’s analytical method includes solving six problems that are
formulated and solved for some nonlinear differential equations in the papers [14–17]:

(1) Proof of the theorem of existence and uniqueness in the domain of analyticity and
building the analytical approximate solution;

(2) Proof of the theorem of existence and uniqueness in the neighborhood of a movable
singular point and building the analytical approximate solution;

(3) Influence of perturbation of a movable singular point on the structure of the analytical
approximate solution in the neighborhood of a movable singular point;

(4) Obtaining exact criteria for the existence of moving singular points (necessary, neces-
sary and sufficient conditions);

(5) Influence of perturbation of the initial data on the structure of the analytical approxi-
mate solution in the domain of analyticity;

(6) On the exact boundaries of the application area of the analytical approximate solution
in the neighborhood of the approximate value of the movable singular point.

In this paper, we are focused on solving the first problem only.
The development of the proposed author’s method for differential equations of the

second and third orders can be found in [19–21].
Let us consider the initial problem for the Van der Pol equation

d2w
dz2 = −a(w2 − 1)

dw
dz
− w, (1)

w(z0) = w0, w′(z0) = w1, (2)

where a = const is a real parameter. We formulate and prove the existence and uniqueness
theorem for solutions of problems (1)–(2) in the analyticity domain.

2. Main Result for the Case |a| ≥ 1

Theorem 1. Solution to the initial problem (1)–(2), where |a| = const ≥ 1 is an analytic function

w(z) =
∞

∑
n=0

Cn(z− z0)
n (3)

in the domain
|z− z0| < ρ, (4)

where
ρ =

1
| a | M(M + 2)

, M = max{|w0|, |w1|}. (5)

Proof. We will apply the modified majorant method. Assuming that the solution to
problem (1)–(2) is an analytic function (3), we will show the uniqueness of the coefficients
of the series (3) and obtain a formula for calculating the domain in which the series (3) is
convergent. Substituting (3) into Equation (1), we obtain

∞

∑
n=2

Cn n(n− 1)(z− z0)
n−2 = −a

∞

∑
n=0

C∗∗∗n (z− z0)
n −

∞

∑
n=0

Cn(z− z0)
n, (6)

where

(w2 − 1) w′ =
∞

∑
n=0

C∗∗∗n (z− z0)
n;
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(w2 − 1) =
∞

∑
n=0

C∗∗n (z− z0)
n; w2 =

∞

∑
n=0

C∗n(z− z0)
n; C∗n =

n

∑
i=0

Ci Cn−i; (7)

C∗∗0 = C∗0 − 1; C∗∗n = C∗n ∀n = 1, 2, ...; C∗∗∗n =
n

∑
i=0

C∗∗i (n + 1− i) Cn+1−i;

from (6), we derive the recurrence relation for calculating the coefficients:

Cn n(n− 1) = −a C∗∗∗n−2 − Cn−2. (8)

The relation (8) guarantees the uniqueness of the coefficients Cn. The initial condi-
tion (2) determines the values of the coefficients C0 and C1. From (8), we find expressions

C2 = −1
2
(aC2

0C1 − aC1 + C0);

C3 = −1
6
(a(−aC4

0C1 + 2aC2
0C1 − C3

0 − aC1 + C0 + 2C0C2
1) + C1). (9)

Based on the structure of the coefficients Cn (n > 2), we check the estimation hypothe-
sis for the coefficients Cn:

|Cn| ≤
| a |n−1 Mn−1

n(n− 1)
(M + 2)n, (10)

where M = max{|w0|, |w1|} and satisfies the conditions of the theorem. Indeed, from (8),
it follows

|Cn+1| =|
1

n(n + 1)
(C∗∗∗n−1 − Cn−1) |

=| 1
n(n + 1)

(−a
n−1

∑
i=0

C∗∗i (n− i)Cn−i − Cn−1) |

≤ 1
n(n + 1)

| −a
n−1

∑
i=0

C∗i (n− i)Cn−i − Cn−1 |

≤ 1
n(n + 1)

| −a
( n−1

∑
i=0

(
i

∑
j=0

| a |j−1 Mj−1

j∗(j− 1)∗
(M + 2)j | a |i−j−1 Mi−j−1(M + 2)i−j

(i− j)∗(i− j− 1)∗
)

× an−i−2Mn−i−2

(n− i− 1)∗
(M + 2)n−i

)
+

an−2Mn−2

(n− 1)(n− 2)
(M + 2)n−1|.

Taking into account relations

j∗ =
{

1, j = 0,
j, j = 1, 2, ...,

(j− 1)∗ =
{

1, j = 1,
j− 1, j = 0, 2, ...,

(i− j)∗ =
{

1, i = j,
i− j, i 6= j,

(i− j− 1)∗ =
{

1, i− j = 1,
j− 1, i− j 6= 1,

(n− j− 1)∗ =
{

1, i = n− 1,
n− i− 1, i 6= n− 1.

After some transformations, we obtain

|Cn+1| ≤
| a |n−1 Mn−2(M + 2)n−1

n(n + 1)
| n

n− 1
(M + 2) +

1
(n− 1)(n− 2)

|
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≤ | a |n Mn

(n + 1)n
(M + 2)n+1.

Consider the series
∞

∑
n=0

vn(z− z0)
n, (11)

where

vn =
| a |n−1 Mn−1

n(n− 1)
(M + 2)n.

It is a majorant for the series (3). The series (11) is convergent in the domain

|z− z0| < ρ, ρ =
1

| a | M(M + 2)
, (12)

therefore, the series (3) is also convergent in domain (12).

The Theorem 1 allows us to construct an analytic approximate solution in domain (12):

wN(z) =
N

∑
n=0

Cn(z− z0)
n. (13)

Theorem 2. For an analytical approximate solution (13) of the initial problem (1)–(2), provided
| a |= const ≥ 1, in domain (12), the error estimate is valid

∆wN(z) ≤
| a |N MN(M + 2)N+1 | z− z0 |N+1

(N + 1)(N + 2)(1− | a | M(M + 2) | z− z0 |)
, (14)

where M is determined by the Formula (5).

Proof. By definition

∆wN(z) =| w(z)− wN(z) |=|
∞

∑
n=N+1

Cn(z− z0)
n |

≤|
∞

∑
n=N+1

| a |n−1 Mn−1

n(n + 1)
(M + 2)n(z− z0)

n |≤ | a |N MN(M + 2)N+1 | z− z0 |N+1

(N + 1)(N + 2)(1− | a | M(M + 2) | z− z0 |)
.

3. Main Result for the Case |a| ≤ 1

In the case |a| ≤ 1, we prove the following existence and uniqueness theorem for the
solution to Equation (1) in the analytic domain.

Theorem 3. The solution to problem (1)–(2), where |a| ≤ 1, is an analytic function (3) in
the domain

| z− z0 |< ρ, where ρ =
1

M(M + 1)
. (15)

Proof. Similarly, as in Theorem 1, we substitute (3) into Equation (1) and so obtain the
relation (6) with the notation (7). The relation (6) leads to the recurrence relation (8), which
establishes the uniqueness of the coefficients Cn. Given the conditions of the theorem for
|a| ≤ 1, we prove the estimate for the coefficients Cn:

| Cn |≤
| a | Mn−1(M + 1)n + M

n(n− 1)
, (16)
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where M = max{| w0 |, | w1 |}. From (6)–(7), for n > 2, it follows

| Cn+1 |=
1

n(n + 1)
| C∗∗∗n−1 − Cn−1 |≤

1
n(n + 1)

| −a
n−1

∑
i=0

(
i

∑
j=0

CjCi−j)(n− i)Cn−i − Cn−1 |

≤ 1
n(n + 1)

| −a
( n−1

∑
i=0

(
i

∑
j=0

| a | Mj−1(M + 1)j + M
j∗(j− 1)∗

× | a | Mi−j−1(M + 1)i−j + M
(i− j)∗(i− j− 1)∗

)

× aMn−i−1(M + 1)n−i−1 + M
(n− i− 1)∗

)
+

aMn−2(M + 1)n−1 + M
(n− 1)(n− 2)

|,

where

C∗n =
n

∑
i=0

Ci Cn−i; C∗∗0 = C∗0 − 1; C∗∗n = C∗n ∀n = 1, 2, ...; C∗∗∗n =
n

∑
i=0

C∗∗i (n + 1− i) Cn+1−i,

(n− i− 1)∗ =
{

1, i = n− 1,
n− i− 1, i 6= n− 1.

After transformation, the last inequality yields

| Cn+1 |≤
1

n(n + 1)
| −a

Mn−3(M + 1)n−1n
n− 1

+
Mn−2 | a | (M + 1)n−1 + M

(n− 1)(n− 2)
|

≤ | a | Mn(M + 1)n+1 + M
n(n + 1)

= Bn.

Considering the next series
∞

∑
n=0

Bn(z− z0)
n,

converging in the domain

| z− z0 |< ρ, where ρ =
1

M(M + 1)

as majorants for the series (3), we obtain the proof for convergence of the series (3) in
domain (15).

Remark 1. In the case |a| = 1, the estimate (16) takes the form

| Cn |≤
M

n(n− 1)

and domain (15) becomes |z− z0| < 1.
The proved Theorem 3 allows us to obtain an a priori error estimate for the analytical approxi-

mate solution (13) in the case when |a| ≤ 1.

Theorem 4. For an analytical approximate solution (13) of the initial problem (1)–(2), provided
|a| ≤ 1 in domain (15), the following estimate is true

∆wN(z) ≤
| a | MN(M + 1)N+1 | z− z0 |N+1

N(N + 1)(1−M(M + 1) | z− z0 |)
+

M | z− z0 |N+1

N(N + 1)(1− | z− z0 |)
, (17)

where M = max{|w0|, |w1|}.
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Proof. Based on the classical approach, taking into account the estimate (14), we have

∆wN(z) = |w(z)− wN(z)| = |
∞

∑
n=N+1

Cn(z− z0)
n|

≤|
∞

∑
n=N+1

(aMn−1(M + 1)n + M)

n(n− 1)
(z− z0)

n |

≤ | a | MN(M + 1)N+1 | z− z0 |N+1

N(N + 1)(1−M(M + 1) | z− z0 |)
+

M | z− z0 |N+1

N(N + 1)(1− | z− z0 |)
.

An expression of an a priori error estimate is obtained for the domain

| z− z0 |< ρ,

where ρ = 1
M(M+1) .

Remark 2. In the case |a| = 1, the expression of the a priori estimate takes the form

∆wN(z) ≤
M | z− z0 |N+1

N(N + 1)(1− |z− z0|)

in the domain |z− z0| < 1.

Remark 3. The a priori estimate in Theorem 4 is more accurate than the estimate in Theorem 2,
and the domain given in Theorem 4 is wider than the domain given in Theorem 2.

4. Discussion of the Results

In this section, we provide calculations for three parameter values: a = 2 > 1, a = 1
and a = 0.01 < 1. Numerical characteristics of the solutions for each case are presented.
The theoretical results obtained are also valid for the real interval. Example 1 presents the
calculation result for the real domain, while examples 2 and 3 present calculations in the
complex domain.

Example 1. Let us consider the initial problem (1)–(2), a = 2, where

w0 = 0, w1 = 1/2. (18)

We will look for an approximate solution (13), where N = 10. Substituting (13) into
Equation (1) and taking into account the initial conditions (2), (18), we find an approximate solution
in the form

w =
3943

483840
z10 − 589

40320
z9 − 11

240
z8 − 41

560
z7

− 37
480

z6 − 3
80

z5 +
1
16

z4 +
1
4

z3 +
1
2

z2 +
1
2

z.
(19)

We estimate the error of the solution (19). According to (13), we find the value M = 1/2. The
convergence radius given by (15) is equal to

|z− z0| < 0.4 .

Consider z1 = 1/3 belonging to the region obtained above. The calculation results are shown
in Table 1.

Here, w9(z1) is an approximate solution, ∆w10 is an a priori error estimate, ∆1 is an a
posteriori error estimate. The a posteriori error estimate is the desired value of the error estimate,
which allows us to determine the structure of the analytical approximate solution (the value of N in
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Formula (13)). For an approximate solution (13) with accuracy ε = 10−5 (Theorem 2), N = 34 is
necessary. The summands from 11th to 34th in total do not exceed 10−5. Therefore, w9(z) in the
resulting domain has an accuracy of 10−5.

Table 1. Numerical characteristics of example 1.

z1 w10(z1) ∆w10 ∆1

1/3 0.231952 0.00611764 10−5

Example 2. For the approximate solution w10(z) (see (13)), taking into account the initial data

w0 = 0, w1 = 1 + i. (20)

and the parameter value |a| = 1, we have

w = −(1.00936− 1.02409i) · 10−5z10 + (6.84529 + 3.97563i) · 10−6z9

+(1.00027− 1.02223i) · 10−4z8 − (2.11626 + 1.94485) · 10−4z7

−(5.69272− 6.52594i) · 10−4z6 + (8.35417 + 8.3075i) · 10−3z5

+(8.33375− 24.9996i) · 10−4z4 − 0.16665(1 + i)z3 + 0.005(1 + i)z2 + (1 + i)z.

(21)

According to (12), we obtain the domain

|z− z0| <
1√

2(1 +
√

2)
.

We consider z1 = 1/4. The calculations for example 2 are presented in Table 2.
Here, w10(z1) is the value of analytical approximate solution, ∆w10(z1) is an a priori error

estimate, and ∆1 is an a posteriori error estimate. According to Theorem 2, we must take N = 37
for ∆1 = 10−5. The summands from the 11th to the 37th in the structure w37(z) do not exceed
ε = 10−5. Therefore, the obtained analytical approximate solution w10(z) in a given domain has
accuracy ε = 10−5.

Table 2. Numerical characteristics of example 2.

z1 w10(z1) ∆w10 ∆1

1/4 0.24772 + 0.247707 i 0.00769043 10−5

Example 3. For the initial conditions

w0 = 0, w1 = i (22)

and a = 10−2, we look for an approximate solution

w = iz + 0.005iz2 − 0.16665iz3 + 4.16667 · 10−8iz4 + 0.0083425iz5 − 2.63806 · 10−4iz6

−2.01388 · 10−4iz7 + 4.95973 · 10−5iz8 + 2.80602 · 10−6iz9 − 5.0754 · 10−6iz10
(23)

in the domain | z− z0 |< 1/2. For the value z1 = 1/3, the calculations are presented in Table 3.
Here, w10(z1) is the value of the approximate solution, ∆w10(z1) is an a priori error estimate

(Theorem 4), ∆1 is an a posteriori error estimate. According to Theorem 4, we must take N = 17
for ∆1 = 10−7. The summands from the 11th to the 17th in the structure w17(z) do not exceed
ε = 10−7. Therefore, the obtained analytical approximate solution has accuracy ε = 10−7.
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Table 3. Numerical characteristics of example 3.

z1 w10(z1) ∆w10 ∆1

1/3 0.327751i 3.22998 · 10−6 10−7

5. Conclusions

The existence theorem for solutions of the Van der Pol differential equation is proved,
and the structure of its analytical approximate solution in the analyticity domain is obtained.
In the proof of the theorem, a modified majorant method is used, which allows one to
obtain a constructive existence theorem: the fact of the existence of an analytic solution,
a formula for calculating the analytic domain, the structure of an approximate solution,
and a priori estimates for an approximate solution. Theoretical results are illustrated by
numerical study.
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