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Abstract. This paper is a continuation of the work initiated in [2] by
M. Luby and C. Rackoff on Feistel schemes used as pseudorandom per-
mutation generators. The aim of this paper is to study the qualitative
improvements of “strong pseudorandomness” of the Luby-Rackoff con-
struction when the number of rounds increase. We prove that for 6 rounds
(or more), the success probability of the distinguisher is reduced from
O

(
m2

2n

)
(for 3 or 4 rounds) to at most O

(
m4

23n + m2

22n

)
. (Here m denotes

the number of cleartext or ciphertext queries obtained by the enemy in
a dynamic way, and 2n denotes the number of bits of the cleartexts and
ciphertexts).
We then introduce two new concepts that are stronger than strong pseu-
dorandomness: “very strong pseudorandomness” and “homogeneous per-
mutations”. We explain why we think that those concepts are natural,
and we study the values k for which the Luby-Rackoff construction with
k rounds satisfy these notions.

1 Introduction

In their famous paper [2], M. Luby and C. Rackoff provided a construction of
pseudorandom permutations and strong pseudorandom permutations. (“Strong
pseudorandom permutations” are also called “super pseudorandom permuta-
tions”: here the distinguisher can access the permutation and the inverse per-
mutation at points of its choice.) The basic building block of the Luby-Rackoff
construction (L-R construction) is the so called Feistel permutation based on a
pseudorandom function defined by the key. Their construction consists of four
rounds of Feistel permutations (for strong pseudorandom permutations) or three
rounds of Feistel permutations (for pseudorandom permutations). Each round
involves an application of a different pseudorandom function. This L-R construc-
tion is very attractive for various reasons: it is elegant, the proof does not involve
any unproven hypothesis, almost all (secret key) block ciphers in use today are
based on Feistel schemes, and the number of rounds is very small (so that their
result may suggest ways of designing faster block ciphers).

The L-R construction inspired a considerable amount of research. One di-
rection of research was to improve the security bound obtained in the “main
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lemma” of [2] p. 381, i.e. to decrease the success probability of the distinguisher.
It was noticed (in [1] and [7]) that in a L-R construction with 3 or 4 rounds,
the security bound given in [2] was almost optimal. It was conjectured that for
more rounds, this security could be greatly improved ([7], [10]). However, the
analysis of these schemes appears to be very technical and difficult, so that some
transformations in the L-R construction were suggested, in order to simplify the
proofs ([1], [3], [4], [10]). However, by doing this, we lose the simplicity of the
original L-R construction.

In this paper, we study again this original L-R construction. In [9], it was
shown that the success probability of the distinguisher is reduced from O(

m2

2n

)
for 3 or 4 rounds of a L-R construction, to at most O(

m3

22n

)
for 5 rounds (pseu-

dorandom permutations) or 6 rounds (strong pseudorandom permutations) of a
L-R construction. (In these expressions, m denotes the number of cleartext or
ciphertext queries obtained by the enemy, and 2n denotes the number of bits of
the cleartexts and ciphertexts).

In part I of this paper, we further improve this result: we show that, for
6 rounds (or more), the success probability of the distinguisher is at most
O(

m4

23n + m2

22n

)
. Moreover, we know that a powerful distinguisher is always able

to distinguish a L-R construction from a random permutation when m ≥ 2n

(as noticed in [1], [3], [7]). Then, in part II of this paper, we introduce two new
concepts about permutation generators: “very strong pseudorandomness” and
“homogeneous permutations”. These concepts both imply that the generator is
a strong pseudorandom generator. We explain why we feel that it is natural
to introduce these notions, and we characterize the values k such that the L-R
constructions with k rounds satisfy (or not) these notions.

Finally we formulate a few open problems and we conclude.

Part I: Improved security bounds for Ψ 6

2 Notations

(These notations are similar to those of [3], [9] and [10].)

– In denotes the set of all n-bit strings, In = {0, 1}n.
– Fn denotes the set of all functions from In to In, and Bn denotes the set of

all such permutations (Bn ⊂ Fn).
– Let x and y be two bit strings of equal length, then x ⊕ y denotes their

bit-by-bit exclusive-or.
– For any f , g ∈ Fn, f ◦ g denotes their composition.
– For a, b ∈ In, [a, b] is the string of length 2n of I2n which is the concatenation

of a and b.
– Let f1 be a function of Fn. Let L, R, S and T be elements of In. Then by

definition:

Ψ(f1)[L, R] = [S, T ] ⇔ [(S = R) and (T = L ⊕ f1(R))].
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– Let f1, f2, ..., fk be k functions of Fn. Then by definition:

Ψk(f1, ..., fk) = Ψ(fk) ◦ ... ◦ Ψ(f2) ◦ Ψ(f1).

(When f1, ..., fk are randomly chosen in Fn, Ψk is the L-R construction with
k rounds.)

– We assume that the definitions of permutation generators, distinguishing
circuits, normal and inverse oracle gates are known. These definitions can
be found in [2] or [3] for example.

– Let φ be a distinguishing circuit. We will denote by φ(F ) its output (1 or 0)
when its oracle gates are given the values of a function F .

3 Our new theorem for Ψ6 and related work

In [2], M. Luby and C. Rackoff demonstrated how to construct a pseudorandom
permutation generator from a pseudorandom function generator. Their generator
was mainly based on the following theorem (called “main lemma” in [2] p. 381):

Theorem 1 (M. Luby and C. Rackoff). Let φ be a distinguishing circuit
with m oracle gates such that its oracle gates are given the values of a function
F from I2n to I2n. Let P1 be the probability that φ(F ) = 1 when f1, f2, f3 are
three independent functions randomly chosen in Fn and F = Ψ3(f1, f2, f3). Let
P ∗

1 be the probability that φ(F ) = 1 when F is a function randomly chosen in
F2n. Then for all distinguishing circuits φ:

|P1 − P ∗
1 | ≤ m2

2n
,

i.e. the security is guaranteed until m = O(2
n
2 ).

In [9], we proved the following theorem:

Theorem 2 (J. Patarin, [9]). Let φ be a super distinguishing circuit with m
oracle gates (a super distinguishing circuit can have normal or inverse oracle
gates). Let P1 be the probability that φ(F ) = 1 when f1, f2, f3, f4, f5, f6 are six
independent functions randomly chosen in Fn and F = Ψ6(f1, f2, f3, f4, f5, f6).
Let P ∗∗

1 be the probability that φ(F ) = 1 when F is a permutation randomly
chosen in B2n. Then:

|P1 − P ∗∗
1 | ≤ 5m3

22n
,

i.e. the security is guaranteed until m = O(2
2n
3 ).

Moreover, in [7] p. 310, we presented the following conjecture:
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Conjecture: For Ψ5, or perhaps Ψ6 or Ψ7, and for any distinguishing circuit
with m oracle gates, |P1 − P ∗

1 | ≤ 30m
2n (the number 30 is just an example).

As far as we know, nobody has yet proved this conjecture (if the conjecture is
true, then the security is guaranteed until m = O(2n)). As mentioned in [1] and
[3], the technical problems in analysing L-R construction with improved bounds
seem to be very difficult (moreover, our conjecture may be wrong...). However,
this part I makes a significant advance in the direction of this conjecture:

Theorem 3 (J. Patarin, this conference FSE’98). Using the same nota-
tions as in theorem 2:

|P1 − P ∗∗
1 | ≤ 47m4

23n
+

17m2

22n
,

i.e. the security is guaranteed until m = O(2
3n
4 ).

To prove this theorem 3, we first prove this “basic result”:

“Basic result”: Let [Li, Ri], 1 ≤ i ≤ m, be m distinct elements of I2n (“dis-
tinct” means that if i 6= j, then Li 6= Lj or Ri 6= Rj). Let [Si, Ti], 1 ≤ i ≤ m,
be also m distinct elements of I2n. Then the number H of 6-uples of functions
(f1, ..., f6) of F 6

n such that:

∀i, 1 ≤ i ≤ m, Ψ6(f1, ..., f6)[Li, Ri] = [Si, Ti]

satisfies:

H ≥ |Fn|6
22nm

(
1 − 47m4

23n
− 16m2

22n

)
.

Proof of the “basic result”: The proof of the “basic result” is given in the
next section.

Proof of theorem 3: The proof of theorem 3 is a direct consequence of the
“basic result” and the general theorems of the proof techniques given in [6] or
[8] or [9].

Remark: It can be noticed that – to prove theorem 3 – we just need a general
minoration of H (such as in the “basic result”) and we do not need both a general
minoration and majoration of H. This is particularly important since, as we will
see in section 6, no general majoration of H exists near the value |Fn|6

22nm .

4 Proof of the “basic result”: H ≥ |Fn|6
22nm

(
1 − 47m4

23n − 16m2

22n

)

4.1 Definition of (C)

Let [Xi, Pi] and [Qi, Yi], 1 ≤ i ≤ m, be the values such that:

Ψ2(f1, f2)[Li, Ri] = [Xi, Pi]
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and
Ψ4(f1, f2, f3, f4)[Li, Ri] = [Qi, Yi]

(i.e. [Li, Ri] are the inputs, [Xi, Pi] are the values after two rounds, [Qi, Yi] are
the values after four rounds, and [Si, Ti] are the output values after six rounds).

We denote by (C) the following set of equations:

(C) ∀i, j, 1 ≤ i ≤ m, 1 ≤ j ≤ m, i 6= j,




Ri = Rj ⇒ Xi ⊕ Li = Xj ⊕ Lj

Si = Sj ⇒ Yi ⊕ Ti = Yj ⊕ Tj

Xi = Xj ⇒ Pi ⊕ Ri = Pj ⊕ Rj

Yi = Yj ⇒ Qi ⊕ Si = Qj ⊕ Sj

Pi = Pj ⇒ Xi ⊕ Qi = Xj ⊕ Qj

Qi = Qj ⇒ Pi ⊕ Yi = Pj ⊕ Yj

Then, from [9], p. 145 or [8], p. 134, we know that the exact value for H is:

H =
∑

(X,Y,P,Q) satisfying (C)

|Fn|6
26mn

.2n(r+s+x+y+p+q),

where:

– r is the number of independent equations Ri = Rj , i 6= j,
– s is the number of independent equations Si = Sj , i 6= j,
– x is the number of independent equations Xi = Xj , i 6= j,
– y is the number of independent equations Yi = Yj , i 6= j,
– p is the number of independent equations Pi = Pj , i 6= j,
– and q is the number of independent equations Qi = Qj , i 6= j.

Remark: When m is small compared to 2n/2, and when the equalities in the Ri

and Sj variables do not have special “patterns”, then it is possible to prove that
the dominant terms in the value of H above correspond to x = y = p = q = 0.
Then the number of (X, Y, P, Q) satisfying (C) is about 24nm

2n(r+s) , so that:

H ' 24nm

2n(r+s) · |Fn|6
26nm

· 2n(r+s) ' |Fn|6
22nm

,

as expected.
However, we will see in section 6 that, when the equalities in Ri and Sj have

special “patterns” (even for small values of m), then the value of H can be much
larger than that (but never much smaller, as shown by the basic result).

Moreover, when m is not small compared to 2n/2, then the dominant terms
in the value of H no longer correspond to x = y = p = q = 0.

These two facts may explain why the proof of the “basic result” is so difficult.

4.2 Plan of the proof

To prove the “basic result”, we proceed as follows: we define two sets E and D,
D ⊂ E ⊂ I4

n, and a function Λ : D → I4
n such that the three lemmas below are

satisfied.
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Lemma 4. ∀(X, Y, P, Q) ∈ E, Λ(X, Y, P, Q) satisfies all the equations (C).

(Λ(X, Y, P, Q) will be often denoted by (X ′, Y ′, P ′, Q′).)

Lemma 5. ∀(X ′, Y ′, P ′, Q′) ∈ Λ(E), the number of (X, Y, P, Q) ∈ E such that
Λ(X, Y, P, Q) = (X ′, Y ′, P ′, Q′) is ≤ 2n(r+s+x′+y′+p′+q′), where:

– r is the number of independent equations Ri = Rj, i 6= j,
– s is the number of independent equations Si = Sj, i 6= j,
– x′ is the number of independent equations X ′

i = X ′
j, i 6= j,

– y′ is the number of independent equations Y ′
i = Y ′

j , i 6= j,
– p′ is the number of independent equations P ′

i = P ′
j, i 6= j,

– q′ is the number of independent equations Q′
i = Q′

j, i 6= j

Lemma 6.

|E| ≥ 24nm
(
1 − 47m4

23n
− 16m2

22n

)
.

Then the “basic result” is just a consequence of these three lemmas, as fol-
lows.

As we said in section 4.1,

H =
∑

(X,Y,P,Q) satisfying (C)

|Fn|6
26mn

.2n(r+s+x+y+p+q).

Thus, from lemma 4:

H ≥
∑

(X′,Y ′,P ′,Q′)∈Λ(E)

|Fn|6
26mn

.2n(r+s+x′+y′+p′+q′).

Therefore, from lemma 5, H is greater than

∑
(X′,Y ′,P ′,Q′)∈Λ(E)

|Fn|6
26mn

.
∣∣{(X, Y, P, Q) ∈ E, Λ(X, Y, P, Q) = (X ′, Y ′, P ′, Q′)}∣∣

i.e.

H ≥ |E|.|Fn|6
26nm

.

Finally, from lemma 6:

H ≥ |Fn|6
22nm

(
1 − 47m4

23n
− 16m2

22n

)
,

as claimed.

We will now below define Λ and prove lemma 4, lemma 5 and lemma 6.
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4.3 General remarks

Remark 1: Since the proof below is rather long and technical, we suggest the
interested reader to first read the proof of theorem 2, which is more simple (this
proof can be found in the extended version of [9], available from the author),
because our proof of lemma 4, 5 and 6 below is essentially an improvement of
this previous result.

Remark 2: Figure 1 below shows how we define Λ (i.e. X ′, Y ′, P ′, Q′) be-
low. In a way, our aim can be described as follows: we must transform “most”
(X, Y, P, Q) into a (X ′, Y ′, P ′, Q′) that satisfies (C) (and the three lemmas).
Roughly speaking, things can be seen as follows: we must handle the fact that
two exceptional equations in X, P , Q or Y can occur (in order to have a proof
in O(

m4

23n + m2

22n

)
as wanted). However, the probability that three exceptional

equations occur between four given indices i, j, k, ` is assumed to be negligi-
ble. (In Luby-Rackoff proof of theorem 1, the probability that one exceptional
equation occurs between the intermediate variables was negligible, but no more
here. Similarly, in our previous proof of theorem 2, the probability that two ex-
ceptional equations occur between the intermediate variable was negligible, but
no more here.)

Remark 3: Only two exceptional equations in X, P , Q or Y can occur between
three of four given indices, but the total number of exceptional equations in X,
P , Q or Y can be huge. For example, if m = 20.7n, then the number of equations
Xi = Xj , i 6= j, is expected to be about m2

2n = 21.4n

2n = 20.4n.
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Figure 1: General view of the construction of Λ.
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4.4 Definition of Λ

D is the domain of Λ (i.e. the set of all (X, Y, P, Q) for which Λ is defined). E
will be a subset of D.

Definition of X ′

Let X = (X1, ..., Xm) be an element of Im
n . Similarly, let Y , P , Q be three

elements of Im
n . For all i, 1 ≤ i ≤ m, let:

– iR be the smallest integer, 1 ≤ iR ≤ i, such that Ri = RiR
.

– iS be the smallest integer, 1 ≤ iS ≤ i, such that Si = SiS
.

Then X ′ = (X ′
1, ..., X

′
m) is (by definition) the element of Im

n such that:

∀i, 1 ≤ i ≤ m, X ′
i = XiR

⊕ Li ⊕ LiR
.

Definition of Y ′

Similarly, Y ′ = (Y ′
1 , ..., Y ′

m) is by definition the element of Im
n such that:

∀i, 1 ≤ i ≤ m, Y ′
i = YiS

⊕ Ti ⊕ TiS
.

Note: These definitions of X ′ and Y ′ are shown with the two arrows numbered
“1” in figure 1.

Definition of P ∗

P ∗ is an intermediate variable that we use before defining P ′. (In figure 1, the
definition of P ∗ is shown with the arrow numbered “2”, and the definition of P ′,
that we do below, is shown with the arrow numbered “4”). For all i, 1 ≤ i ≤ m,
let iX be the smallest integer, 1 ≤ iX ≤ i, such that X ′

i = X ′
iX

.
Then P ∗ = (P ∗

1 , ..., P ∗
m) is (by definition) the element of Im

n such that:

∀i, 1 ≤ i ≤ m, P ∗
i = PiX

⊕ Ri ⊕ RiX
.

Definition of Q′

Q′ is now defined by a combined effect of P ∗ and Y ′. (This is shown in figure
1 by the arrow numbered “3”). Before this, we need a definition of “Q∗-chain”
and “Q∗-cycle”.

Q∗-chain: Let i be an index, 1 ≤ i ≤ m. Then, by definition, Q∗-chain(i) is
the set of all indices j, 1 ≤ j ≤ m, such that it is possible to go from i to j by a
chain of equalities of the type (P ∗

k = P ∗
` ) or (Y ′

α = Y ′
β).

We also denote by minQ∗(i) the smallest index in Q∗-chain(i).

Remark: If we have (P ∗
j 6= P ∗

i ) and (Y ′
j 6= Y ′

i ) for all j 6= i, then minQ∗(i) = i.
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Q∗-cycles: Let ` be an even integer, ` ≥ 2. We call Q∗-`-cycle a set of `

equations of the form




Y ′
i1

= Y ′
i2

P ∗
i2

= P ∗
i3

...
Y ′

i`−1
= Y ′

i`

P ∗
i`

= P ∗
i1

, where i1, i2, ..., i` are ` pairwise distinct

indices.
We also call Q∗-cycle any Q∗-`-cycle.
If (X, Y, P, Q) are such that a Q∗-cycle exists, then Q′ and Λ are not defined

(i.e. (X, Y, P, Q) 6∈ E). On the other hand, if no such Q∗-cycle exists, then from
all the implications of the following type:

{
P ∗

α = P ∗
β ⇒ X ′

α ⊕ Q′
α = X ′

β ⊕ Q′
β (∗)

Y ′
γ = Y ′

δ ⇒ Q′
γ ⊕ Sγ = Q′

δ ⊕ Sδ (∗∗)

it is possible to write all the Q′
i, 1 ≤ i ≤ m, from the values Q′

minQ∗ (i), Y ′, P ∗,
S and X ′. Q′ is thus defined as follows:

1. ∀i, 1 ≤ i ≤ m, Q′
minQ∗ (i) = QminQ∗ (i).

2. If i 6= minQ∗(i), then Q′
i is uniquely defined from equations (∗) and (∗∗),

and from the definition of Q′
minQ∗ (i) given in 1.

Definition of g: To simplify the notations, we write: ∀i, 1 ≤ i ≤ m, Q′
i =

QminQ∗ (i) ⊕ g(i, S, X ′). (Caution: g and minQ∗(i) depend on Y ′ and P ∗, and
more precisely on the indices with equalities in Y ′ and P ∗.)

Definition of P ′

We now define P ′ (this definition of P ′ is particularly important, especially case
2 below) by a combined effect of X ′ and Q′, and by keeping the equalities in P ∗

(i.e. if P ∗
i = P ∗

j , then P ′
i = P ′

j). Before this, we need a definition of “totalchain”.

Totalchain: Let i be an index, 1 ≤ i ≤ m. Then, by definition, totalchain(i)
is the set of all indices j, 1 ≤ j ≤ m, such that it is possible to go from i to j by
a chain of equalities of the type (X ′

α = X ′
β) or (Q′

γ = Q′
δ) or (P ∗

ε = P ∗
ζ ).

For an integer i, 1 ≤ i ≤ m, P ′
i is now defined in 8 cases:

Case 1: There is no equality of the type Q′
α = Q′

β , with α and β in totalchain(i)
and α 6= β. Then (by definition) P ′

i = P ∗
i .

Remark: If i is the only index of totalchain(i), then we are in a particular
case of this first case, and then P ′

i = P ∗
i = Pi.

Case 2: There are exactly two elements i and j, i < j, in totalchain(i), and
they are linked only by the equality Q′

i = Q′
j . (This second case is particularly

sensible: it is the most difficult case for the proof). Then there are two subcases:
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Subcase 1: ∀k, 1 ≤ k ≤ m, k 6= j, P ∗
i ⊕ Y ′

i ⊕ Y ′
j 6= P ∗

k .

Then (by definition):
{

P ′
i = P ∗

i

P ′
j = P ∗

i ⊕ Y ′
i ⊕ Y ′

j

Subcase 2: ∃k, 1 ≤ k ≤ m, k 6= j, P ∗
i ⊕ Y ′

i ⊕ Y ′
j = P ∗

k .

Then (by definition):
{

P ′
i = P ∗

j ⊕ Y ′
i ⊕ Y ′

j

P ′
j = P ∗

j

Remark: This case 2 was the most difficult case to handle to improve theorem
2 in order to obtain theorem 3. The problem comes from the fact that Q′

i = Q′
j

might create an equality P ′
a = P ′

b, and P ′
a = P ′

b might create Q′
i = Q′

j , and to
prove lemma 5 we must know very precisely what equalities created what. In the
definition given in this case 2, the problem is solved by introducing subcase 1
and 2, i.e. roughly speaking by selecting the subcase that creates the less trouble.

Case 3: There are exactly four distinct elements i, j, k, `, in totalchain(i), and
they are linked only by the following three equalitites: (Q′

i = Q′
k) and (X ′

i = X ′
j)

and (X ′
k = X ′

`).

Then (by definition), if i < k:




P ′
i = P ∗

i

P ′
j = P ∗

j

P ′
k = P ∗

i ⊕ Y ′
i ⊕ Y ′

k

P ′
` = P ∗

i ⊕ Y ′
i ⊕ Y ′

k ⊕ Rk ⊕ R`

and if k < i:




P ′
k = P ∗

k

P ′
` = P ∗

`

P ′
i = P ∗

k ⊕ Y ′
i ⊕ Y ′

k

P ′
j = P ∗

k ⊕ Y ′
i ⊕ Y ′

k ⊕ Ri ⊕ Rj .

Case 4: There are exactly three distinct elements i, j, k in totalchain(i), and
they are linked only by the following two equalities: (X ′

i = X ′
j) and (Q′

i = Q′
k).

Then (by definition):




P ′
i = P ∗

i

P ′
j = P ∗

j

P ′
k = P ∗

i ⊕ Y ′
i ⊕ Y ′

k.

Case 5: There are exactly three distinct elements i, j and k in totalchain(i),
and they are linked only by equalities in Q′ (i.e. Q′

i = Q′
j = Q′

k).
Let α = inf(i, j, k).

Then (by definition): ∀β ∈ {i, j, k}, P ′
β = P ∗

α ⊕ Y ′
α ⊕ Y ′

β .

Case 6: There are exactly three distinct elements i, j, k in totalchain(i), and
they are linked only by the following two equations: (P ∗

i = P ∗
j ) and (Q′

i = Q′
k).

Then (by definition):




P ′
i = P ∗

i

P ′
j = P ∗

j (= P ′
i )

P ′
k = P ∗

i ⊕ Y ′
i ⊕ Y ′

k.
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Case 7: There are exactly three distinct elements i, j, k in totalchain(i), and
they are linked only by the two following equations: (Q′

i = Q′
j) and (Y ′

i = Y ′
k).

Then (by definition):




P ′
i = P ∗

i

P ′
k = P ∗

k

P ′
j = P ∗

i ⊕ Y ′
i ⊕ Y ′

j .

Case 8: There are exactly four distinct elements i, j, k, ` in totalchain(i), and
they are linked only by the three following equations: (Q′

i = Q′
j) and (Y ′

i = Y ′
k)

and (Y ′
j = Y ′

` ).

Then (by definition):




P ′
i = P ∗

i

P ′
j = P ∗

i ⊕ Y ′
i ⊕ Y ′

j

P ′
k = P ∗

k

P ′
` = P ∗

` .

If there exists an index i that lies in none of these eight cases, then Λ and P ′

are not defined (i.e. (X, Y, P, Q) 6∈ E).

4.5 Proof of the three lemmas

It is possible to prove that the function Λ defined above satisfies lemmas 4, 5
and 6 of section 4.2 (with a subset E of D). Due to the lack of space, we do not
give details, but the complete proof is available from the author.

Part II: Homogeneous permutations,
very strong pseudorandom permutations

5 Definitions

Let G be a permutation generator, such that G involves ` different pseudorandom
functions of Fn to compute a permutation of B2n. We denote by K the set of all
`-uples of functions (f1, ..., f`) of Fn (i.e. K = F `

n). Thus G associates to each
k ∈ K a permutation G(k) of B2n. K can be seen as the set of the keys of G,
and k ∈ K as a secret key.

Let α1, ..., αm be m distinct elements of I2n, and let β1, ..., βm be also m
distinct elements of I2n. We denote by H(α1, ..., αm, β1, ..., βm) the number of
keys k of K such that:

∀i, 1 ≤ i ≤ m, G(k)(αi) = βi.

Definition 7. We say that G is a “homogeneous” permutation generator if there
exist a function ε(m, n) : N2 → R such that, for any integer m:
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1. For all α1, ..., αm being m distinct elements of I2n, and for all β1, ..., βm

being m distinct elements of I2n, we have:
∣∣∣H(α1, ..., αm, β1, ..., βm) − |K|

22nm

∣∣∣ ≤ ε(m, n)
|K|

22nm
.

2. For any polynomial P (n) and any α > 0, an integer n0 exists such that:

∀n ≥ n0, ∀m ≤ P (n), ε(m, n) ≤ α.

Remark: This notion of “homogeneous” permutations is a very natural notion:
roughly speaking, a permutation generator is homogeneous when for all set of m
cleartext/ciphertext pairs, there are always about the same number of possible
keys that send all the cleartexts on the ciphertexts.

Definition 8. We say that G is a “very strong” permutation generator if – with
the same notations as above – the function ε(m, n) satisfies condition 2, and the
following condition 1’ (instead of condition 1):

1’. For all α1, ..., αm being m distinct elements of I2n, and for all β1, ..., βm

being m distinct elements of I2n, we have:

H(α1, ..., αm, β1, ..., βm) ≥ |K|
22nm

(1 − ε(m, n)).

Theorem 9. If G is a “homogeneous permutation generator”, then G is a “very
strong permutation generator”.

Theorem 10. If G is a “very strong permutation generator”, then G is a “strong
permutation generator”.

Proof: Theorem 9 is an obvious consequence of the definitions. Theorem 10
corresponds to the technique of proof we used in part I. (This way of proving
strong pseudorandomness was first explicitely used in [6].)

As a result, for permutation generators, we have:

Homogeneous ⇒ V ery Strong ⇒ Strong ⇒ Pseudorandom.

Interpretations:
In order to distinguish (with a non-negligible probability) permutations gener-

ated by a homogeneous permutation generator, from truly random permutations
of B2n, an enemy must know a large number of cleartext/ciphertext pairs. (More
precisely, this number must increase faster than any polynomial in n, whatever
the cleartext/ciphertext pairs may be.)

Remark 1: Related (but not equivalent) notions can be found in [11] (“mul-
tipermutations”) and in [5].
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Remark 2: In some very special cases, this property of “homogeneity” may be
useful and “strong peusorandomness” is not enough. For example, let us assume
that the enemy has a spy inside the encryption team. Let us also assume that the
aim of the enemy is to distinguish the encryption algorithm from a truly random
permutation, and that his spy has access to the whole database of cleartext/
ciphertext pairs, but can only send very few such pairs to help distinguishing.
In such a case, “homogeneity” may be a more natural property than strong
pseudorandomness. However, we introduced the concepts of “homogeneity” and
“very strong pseudorandomness” because they are very natural in the proofs,
and not with applications in mind.

6 Examples

6.1 Ψ4 is not homogeneous

Example 1 (with m = 2):
As shown in [7] p. 314 (or in [1] p. 309), if Ψ4[L1, R1] = [S1, T1] and Ψ4[L2, R2] =

[S2, T2], and R1 = R2, L1 6= L2, then the probability that S1 ⊕ S2 = L1 ⊕ L2 is
about twice what it would be with a truly random permutation of B2n (instead of
Ψ4). In [7] (and [1]), this result was used to show that the security bound given
by Luby and Rackoff for Ψ4 in a chosen-cleartext attack is tight (the attack
requires ' √

2n messages to ensure Si ⊕ Sj = Li ⊕ Lj).
Here, we use this result to show that Ψ4 is not homogeneous, and the non-

homogeneity property appears with only two (very special) messages.

Remark: However, Ψ4 is a very strong permutation generator (and for Ψ4, we
can take ε(m, n) = m2

2n ). (As mentioned above, the proof of strong pseudoran-
domness of Ψ4 given in [6] is also a proof of very strong pseudorandomness.)

Example 2 (with m = 4):
Let R1 = R3, R2 = R4 = R1 ⊕ α, S1 = S2, S3 = S4 = S1 ⊕ α, L1 = L2,

L3 = L4 = L1 ⊕ α, T1 = T3, T2 = T4 = T1 ⊕ α.
Then the value H for Ψ4 with these R, L, S, T is at least about |Fn|4

26n (instead

of about |Fn|4
28n as expected if it was homogeneous). The proof of a similar property

will be done in details for Ψ6 below.

6.2 Ψ5 is not homogeneous

If Ψ5[L1, R1] = [S1, T1] and Ψ5[L2, R2] = [S2, T2], and if R1 = R2 and L1 6= L2,
then the probability that S1 = S2 and L1 ⊕ L2 = T1 ⊕ T2 is about twice what it
would be with a truly random permutation of B2n (instead of Ψ5). Therefore Ψ5

is not homogeneous, and the non-homogeneity property appears with only two
(very special) messages.
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Remark: However, since here we have two equations and two indices (Si = Sj

and Li ⊕ Lj = Ti ⊕ Tj), this non-homogeneity property would require about
m = 2n messages in a chosen-cleartext attack (instead of the

√
2n messages

above for Ψ4).

6.3 Ψ6 is not homogeneous

Example 1 (with m = 4):
Let Ψ6[Li, Ri] = [Si, Ti] for i = 1, 2, 3, 4. Then if L1 = L2, L3 = L4, R1 = R3

and R2 = R4, it is possible to prove that the probability that S1 = S2, S3 = S4,
L1 ⊕L3 = S1 ⊕S3 and T1 ⊕T2 = T3 ⊕T4 = R1 ⊕R2 is at least about twice what
it would be with a truly random permutation of B2n (instead of Ψ6). The proof
can be done as explained in example 2 below. Therefore, Ψ6 is not homogeneous.

-

-

? ?

3 4

1 2 L

L

R R

Figure 2: Modelisation of the equations L1 = L2, L3 = L4, R1 = R3 and
R2 = R4.

Example 2 (with m = 9):

-

-

-

? ? ?

7 8 9

4 5 6

1 2 3

⊕ =
{

0 for S, L, (X, Q)
α or β or α ⊕ β for R, T , (Y , P )

(⊕ of 2 elements on the same line)

⊕ of 2 elements on the same column =
{

0 for R, T , (Y , P )
α′ or β′ or α′ ⊕ β′ for S, L, (X, Q)

Figure 3: Modelisation of the equations in S, L, R, T (and in the X, Y , P , Q
that we will consider).

Let Ψ6[Li, Ri] = [Si, Ti] for 1 ≤ i ≤ 9. Let α 6= 0 and β 6= 0 be two distinct
values of In. Similarly, let α′ 6= 0 and β′ 6= 0 be two distinct values of In. We
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study the values of H when


L1 = L2 = L3
L4 = L5 = L6 = L1 ⊕ α′

L7 = L8 = L9 = L1 ⊕ β′

R1 = R4 = R7
R2 = R5 = R8 = R1 ⊕ α
R3 = R6 = R9 = R1 ⊕ β

and




S1 = S2 = S3
S4 = S5 = S6 = S1 ⊕ α′

S7 = S8 = S9 = S1 ⊕ β′

T1 = T4 = T7
T2 = T5 = T8 = T1 ⊕ α
T3 = T6 = T9 = T1 ⊕ β.

(All these relations are represented in figure 3).
Then – as we will see below – for such L, R, S, T values, the value of H is

at least |Fn|6
214n , instead of |Fn|6

218n as expected if it was homogeneous Therefore, Ψ6

is not homogeneous.

Proof: We consider (X, Y, P, Q) values such that:



X1 = X2 = X3
X4 = X5 = X6 = X1 ⊕ α′

X7 = X8 = X9 = X1 ⊕ β′

Y1 = Y4 = Y7
Y2 = Y5 = Y8 = Y1 ⊕ α
Y3 = Y6 = Y9 = Y1 ⊕ β

and




Q1 = Q2 = Q3
Q4 = Q5 = Q6 = Q1 ⊕ α′

Q7 = Q8 = Q9 = Q1 ⊕ β′

P1 = P4 = P7
P2 = P5 = P8 = P1 ⊕ α
P3 = P6 = P9 = P1 ⊕ β.

(All these relations are also represented in figure 3).
All the Li, Ri, Si, Ti, Xi, Yi, Qi, Pi, 1 ≤ i ≤ 9, can be written from L1, R1,

S1, T1, X1, Y1, Q1, P1.
Moreover, whatever the values are for L1, R1, S1, T1, X1, Y1, Q1 and P1, it

is easy to verify that all the conditions (C) are satisfied (these conditions were
explicitly written in section 4.1 for Ψ6).

For example, R1 = R4 ⇒ X1 ⊕L1 = X4 ⊕L4, since X1 ⊕X4 = α′ = L1 ⊕L4.
Similarly, Q7 = Q9 ⇒ P7 ⊕ Y7 = P9 ⊕ Y9, since P7 ⊕ P9 = β = Y7 ⊕ Y9.
Therefore, from the exact value of H (given in section 4.1), and by considering

only such (X, Y, P, Q), we have:

H ≥ 24n · |Fn|6
254n

· 2n(6+6+6+6+6+6) =
|Fn|6
214n

,

as claimed (instead of H ' |Fn|6
218n if Ψ6 was homogeneous).

6.4 ∀k ∈ N∗, Ψk is not homogeneous

For simplicity, we assume that k is even (the proof is very similar when k is odd).
Let k = 2λ. Let Ψk[Li, Ri] = [Si, Ti] for 1 ≤ i ≤ m. We essentially generalize to
Ψk the construction given in example 2 for Ψ6.

The exact value of H is:

H =
∑

(X(1),...,X(k−2)) satisfying (C)

|Fn|k
2knm

· 2n(r+s+x(1)+...+x(k−2)),
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where the X(1), ..., X(k−2) variables are the intermediate round variables, and
where (C) denotes the conditions on the equalities (i.e. Ri = Rj ⇒ X

(1)
i ⊕ Li =

X
(1)
j ⊕ Lj , etc). The proof of this formula is not difficult and is given in [8], p.

134.
We take m = λ2(= k2

4 ).
Let α1, ..., αλ−1 be λ− 1 pairwise distinct and non-zero values of In. Let α′

1,
..., α′

λ−1 be also λ − 1 pairwise distinct and non-zero values of In.
We study the value H when Li, Ri, Si, Ti, 1 ≤ i ≤ m, satisfy the equalities

modelised in figure 4. (For simplicity, we do not write these equalities explicitly).

-

-

-

-

? ? ? ?

⊕ =
{

0 for S, L, X(1), ..., X(k−3)

αi ⊕ αj for R, T , X(2), ..., X(k−2)

(⊕ of 2 elements on the same line)

⊕ of 2 elements on the same column =
{

0 for R, T , X(2), ..., X(k−2)

α′
i ⊕ α′

j for S, L, X(1), ..., X(k−3)

λ points︷ ︸︸ ︷

λ points




Figure 4: Modelisation of the equations in S, L, R, T (and in the X(1), ...,
X(k−2) that we will consider).

In the exact formula given above for H, we study the corresponding terms
for values of X(1), ..., X(k−2) that satisfy the equalities represented in figure 4.
We find

H ≥ 2(k−2)n · |Fn|k
2knm

· 2nkλ(λ−1),

so that, with m = λ2 = k2

4 ,

H ≥ 2(k−2)n · |Fn|k
22mn

(instead of |Fn|k
22nm if Ψk was homogeneous). Therefore, Ψk is not homogeneous, as

claimed.

In conclusion:

Ψk is very strong pseudorandom ⇔ k ≥ 4.

Ψk is never homogeneous (this was a surprise for us).

Remark 1: The fact that Ψk is never homogeneous may explain why the proofs
about the quality of pseudorandomness of the Ψk construction (such as theorem
3 of section 3) are so difficult.
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Remark 2: In section 6.4, in order to give an explicit construction with a non
homogeneous property, we have taken m = k2

4 = O(k2), where k is the number
of rounds of the L-R construction, so m increases when k increases. It is possible
to prove that this increase was a necessity: when m is fixed, then all the values
of H are converging to the same value when k tends to infinity. (This property
can be proved with “Markov chain” theory for example).

7 Open problems

Pseudorandom Strong pseudo-
random

Very strong
pseudorandom

Homogeneous

Ψ No No No No
Ψ2 No No No No
Ψ3 = O(m2

2n ) No No No
Ψ4 = O(m2

2n ) = O(m2

2n ) = O(m2

2n ) No
Ψ5 ≤ O( m3

22n ) ≤ O(m2

2n ) ≤ O(m2

2n ) No
Ψk, k ≥ 6 ≤ O( m4

23n + m2

22n ) ≤ O( m4

23n + m2

22n ) ≤ O( m4

23n + m2

22n ) No

Figure 5: Known results about the qualities of the Ψk pseudorandom
permutations.

In figure 5, we represented the known results about the qualities of the L-R
constructions with k rounds. For example, we see in this figure that Ψ3 is not
strong pseudorandom (this is written “No”), but that it is pseudorandom with
an advantage of O(m2

2n ) for the best chosen-cleartext attack.
We also see that Ψ5 is very strong pseudorandom, with an advantage of at

most O( m3

22n ) in a chosen-cleartext attack, and of at most O(m2

2n ) in a chosen-
ciphertext and chosen-cleartext attack. “At most” means that we do not know
if these O( m3

22n ) and O(m2

2n ) bounds are reached or not: it is an open problem.
Similar open problems are shown in figure 5, when the “≤” symbol appears.
It was conjectured in 1991 that, for Ψ6 or Ψ7, the advantage is negligible as

long as m is negligible compared to 2n. This is still unproven, as well as the
following property:

When k → +∞, m must be Ω(2n) to obtain a non-negligible advantage.

Another open problem that we mentioned is the following:

Is it possible to design homogeneous permutation generators ?

8 Conclusion

In order to improve the proved security bounds of pseudorandom permutations
or pseudorandom functions, various authors have suggested new designs for the
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permutation generators ([1], [3], [4], [10]). This comes from the fact that proofs
are much easier to obtain in these modified schemes than in the original L-R
construction.

However, in [1] and [4], the functions with improved security bounds are no
longer bijections, and in [3] and [10], the design of the permutations if sensibly
less simple, compared to the L-R construction. Should we conclude that these
new constructions really have better security properties than the L-R construc-
tion ? Should we therefore develop new, fast, and secure encryption schemes
based on these new constructions ? Or is it only a “technical problem”, and
is the L-R construction in fact as secure as these constructions, but with more
difficult proofs ? This question is not completely solved yet. However, we have
seen in this paper that the security properties of the L-R construction with six
(or more) rounds are in fact better than what was proved before about them.

Nevertheless, we have defined two new natural notions about the quality of
strong pseudorandom permutations: the concept of “very strong pseudorandom-
ness” and the concept of “homogeneous permutations”. We have seen that no
L-R construction gives homogeneous permutations. This result may be surpris-
ing, since it shows that – whatever the number of rounds of the L-R construction
may be – there are still some “non-random places” in the resulting permutations
(however, after a few rounds, the enemy is not able to choose the cleartexts or
ciphertexts of his attack in order to be in one of these places: the scheme is
pseudorandom).

We have finally given a few still open questions about Luby-Rackoff-like
analysis of Feistel schemes.
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