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1. Introduction

Consider a smooth connected compact manifold without boundary,
and let g) be its group of diffeomorphisms. As shown in [14] , is
a Frechet-Lie group. Furthermore, g  is known to be a IHL-Lie
group; this notion is  a sort of generalization of Sobolev chains in
function spaces. (D efin ition  of IHL-Lie groups: see [6] or [16]
further properties in [17] and [18] ; the present paper however uses
neither the notion of a Frechet-Lie group, nor that of an IHL-Lie
group). These two structures are rather difficult to study, because
both the implicit function theorem and the Frobenius theorem are
invalid for general Frechet or IHL manifolds.

For this reason, the following question arises naturally: "Does
there exist a sufficienly larg e  subgroup o f ..g) which carries a real
Banach-Lie group structure ?" The answer to this question is un-
fortunately negative, as this paper will show. Consequently, in order
to study groups of diffeomorphisms, one must deal with Frechet-Lie
groups or IHL-Lie groups, however difficult it might be.

Before we can state the theorem which answers the above ques-
tion, we need a definition, to make precise the content of the words
"sufficiently large". Let G  be a connected Banach-Lie group, with Lie
algebra g, which acts smoothly on a finite dimensional manifold M.
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Let mo be an arbitrary fixed point of M, and let Go be the isotropy
subgroup of G at m0 . The action of G is said to be irreducible at

mo if the linear representation p of Go in GL(T„, o M ) is irreducible,
where p (g )  is the derivative of the map ml-->g•m at mo and where
T 0 M  is the tangent space to M  at m . Suppose now that Go is a
sub Banach-Lie group and a submanifold of G, and let go be its Lie
algebra. (In fact go will be defined page 7  without reference to G 0 ,
so that no extra assumption on Go is needed.) The action is said
to be primitive a t  mo i f  go is maximal among the proper closed
subalgebras of g. I f  G  acts transitively on M , then the action is
irreducible (respectively primitive) at any point of M  as soon as it
is in some point. If so, we simply say that the action is irreducible

(resp. prim itiv e). Clearly, an irreducible action is always primitive,
and many examples show that the converse does not hold. Finally,
and in order to avoid restrictions implied by second countability
arguments, we define a kind of "strong transitivity" as follows. Any
vector in g  defines a vector field on M , hence a tangent vector at
the base point mo in  M ; the action is ample if it is transitive and
if moreover this map from g  to  T”,,M  is onto. Obviously, an irre-
ducible action is ample as soon as the dimension of M  is 2  or more.

By a "sufficiently large" subgroup G of 2 , we mean a group G
which acts amply and primitively. H ow ever, the following result
shows that 2  does not contain any such subgroup but finite dimen-
sional ones.

Theorem I: L et G  be a  connected Banach-Lie group acting

smoothly, effectively and  amply o n  a f inite dim ensional manifold

w ithout boundary . If  the action is  prim itive, then G  m ust be a

finite dimensional Lie group.

As a direct application of the method o f  proof, we have a second
result.

Theorem II: L et g be the L ie algebra o f  an  inf inite dimen-
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sional Banach-Lie group G . Suppose g  has no proper close finite
codimensional ideal. Then g  has no proper closed finite codimen-
sional subalgebra. In particular any smooth action of G on a finite
dimensional manifold is trivial.

We introduce a convenient set up for these two theorems in
section 2, and show how they both follow from a property of primitiv
graded Lie algebras, stated as theorem III (page 14). Theorem III
itself is proved in section 3, by an elementary method resting on
the classification o f  E. Cartan's real primitive infinite Lie algebras,
that we know from the works of Morimoto and Tanaka [24]. (It
has been pointed out to us that the classification is independently
due to  S. Schnider: J. of D iff. Geometry 4  (1970) 81-89.) The
main idea of our proof appears in a simpler form in the two follow-
ing examples.

Example. Let g be the Lie algebra generated in the space of
smooth functions from [01] to R  by the elements

aa a
a x  

x 

 ax  ' 
••., x" 

 a x '  
•••

g  cannot be made a normed Lie algebra; indeed, the relation

Lx  a   , x.  a   1— (n —1) x"  a  
ax a x  a x

is not compatible with the existence of a bound X ' such that 11 [u, v] I g

<xlrulj g lIvil a fo r  all u, veg. (D igression: Witt algebras give many
examples o f  such infinite dimensional real or complex Lie algebras,
where R  and C are heuristically thought of as having characteristic
infinity instead of zero).

Example. Let g be the Lie algebra generated in the space of
smooth functions from [01] X [01] to R  by the elements

a aa 2   a0  , x  x   • • •  ,  x "  • • • .
O x '  ay ay ' ay' ay'
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0 0  Define a norm on g by Ila +E a„x " + n! I a„ I where
U X  n E N . E N

a, (a„)„, are real constants. Then one has

[u, V]

The crucial point is that g does not contain any term of the form
0 ax  ,  y  ax o r  y  ay  .

Indeed, we can develop the second example and show that the
hypothesis of primitivity is essential in theorem I. This is the sub-
ject of section 4, where we prove that there ex ists a connected and

infinite dimensional Banach-Lie group which acts smoothly, effec-

tively and amply on the euclidian plane.

Theorem II applies in particular to the group GL (H) of invertible
bounded linear operators on a separable infinite dimensional Hilbert
space, over the real or the complex field, and to various sub Banach-
Lie groups of it. Th is is  the object of the last section, which can
be looked at as an infinite dimensional analogue of the following
easy proposition: Let g  be a finite dimensional simple compact Lie
algebra, of dimension D .  Let b be a non-trivial subalgebra of g , of
codimension d .  Then d>V 2D --+  +  . Though we cannot state in
this introduction a complete and precise version of the main result
of section 5, we give now a first approximation.

Theorem I V .  L et G (H ) be a classical Banach-Lie group of

bounded operators on a separable infinite dimensional Hilbert space

H  over the reals or the com plexes. Then the only possible smooth

action  o f  G (H ) on  a f inite dim ensional m anifold i s  the triv ial

action.

Theorem IV would naturally be trivial if G (H ) was replaced by
a classical Banach-Lie group of compact operators in H , because its
L ie  algebra would then be simple (see Theorem I I  and end of
section 5).

Finally, and though it is not directly relevant to  the present
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paper, we recall a results of EelIs, Burghelea and Kuiper which deals
with a "dual" situation; namely, they have shown that "small" groups
can always act "nicely" on infinite dimensional manifolds [2].

Result a . L e t  G be a  countably generated group and let H  be
a  separable infinite dimensional Hilbert space. Then there exists a
free proparly discontinuous action of G  by smooth diffeomorphisms

of H.

Result b. Let G  be a compact Lie group and  let H  be as in
Result a .  Then there exists a free action with local smooth sections
of G by smooth diffeomorphisms of H.

The first author was supported by an SRC fellowship, and the
"Fonds national suisse pour la Recherche scientifique". We thank
them respectively, a s  well a s  I. Stewart for many conversations
about the matter of section 5, and R . Richardson, grace to whom
it has been possible to correct a mistake in an earlier version of this
work.

2. Banach-Lie groups acting on finite dimensional manifolds

2. 1. P r im itiv e  actions and maximal subalgebras

We first "translate" some conditions given on an action in state-
ments about subalgebras, and vice versa.

Let G  be conneted Banach-Lie group, with Lie algebra g, which
acts smoothly, amply and primitively on a finite dimensional manifold
M . Let mo b e  a  fixed point in M  and let Go be the isotropy sub-
group of G at m o. Let f . 0 be the map from G to M  which associates
to  an element g  in  the group the transformed point g. mo of the
based point in the manifold. Let d f. 0 be the derivative of this map
at the identity of G, and put go = ker(df. o) .  By definition of amplicitY,

dfnio(g) = T.° M . The implicit function theorem [4 ] implies that Go
is a  sub Banach-Lie group of G with Lie algebra go , and a submani-
fold of G ; and that the induced map G/Go--, ../1/  is a diffeomorphism.
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By definition o f primitivity, ç  is a maximal closed non-trivial sub-
algebra of R.

N. B.: Suppose that G  is second-countable and that the action
is transitive. It is then a classical result that G o is  a sub Banach-
Lie group and a submanifold of G, and that G/Go is  diffeomorphic
to M ;  in particular, the action is  ample. But we do not assume
that G is second-countable.

Suppose moreover that the action of G is effective on M .  It is
then clear that g , cannot be an ideal in  g, because i f  it was, the
component of Go would be a non trivial normal subgroup of G; hence
it would act trivially on M G /G 0 .

We sum up these considerations in the following proposition.

Proposition 2. 1: Suppose the action of G satisfies the condi-

tions o f  Theorem  I. Then G o i s  a submanzfold and a sub Banach-
L ie group o f G , whose Lie algebra go i s  a maximal closed non-

triv ial subalgebra of ç; moreover, go is not an ideal in g.

Let now g  be the Lie algebra o f some connected Banach-Lie
groups G, and let g , be a maximal closed proper subalgebra of finite
codimension in g, which is not an ideal in g. Let nt be a comple-

mentary subspace of go in g.

Lemma 2. 2: T here ex ists a  neighbourhood V(resp. W) of
the origin  in q  (resp. ni )  and a smooth diffeomorphism o of
V OW  onto a neighbourhood U of the identity  e in G such that

0  The derivative dO0 o f o  at the origin is the identity

ii) For each w e  W, o (V e {w }) is  an integral submanifold of go,

where fio is  the left-invariant distribution defined by g, on G.

P ro o f : We recall that go is the collection of the images of go

by all the dL g 's, where dL g  is  the derivative at the identity of G of

the left multiplication by g  in G , for all g G .  Lem m a 2. 2 is a

direct consequence of Frobenius theorem 114]. 1111
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Let now Go b e  the maximal integral submanifold of çlo through
the identity o f G . G o i s  a connected sub Banach-Lie group o f G.
Because of the maximality of p ,  one has:

Lemma 2. 3: ( Notation as in 2 . 2 )  The neighbourhood W
can be chosen such that ø({O) W )  and Go intersect only at the
identity o f G ; therefore, G o is  a closed subgroup o f G.

P roo f: (ab absurdo) Suppose there exists a sequence (x„)..N

im  rn of non-zero vectors such that 0(x„) G Go for a ll n E N .  Taking
a  subsequence i f  necessary, w e m ay assume th a t  th e  sequence

x „ 
).EN 

converges to some element X  in  m . By a simple and

careful argument we can choose a C1-curve th .c ( t )  in m  such that
the image of the curve contains infinitely many points o f (x„)„, N .

Taking again a subsequence, we may assume th a t for each nEN,
th ere  is  a value t„  o f th e parameter with c(t„) = x„. Obviously,
lim t„— O. N o w  (x„) EG 0 implies A d(0(c(tn)))g0 Ego for a ll nEN;

d  I
1
Iso that A d(0(c( • )))gocgo. On the other hand d 

dt li=0 dt 0=0
Ad(O(c(•)))go= ad(doo(X))A0= [X , g o t Hence RX@go i s  a  sub-
algebra o f g ; b y  m axim ality, RXEDgo=g and go i s  an ideal in
which contradicts the hypothesis. IN

Defining M  to  be the homogeneous space G/G o , we obtain the
following statement.

Proposition 2. 4: Let g be the Lie algebra o f some connected
Banach-Lie g ro u p  G . Let go be a maximal closed proper sub-
algebra o f finite codimension in  g ,  which is not an ideal in  g.
Then go is  the Lie algebra of a  closed sub Banach-Lie group and
submanzfold Go of G; the natural action of G on G/Go is smooth,
ample and primitive.

2. 2. Filtered and graded Lie algebras associated to an action

Let g  be the space of formal power series of local vector fields
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at the o rig i of R", i.e. of expressions of the form E E a 
,=laEN" ax'

where the _it 's  are real constants (we use the classical notation for
multi-indices; see e.g. [ 4 ] ) .  g  is clearly an infinite dimensional real
vector space, and a Lie algebra with the evident Lie bracket. Define

L ={ .13 9 . 1 P — E  E  Aja x - }
cc N "

and

F k =1.13 Ggi P = E  E  AiŒ xa. }
1= 1  a E N " a X i

l a  - k + 1

fo r  each k= — 1, 0, 1 , •••. It is straightforward to check that

{L} k = -1 ,0 ,1 ,  makes g  a filtered Lie algebra and that the subspace
-

F= F h  is  the associated graded L ie algebra. (For a ll notionsk--1
concerning filtered and graded Lie algebras, the reader is referred to
the usual literature: [2 3 ] or [1 1 , 1 2 ] and references there. Note

-
that g =  I I  F k , where LI denotes the direct product, or "complete

k---1
direct sum"; see [1 2 ] p. 1 6 4 ) .  I f  M  is  a n-dimensional manifold,

if  m o is  a fixed point in M , a n d  i f  (x1, •••, x „) is  a system o f co-

ordinates centered at M o, g  can be considered as the Lie algebra of

formal power series of local vector fields at mo to  M.

Let now G be a connected Banach-Lie group, with Lie algebra g,

which acts smoothly on M , and suppose the action is  ample and
primitive a t m o . Any X E g  defines a  smooth vector field on M

dwhich takes at m G M  the value ( e x p t X ) ( m ) .  Let Î  b e
dt

the Taylor series of this vector field at m o ;  2 e 9 .  This construction
provides a map :  g - - .9  which is clearly a Lie algebra homomor-
phism such that go=w - 1 ( J 0 ) .  Define gk=V - 1 (Jk )  for all k = —1, 0, 1,

•••. Then b= (1-  f l k  is a closed ideal in g .  Define e=g/h and /k=fIkA
k =- 1

for k = —1, 0, 1, • • • . The family k = - 1 ,0 ,1 , . . ,  makes e  a filtered Lie
algebra and the map induces an injective morphism X :  e
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Lemma 2. 5: E  is a primitive Banach filtered Lie algebra and

there exists an inclusion x  of  E  in F .

P ro o f : A s the action of G  on M  is  ample at m o ,  we have
dim g/go = dim e//o= dim M , and go i s  m axim al in g by primitivity.
A s g is  a  Banach-Lie algebra, so is E  fo r th e  norm defined by
ilal =inf f tti g  for all n E e .  To say that x  is  an inclusion is to say

l i  E  17

that x  is an injective morphism in the category of filtered Lie algebras
over R  which preserves the degree. •

-
Define E k = I,/ I „ ,  fo r k= —1, 0, 1, •• • and  let E = ED E h  be the

k = - 1

graded Lie algebra associated to the filtered Lie algebra C .  26 induces
an inclusion E-->F which we will abusively denote by th e  same
letter.

Proposition 2. 6: E  i s  a  norm ed graded L ie  algebra and

there exists an inclusion x  of  E  in  F ; moreover, dim E_, — dim F._,.

(E  may or may not be irreducible.)

P ro o f : If each E,, is given the quotient norm from /k//k+i ando.,
if one defines If vII ----- E  II vkli for each v= E v, E E , it is easy to check

k - - 1

that If [v, y'] Kcste! vI11101 fo r a ll y, v 'E E ; so that E  is normed.
Finally one has dim K..1 = dim L1 10 — dim e g o =  dim M = dim F_1 .

In the case E  is irreducible, E  will be the convenient object to
consider in  order to prove the result we need (Theorem III below).
The other case however requires one more construction that we are
going to sketch now.

Suppose e, or more precisely the couple (C, Is), is not irreducible.
According to [24] , it is possible to define a  new filtration called
the irreducible f iltration of (E, / ) a s  follows. Let H__., be a minimal
subspace of E  such that H_1 1.0 and such that [L, H_1] C I L I .  For
any k E Z , k * — 1, define now H,. by:

Ho = I o
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Hk= Hk+il + Hk+i if k < - 1

Hk = {XE Hk_il [X , H...1] c Hk_i} if k>0.

Then on has (Lemma 1. 1 in  [24] )

i) [H„, Hp] c Hp, for all p,qEZ

ii) for some ,u> 0

iii) H D I H u f o r  a l l  p N

iv) n Hp= {0} .
P=

Define now Ch= Hk/Hk + i for a ll k EZ , k> —p and let C = e C k  be
the graded Lie algebra associated to the irreducible filtration of E.

The same procedure as above endowes C  w ith  a norm, so that we
have:

Proposition  2. 7: C is  a normed irreducible graded Lie alge-
bra.

Note first that i f  (E, L) had been irreducible to start with, then
the filterations given by the H 's  and by the / ' s  would coincide, and
C  would be identical to E .  Secondly, i f  (e, L) is not irreducible,
we do not need to precise a  map which would correspond to  the

map x  of Proposition 2 . 6 . Finally, let us remark that to mimick [24]

precisely, we should have taken the completion of e with respect to
the linear uniform structure defined by the filtration ( H k )k E z . How-
ever, the graded Lie algebra defined by this completion o f  C  is
identical with H ; it follows that, for our purpose, the technical step
of the completion can be omitted.

2. 3. Proof o f  Theorems I and II, m odulo Theorem III

Theorem I I I :  Let E  be a primitive f iltered normed Lie alge-

b ra .  Suppose that there ex ists an inclusion of  E  into 9" and that

dim E 1 = d im F 1 . T h e n  dim e<00.

The proof of this theorem is the object of the following section.



A bout interactions between Banach-Lie groups 553

Theorem III implies Theorem I. Suppose G  is  acting on M
according to the hypotheses o f Theorem I. Let g, Go and go be  as
in  Proposition 2. 1. D e f in e  C  as before Lemma 2. 5. Assuming
Theorem III is true, d im  < C O  and 5  is  a finite codimensional ideal
in g. By Frobenius theorem [4], there is a normal subgroup N  in
G with Lie algebra b, and N  is evidently contained in G , .  Since G
acts effectively on M , one must have N = {e}, i .e .  b= fol. Con-
sequently dim g < o o .

Theorem III  im plies T heorem  II. Let g  be a Banach-Lie alge-
bra which satisfies the hypothesis o f  Theorem II. Suppose g has
proper closed subalgebras o f finite codimension; choose a maximal
one, say go . Remembering Proposition 2. 4, we can apply the same
argument as above to show that g  has proper closed ideal o f finite
codimension. This contradicts the hypothesis and ends the proof.

3. Primitive filtered normed L ie algebras

This section is the proof of Theorem III . Keeping in mind how
A. Borel read G. B. Show, we use E. Cartan's classification of the
primitive filtered Lie algebras of infinite type; see [12], mainly their
Theorem II , and [23] , Theorem 5. 1, for the irreducible case; see
[24] for the general case.

Let us first assume that e is an irreducible filtered normed Lie
algebra. Then E  is by definition an irreducible normed graded Lie
algebra over R, contained in the algebra F  defined in 2. 2, and such
that E_ 1 = F_1. By definition:

" 8 aF_1 =1.13 E g I P = E a ,  }  and F o — 1.1 Eg P — a ,,  x ,  1 .ax, x

Thus F_, can be naturally identified with 11' and Fo with gl(R").
Therefore, E0 is a sub-Lie algebra of g i ( R " )  whose natural represen-
tation in IV is irreducible.

Let E C  b e  the complexification of E , and gc that o f g .  E c
-

=  e EE is  a normed graded Lie algebra over C  contained in gc.
k  =  -1



554 Hidek i Om ori and Pierre de la Harpe

Clearly Fr = gt(C"), but the representation of Er in C'n may or may
not be irreducible. We treat the two cases successively.

3 .1 . The case when EC is irreducible

Assume that EC i s  o f in , infinite type. A s  a  result of the
classification referred to above, the sub Lie algebra E r of F =

can only be one of the four following ones (after a change of coordi-
nates if necessary) :
(1) Er= gf (e )
(2) Er =  (C") = {A Egf(C") I trace (A )=0)

(3) Er=0)(n,c)- { A Egf(C") A = (Zz i, 4 2 )  with the Z . complex

m x m  matrices (i= 1, 2,3) and 4 ,  Z3 symmetric) where n=2m .

(4) Er =4 ( n , C ) e C id , where id is the n x n  unit matrix.

Moreover, EC is  normed ; let ic be a constant such that 11[u, Yi 11
<K11u111v J fo r  all u, V EEC. Using this hypothesis, we are going to
exclude one after the other the four possibilities listed above.

Lemma 3 .1 :  Er cannot have a non-trivial center. So that

the cases (1 )  and (4 ) of the list are to be excluded.

P ro o f : Suppose E r has a non-trivial centre. Then E r contains
a the element ,

a  . Let k N  and let E AL xa be a non-
ox, ocE N "

la l= k + i

zero element in E r .  By direct computation:

[Ex,  a   , xa  a   1— kzAicc x- .ax, ax, 0x,

This being true fo r  arbitrary large k's, it makes impossible an
identity of the form 11[u, y] 11<xllu1111Y11 for all u, v E E c .

Lemma 3. 2: Er cannot be f(C").

Pro o f : Suppose Er = WC") ;  let k  be an arbitrary integer.

Step one: E r  contairs a non-zero element o f  th e  form



A bout interactions between Banach-Lie groups 555

•p = E  E  d  
0

o x'g
i= 2 i5 l= k + 1 0x;

r3EN.

Choose a non-zero element E  E  i

a
tx " E E F .  Assume that

i = 11a1= k+ 1

for some a E  N", a i  =k +1. L e t  j  {2, 3, •••, n}  ; x , E E

=K ( C " )  By direct computation: [x1 ' E Aja x"  n

a
  1 =  E  a i dtox; i , a OXi a 1= k+ 1

ap&O

aa a 
•x,a , " x2a2• • • xi afri • • • x„-. +terms involving

'

.  By itera-axi a x ,  ' ax„
t io n , one obtains an element of the form

P' = a x i k+1 + E  E  B o, ' xcc
ax, 2= 2  a E N " U X 2

l a 1=k+1

where a is a non-zero complex constant.

[

x, 
 a   

, Pi= — a x ,k"  n

a
  + E .  n

a  
 .

ax, ax2 La i

If this last expression is not zero, we have established step one. If
it is zero then

P ' x i k  +ax
2

tx  
U
n

a + E xa  ,

a  
aX1 X2 i = 3  a 1=k+1 OX;

cc2=0

and the third term is not zero; indeed, if it was it would imply

(

ad ) k (P ') =a
2 aX

(k+1)! x ,  o
a
x i +ak ! x

2 
EEE —g(C"),Oxi  

i.e. a = 0 ,  which is impossible. Write

P' =a xi 
a

k ' +ax
a

t xz + P" .
ax, axz

Then

Lx, 
 a
ax3 , P

,

l— —a x i k+1  aax3 +Lx, 
 &x3

IfI f  this last expression not zero, we have established step one. If it
is zero then

P' =a x i k+1  a
  + axtx 2 +ax

3  a
t x  n

a
E  D i  x a  a  

ax, - UX2 x3 . = 4  l a  1= 0 + 1  œO X ;  •
a2 = a3

By iteration of the procedure, one finds either an element of the
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desired form, or that

P' =ax i k+1 
 a   +axkix2 a

a +•••+ax;.x„ a
x .ax, x2 a”

The second possibility cannot happen, because if it did : (ad ax
a

 i ) ' (P')

E  (C' )  would imply a= 0 , which is impossible.

Step two: E F  contains a non-zero elem ent o f  th e  form
E c h x i k+1 

 a   • Indeed: start with an element P = E  Ece,x0 a  a n d
1=2 = 2  3 ax,

aapply ad(x , )  to  P  conveniently many times, for j =  2 , 3  • , n;ax,
the result is an element of the desired form.

End of  p ro o f : Let P = Z a 1x 1k+1 G Ef , 0
i =2 ax,

Lx, a x ,
a  —x,  a   , P1—  (k+2)a2x 1k+1 

 a   +(k +1 )E a,x i 'l  
 a  

ax, a x ,  1=3 ax,
If a2= 0  then

a [x,
ax,

a  —x,
a x 2  , P  =(k +1 )P

_

If a 2 * 0  then

[ x,  a
a
x i — x2  o

a
x2 , Pl— a2x ,' 

a

 + ( k + 1 ) P
ax2

hence xik+i  a   E E F andax,

[x,  a
a
x i —x,  aa

x,. , a
a
x j—(k+2)xik+i  a  .ax,

Now we make use of the hypothesis that EC i s  norm ed ; both alter-
natives can be excluded by the same argument as that used  for
proving Lemma 3. 1. 111

Lemma 3. 3: Ef  cannot be 4(n, C).

P ro o f : Suppose E f =sp (n ,C ) n = 2 m .  Put y ;  = x„,+ ; fo r  i=1,

-

2 , •  •  m .  Note that E f  contains Ex,  ,.,a a
.  Let k  b e  an

O!=i X; i=1  OY

integer. nteger.



About interactions between B anach-L ie groups 557

Step o n e : E f  contains a non-zero element of the form

P =E E  aL ax .y s   a 
j=1  aoSEN '" ay'

1.1+101=k+1

Choose a non-zero element

Q = 7  E A x a y   a + E  Byisx7ys 
a  

cc.f3 aX i ,i=1 7,8 a Y j

in  E r .  Assume A cc13 * 0  fo r some a, i {1,•••, m } .  Apply

ad(
a

x, )  to  Q  conveniently many times (1=1, - - ,m )  to  get an

element
a --= + E E a 

i =1 L UX; i=1 78 aY ;

in E f  and not zero. Now

[

x1 ,  Q/] —  ( —E4 xa) a aay1 ay, ,=1 ay,

If this last expression is not zero for some /E {1, •••, m }, we have
established step one. If it is zero for any /E {1, •••, m }  then

a. 1 c ,  
Q '=E  E  a x a + E a.;, y,  .

t = 1  a OXi 1 = 1 1 7 1 = 8 + 1 x ;a y ;
7f #0

Apply k  times ad ( a
a
x i )  for 1  judicously chosen in  {1, •••, m }  and

obtain
ft a a  

Q "— E a` x i +E  a'y  ;  N ) ( n ,C ) ,
1=1 ax, i=3. ay;

which is impossible.

Step two: E f  contains a non-zero element of the form

a 
P '= E iti„xa .ay

This is easily seen by applying ad(x , )  enough times to the

element P constructed in step one.

- -End of proof: L e t  Po — Ex,  a   a  E r
i=i ax, 1=1 ay;
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and let P ' be the element constructed in step two. Then [P0, P']

— (k +1 )P '. The end of proof is as in the previous lemma. •

These three lemma exclude the irreducible case.

3. 2. The case when E C  is reducible (E  irreducible)
If E c  is reducible, the dimension of E _ , is even, say equal to

2 m ; ET, splits into two m  dimensional spaces V and V, and Er
acts irreducibly on each o f  them. By a suitable linear change of
coordinates one can arrive at the following situation: i s
described by coordinates (x1, • • • Y i, • • - ,  y . ) ;  put z, + —  1 3/1

and 2,= x 1 -1/ — 1 y, for 1<i<m, so that

a1 (  a
V  —1  8  )  and a —  1 / a a   + 1  a  ) •

6212  \  6x 18 y , 62, 2  6x, 0y1

8 athen V is spanned by the 's and V by the 's. E f  splits

into the direct sum o f  two sub Lie algebras o f  Fr=g t(C ") : Er
=V E 0EDV E,; any element in  V E , (resp. in V E ,) can be written

under the form E a z ,  (resp. E b 
a t

0

.
2 ,)  where the ao 's  (resp.=1 oz, =1 ,

/Vs) are some complex constants. These facts can be checked either
using a  general theory of complexification, or case by case (six of
them) using the classification of irreducible real graded Lie algebras
( [23] Th. 5. 2 or [12] section 10).

Let P be an arbitrary element in Er; P  is of the form

-E  E  Acci a  +E E a 
•1=1 ial=k+1 oz i

Indeed, it is true for k = 0 ; an induction argument consisting of

looking at [
a z  

,  P l and [ , shows that it is true for any k.
,

 -  
Define V Ek= { PEFFI [ V, P] = 0 }  for all k G N , and V E= VEk.

V E  is  an irreducible complex graded Lie algebra, which is clearly
normed and included in a graded Lie algebra o f formal polynomials

of local vector fields. By 3. 1, one has dim V E < c o .  Define now
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VEk =  /  V E k ; V E ,,  is normed for the quotient norm, and VE

V E, is an irreducible complex graded Lie algebra. Again, there
k=  -1

is clearly an inclusion map from V E into an algebra of formal poly-
nomials of vector fields. Hence dim VE<00, and dim E C  < C X D

This completes the proof o f  Theorem III in  th e  special case
where the graded algebra E  is irreducible.

3. 3. The contact case

Finally, we have to consider the case where (e, .10 )  is a primitive
filtered L ie algebra over R , not irreducible and of infinite type.
According to the classification of Morimoto and Tanaka [24] , the
associated graded Lie algebra H  (as in Proposition 2. 7) can only be
one of the two following:

0  the real contact Lie algebra
ii) the complex contact Lie algebra regarded as a real algebra.

Both cases can be defined as the prolongation (in the sense of [24] )
of a Lie algebra c_2@c_1, where c_2 is of dimension 1 and c_ i  is  of
finite even dimension (over the appropriate fie ld ). As [c_1, c_i] c_2,
the bracket defines a bilinear form on c_ 1 which is non-degenerate.

+co

C= ED c ,  be the prolongation of c_2ED There is a non-zero
k = -2

element A  in the center of c0, uniquely determined, such that [A, X]
= kX  for all k E Z , for all XEc k (see [24] , section 3.2). A s  before
(see fo r example our Lemma 2. 1), this is incompatible with the
existence of a norm on the graded algebra c.

The proof of Theorem III is now completed.

4. An infinite dimensional Banach-Lie group which acts smooth-
ly, effectively and transitively on R2

Let P  be the space of analytic real functions o f a  real variable
-

whose Taylor series at the origin is of the form f (x )= E a „ x "  with
n=0

sup I a„n!I < o c .. ( I n  particular, the radius of convergence of this
" E N

series is infinite). P  is a real Banach space for the norm defined by
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Ilf I =suPI an! I. I f  f E P  and t E R ,  f t  denotes the function x-->
,,EN

f ( x +t ) .

Lemma 4 .  1 :  f , E P  f o r any  f E P  and t E R .  Moreover, the

fR x P--->P .
m apping 12: 1 ( t , f ) , . f ., is smooth.

P ro o f : Let f  be given by f ( x ) = E a , r .  Then

f ( x ) = >  E a„ n • e t " - " = ( E a „  
 n ! t " "  x k

" 1 k = 0  (n— k)! k! n=k (n— k)! k! '

so that
- I t l 1/;11<suP(E la .I

n
1I  t1"- )<suP1 ad! I .E —11fIlenk.N —k (n— k)! IEN n!

which proves the first assertion. L e t  f ( ' )  denote the m-th deriva-
t iv e  o f f .  I t  i s  e a s y  to  check that f E P  implies f ( m) E P  and

IIP )11‹ .  f  II fo r  a l l  m E N .  L e t Ç9k(f, s )  b e  th e  function z —.
1  f (z+  s) —E

i
,  f ( ' ) ( z ) s '  ;  a direct computation shows th a t  the

m=0 m
right-hand term is equal to

sk+1. E E-  1  ( -  (i+ j ±k+1)! ai+.7+k+i  s , ) 2
i= o  j !  1=0 (i+ k +1)!

§ (f , s)11 < 1 Let now Vr k ( f ,  t+ s ) b e  the func-

tion x---> (x + t + s) —  E
M  f

("') ( x  +  t )  ;  s im ila r ly : 11,kk(f, t+s)II—0 T
<1 .9 1k e lt1+11 f  I11 W e cla im  now  that (Dk7)) ( ,, f ) ( s i , f i )• • .( sk , f k)  is
the function which takes at x  the value

f (k )(x +t)s ,...sk +E f  1 1 -1 )(x • •Ssi• • •sk

It is sufficient to check (see  [15] p. 7) that if VIS1 2+ one

has lim  1 11F II =0, where F  is  the function
ak

x — >(f  +g)(x +t+s)—  { E  
M I  f

( ' ) (x + t)s"' +
1

m=0 =0 M I
g ( ' ) ( x + t ) s i ;

k k-

but this follows directly from the inequalities computed above. •

so that
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JP xL em m a 4. 2: L et E  be the map
1(f , (x) •

smooth.

561

T hen E  is

Proof: L e t  f ,  g e P ; x ,  y  R .  Consider the number

A =  +  g ) ( x +  y ) — 1 m i  f ( x ) y — i  ( m

1  

1 ) 1 g ( - 1 ) ( x ) y - 1 .

Let a= V  g -112 + I y 2 ; it is easy to show that lim I A I = 0  In other
8->0 ak

words (TY E) (f , )(.f y i)• • • (f k y k ) exists and is given by f ( *) (x )y i•••y k

+ E ffk - ')(x)y,••..j) ; .-y , for all k E N . If
tn=1

Define now a multiplication on the space G = R eP by (t, f  )(t i , f i )

= (t + t i , f i ) ;  this makes G  a  Banach-Lie group with unit (0, 0) ;
the inverse of an element (t ,  f )  is ( —t, ;  Lemma 4. 1 shows
that the group operations are smooth. Define an action of G  on 111

b y  (t, f  )(x , y) = (t x , f  (x ) + y ) ; it is readily checked that it is
indeed an action, which is smooth in  virtue o f Lemma 4. 2. Let
(t, f ) G G  with (t, f  )(x , y) = (x, y )  fo r  all (x, y) E R 2 ; then (t, f )

= (0,0), i.e. the action is effective. Let (x, y)G R 1 a n d  le t  fE P
such that f (0) = y  ; then (x, f ) (0,0) = (x , y ) ,  i.e . the action  is
transitive. Finally, it is a very easy excercise to show that the action
is ample. In confirmation of Theorem I , this action is however not
prim itive. Indeed, le t  Go b e  the isotropy group of the point (0, 0)
in  1?1 ,  and consider P  a s  a  subgroup of G ; then:

We sum up this discussion as follows.

Example 4. 3: G  is  an infinite dimensional Banach-Lie group
which acts smoothly, effectively, amply and  not primitively on the
finite dimensional W.

5. Classical Banach-Lie groups of operators

Let H  be a separable infinite dimensional complex Hilbert space.



562 Hideki Omori and Pierre de la Harpe

Let L (H ) be the associative Banach algebra o f  continuous linear
operators in H ; let C (H ) be the ideal of compact operators in H
and let L°C(H ) be the (non-closed) ideal o f finite rank operators
in H .  We first recall three classical results.

Lemma 5. 1 (Calkin). Let X  be a non-trivial two-sided ideal

in  L ( H ) .  T hen L°C (H )c..E  cC (H ). In particular, any non-

triv ial ideal in L (H ) is inf inite codimensional, the only non-trivial
closed ideal in L (H ) is  C (H ), and the associative algebra L(H )
/C(H) is  simple.

P ro o f : See [3 ]  Th. 1. 4 and 1. 7, or [22 ] Chap. I  §6 Theorem
11.

The aim o f  this section is  to  point out analogous results for
various Banach-Lie algebras. Each of them will fulfill the conditions
of validity of Theorem II.

Lemma 5. 2 (Schur). Let X E L (H ) and let S be a subset of
L (H ) which has no non-trivial closed invariant subspace. Suppose
X  is  normal and commutes with all the elements o f  S . Then X  is
a multiple of the identity.

P ro o f : Via spectral theorem; see e.g. [13 ] Appendice I I  §2.

Lemma 5. 3 (Calkin). The center of the algebra L(H )/C(H)
consists exactly of the multiples of the identiy.

P ro o f : See [3 ]  Th. 2. 9.

5. A .  General linear L ie  algebras

We denote by g f(H ) the Banach-Lie algebra of the associative
Banach algebra L (H ), by I ( H ;  C) that of C(H), and by gf(H ; L°C)
the Lie algebra of the associative algebra L°C(H ). Let g l(H ; Cid+C)
be the Banach-Lie algebra {X E gt(H ) I there exists A E C  and Y
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G C (H ) with X=21+ Y} an d  le t l(H ; L°C) be the Lie algebra of
zero-trace operators in  gl,(H; L°C).

Lemma 5. 4. A .  The Lie algebra M(H; L°C) is  simple.

P ro o f : It is clearly sufficient to prove that N.(H; L°C) is
locally simple, i.e. that any finite subset of it is contained in a simple
finite dimensional L ie algebra. L et {X } 1, ;< „  be a  finite subset of
W(H; L °C ). For each j ,  im(X ; ) + im (X 7) is finite dimensional, and
ker(.7(1) n  ker(X 7) is finite codimensional; hence there exists a finite
dimensional subspace F  in  H such that

U (im(X,) U im(Xn) cF and F ic  n (ker(X,) n ker(xn).
5 = 1  J

Hence X ,, X E W (F ) for j =1, •••,n, where the simple Lie algebra
L(F) is identified with a subalgebra of W H; L°C) in  the obvious

way. 111

N.B.: The only reason for which we have introduced the X;`'s
in the proof is that the same proof will so work below for the cases
B  and C.

Lemma 5. 5. A .  Let a  be a Lie ideal in Al(H) which is neither

{0} nor { ill AEC}  .  Then W (H; L°C)ca.

P ro o f : Choose X E  a, X  is not a multiple of the identity. One
can suppose without loss of generality that X  is normal (if not, take
[X, X * ] ) .  By Lemma 5. 2 , there exists Y L ° C (H )  such that
[X, Y] * 0 ;  hence an ( H ; L°C) {0} . The conclusion follows from
Lemma 5.4. A. E

L em m a 5 . 6 . A  (H alm os). A ny  operator in  L (H )  can be

written as the sum  of two commutators.

P ro o f : See [5 ] Chap. XV §11 exercise 23, or references given
in  [2] Chap. I.
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Lemma 5. 7. A  (H e r ste in ) . Let R  be a simple associative real

algebra w ith center L . Let a  be a  Lie-ideal in  R . T h e n  one has

either a c L  o r  [.R, R ] C a.

P ro o f : See [8] Theorem 4. Suppose SR has the following pro-
perty; for any Y E  R ,-  {0}, there exists T E R  such that YT is not
nilpotent; then there is a  much shorter proof than the one given
i n  [8 ], which is indicated i n  [1 ] Chap. I  § 1  exercise 7. That
L (H )/C (H ) has this property is clear from the well-known charac-
terisation: for X E L (H ) , X  is  com pact if and only if the image
X (H ) contains no infinite dimensional closed subspace of H.

Theorem IV  A .  L et a  be a non-triv ial L ie ideal o f  gl(H ).
T hen either a= {2IIAEC} o r  f(H ; L °C )cacg l(H ; C id + C ).  In

particular, any non-trivial ideal of  AC(H) is infinite codimensional;
the only non-trivial closed ideals of  p l(H ) are  WI A E C }, g l(H ; C)
an d  fif(H ; C id + C ); an d  th e  Banach-Lie algebra gf(H)/gt(H ;
Cid +C) is algebraically simple.

The proof is clear from the preceeding lemmas. We insist on
th e  distinction between the Banach-Lie algebra gt(H ; C ) which is
(topologically) simple, i.e. which has no non-trivial closed ideals, and
th e  Banach-Lie algebra gf(H )A lf(H ; Cid+C) which is algebraically
simple. .qt(H ) being the Lie algebra of the Banach-Lie group GL(H ),
the Theorems I and II apply.

5. B .  Orthogonal L ie  algebras

Recall that a  conjugation in  H  is  a  semi-linear operator J R  in
H  such that J= id and  < JR  x I jRy>=<xly> for all x, y G H .  It is
then easy to show that there exists an orthonormal basis (e„)„,v. of
H  such that J R (E x „e „ )=  X„e„. In particular, any two conjuga-

, E N

tions in  H  are conjugate to each other by unitary operators. From
now on, we choose a fixed conjugation J R  in  H . Let Ç O R  be the map
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JL(H)—>L(H)
0 ?  is clearly an  isometric involutive antiauto-

i X "--> jR  X * JR '

morphism of the associative Banach algebra L (H ),  which keeps the
identity, C (H ), L °C (H ) and {XEL°C (H ) I trace(X ) =0}  invariant.
Abusively, we denote still by ÇOR the involutions induced on invariant
subsets of L (H )  and on L (H ) /C (H ) . We consider now the ortho-

gonal com plex  Banach-Lie algebras C(H,JR)= {XEgt(H)Igo R (X )
- - X }  C(H, J R ;  C)--- {X EA t(H ; C)1çoR(X )= — X ) and  the L ie
algebra o(H, JR ; L°C) {XEg(H; L°C)Ço R ( X)= — Xl .

Lemma 5. 4. B .  The Lie algebra &(H, J R ;  L°C) is  simple.

P ro o f : With th e  same notations as in  the proof o f Lemma
5. 4. B, note that im (X ,) + im (X 7) and k e r(X )  f l  k e r(X 7 ) a re  in-
variant by  J R ;  chose F  invariant by J R  and proceed as before. 111

Lemma 5. 5. B .  Let a  be a non-zero ideal of C(H, J R ) .  Then

&(H, J R ; L ° C ) a.

P ro o f : A s above; note that (II , J E )  does not contain the
identity. III

L em m a 5. 6. B . A ny operator in C(H, J R )  can be w ritten as
a f inite sum  of commutators of operators each in C(H, J R ) .

P ro o f : In three steps.

Step o n e : Let B  be a set of generators in  an associative alge-
bra then [B,_R]= .R] . W e firs t p rove  b y  induction that
[B",.gZ] c  [B, , R1 f o r  any n E N * ; it is trivial for n -1 ;  suppose it
is true for i = 1, 2, • • n -1 ;  choose X i , • • •, X„ E B  and YE R ;  then:

[X i X „ ,  Y] X.Y)— (X2—. X„Y) X i

X„(Y X i ) — (Y Xi) X,. • X„ G  [B, .R] + [B- 1 , _R] c [B, .

Now [R, [B", _R] c [B, _R] and step one is established.
n e N .
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S tep  tw o: C (H , J R )  is a set o f generators in  L ( H ) .  See [9]
Theorem 15.

Step three: [C ( H ,  J R ) ,  C(H , J R ) ]  —C(H, J R ). L e t  m= {X
E gi(H ) ÇOR(X) = X }  ; then gi(H) =C(H, JR) e m .  By Lemma 5. 6. A
and the two first steps, one has:

Af(H)= [ni(H), gf(H)] = [C(H, JR ),C (H , JR )em ]

C [C (H , J R ) ,  C(H, JR ) ]  + [C(H, J R ) ,  ml .

A s  [0 (H  J R ) ,  C(H, J R ) ]  cC (H , J R )  a n d  [0 ( H, J R ) ,  m] c m  the
conclusion follows. IM

Lemma 5. 7. B (Herstein). Let .R  be a simple associative real

algebra w ith  center L . Suppose that the dimension of grZ, over

is  larg e r th an  1 6 . Let ço be an involutive antiautom orphism  of
and consider the Lie algebra C= { X - Rlço(X )—  —  X } . Let a  be

a Lie ideal in C . T h e n  one has e ither ac  L  or [C ,  Cl a.

P ro o f : See [9 ] Theorem 2 6 .  In fact, Herstein proves a  much
more general result, where can  be any ring ;  we haven't tried to
find a  shorter proof for the case _T.= L ( H ).

Theorm IV  B .  Let a  be a non-trivial Lie ideal o f C(H, J R ) .

Then &)(H, J R ;  DC) c  a c  ( H, J R ;  C ) .  In particular, any  non-trivial
ideal o f  F..) ( H , J R )  is inf inite codim ensional, the only  non-trivial
closed ideal of C(H, J R )  is  C(H , J R ;  C), and the Banach-Lie alge-

bra C (H ,JR )/C (H , J R ;  C) is algebraically  sim ple.

C(H , J R )  is the L ie algebra o f th e  Banach-Lie group 0(H, J R )

so that Theorems I and II apply. 0(H , J R )  is the closed sub Banach-
Lie group and  submanifold o f G L (H ) given a s  follows: le t  {1} be
the bilinear from defined on H  b y  {y1 z} <  y I JR  z> ; then 0(H, JR)

{X  EG L (H ) { X y  X .z }  { y  z} for all y, 2E H} .
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5. C .  Symplectic L ie  algebras

Recall that an anticonjugation in  H  is  a  semi-linear operator

A in H  such that RI =  —id and < jex  AY> = <x  y> for all x, ye H.

It is then  easy to show that there exists an orthonormal basis
(e„)ne z .  of H such that J ( 2 ( E  x e _ „ +  x „ e „ )=  E E

.E N *  . E N *  . E N *  . E N *

In particular, any two anticonjugations in H  are conjugate to each
other by unitary operators. From now on, we choose a fixed anti-
conjugation JQ in  H.

Let ÇOQ be the antiautomorphism —JQX*JQ o f L ( H ) .  We
consider the sym p/ectic complex Banach-Lie algebras 4(H , J ) =  {X

( H ) ç2Q ( X )  — X }  4(H, A; C )= - {X epf(H ; C)1 Ç9Q (X )= -X }
and the Lie algebra 4(H, j0 ; P C ).  Lemmas 5. 4. C to 5. 7. C are
as in section 5. B, and one has the following theorem.

Theorem I V  C .  Let a be a non-trivial Lie ideal of 0 (H , je ).
T hen  4 (H , 0 ;  L°C )ca c4 (H , j(?; C). In particular, any  non-

triv ial ideal o f  4(H, J 0 )  is inf inite  codimensional, the only non-

triv ial closed ideal o f W H ,J Q )  i s  4 (H ,J R ; C), and the Banach-
L ie algebra 4(H ,  J 0 )  / ( H, j0; C ) is algebraically  simple.

H, J0 )  is the Lie algebra of the Banach-Lie group sp (H , J Q ),
so that Theorems I  and II apply. SP(H, J Q )  is  the closed sub
Banach-Lie group and submanif old o f G L (H ) given as follows: let

} be the bilinear form defined on H  by {Y 1 2} ‹Y IA* ;  then

SP(H, ./Q) =  {XEG L(H )1  {Xyl Xz} {y1z} for all y, zE. HI .

N.B.: i ( H ) ,  C (H ,J R )  and 4(H , J (2 )  can naturally be con-
sidered as re al algebras, and so can the corresponding Lie groups,
by restriction of the scalars.

5. R .  R eal forms

Let g be one of the complex Lie algebra o f operator described
above. A  conjugation in g is  a map r : g—>g such that the map
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X—>r(— X*) is an isomorphism. A real form  of g is an R-sub-Lie
algebra go of g  such that g= goeigo . It is well known that one can
associate a  conjugation to any real form and vice-versa.

To any non-exceptional class o f finite dimensional simple real
Lie algebras with simple complexifications, one can associate a  conju-
gation of one of gt ( H ) ,  (H ,  J R )  and 0(H, JQ ). This procedure
has been described in detail elsewhere (see [7] and references there),
and we will not repeat it here; we only m ention the following
result:

Theorem IV  R .  L et a  be an ideal o f  go , where go i s  a real

f orm  as described above. Then a  is inf inite codimensional. Theo-

rem s I  and II  ap p ly  to the Lie group corresponding to go.

We suggest th e  following definitions. B y  a classical complex

Banach-Lie group o f  bounded operators in  H , we mean one of the
three groups GL(H ), 0(H , J R )  and Sp(H, JQ ). By a  classical real

Banach-Lie group o f  bounded operators in  H , we mean either one
of these same three groups after restriction of the scalars, or one of
the groups attached to a  real form go as above; the list o f these
can be given as follows, using the notations of [7]

T y p e  A  I GL(ER)
AITU * ( E )

A III U(E, r, 00) with rE N U  {c..}
U (E ) corresponds to r =0

T ype B D  I 0(E, r , 00) with rE N U  fool

0 ( E R )  corresponds to r =0
BD III 0* (E)

T y p e  C I sp (E , R )

C II SP(E, r, 00) with rEN U {00}

s p (E Q )  correponds to r =0

This makes precise the content of Theorem IV , as written in the
introduction.



About interactions between Banach-Lie groups5 6 9

By a  classical Banach-Lie group o f  compact operators in  H
we mean one obtained as follows. Let G (H ) be a classical Banach-

Lie group of bounded operators in H, and let g(H) be its Lie algebra.
Let g(H, L°C) be the Lie algebra g (H )n g (H ; L °C); g(11; L°C)

is simple. Let a  be a uniform crossnorm in the sense o f  [22] , and
let g(H, a )  be the completion of g(H ; L°C) with respect to a .  Then
g(H, a )  is the Lie algebra of a sub Banach-Lie group of G (H ) which
is denoted by G(H, a ) .  G(H, a )  i s  by definition a classical Banach-

Lie group of compact operators in H, and satisfies the conditions of
Theorems I and II. Note that if a is the uniform crossnorm, G(H, a)
= G(H, C); i f  a  is the Hilbert-Schmidt cross-norm, G(H, a) = G(H,

L2C ) is a L*-group [7] .
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