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ABOUT INTERPOLATION OF SUBSPACES OF REARRANGEMENT
INVARIANT SPACES GENERATED BY RADEMACHER SYSTEM
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Abstract. The Rademacher series in rearrangement invariant function spaces “close” to
the space L∞ are considered. In terms of interpolation theory of operators, a correspon-
dence between such spaces and spaces of coefficients generated by them is stated. It is
proved that this correspondence is one-to-one. Some examples and applications are pre-
sented.
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1. Introduction. Let

rk(t)= signsin2k−1πt (k= 1,2, . . .) (1.1)

be the Rademacher functions on the segment [0,1]. Define the linear operator

Ta(t)=
∞∑
k=1

akrk(t) for a= (ak)∞k=1 ∈ l2. (1.2)

It is well known (cf. [23, pages 340–342]) that Ta is an almost everywhere finite func-
tion on [0,1]. Moreover, from Khintchine’s inequality it follows that

‖Ta‖Lp � ‖a‖2 for 1≤ p <∞, (1.3)

where ‖a‖p = (
∑∞

k=1 |ak|p)1/p . The symbol � means the existence of two-sided esti-
mates with constants depending only on p. Also, it can easily be checked that

‖Ta‖L∞ = ‖a‖1. (1.4)

Amore detailed information on the behaviour of Rademacher series can be obtained
by treating them in the framework of general rearrangement invariant spaces.
Recall that a Banach space X of measurable functions x = x(t) on [0,1] is said

to be a rearrangement invariant space (r.i.s.) if the inequality x∗(t) ≤ y∗(t), for t ∈
[0,1] and y ∈ X, implies x ∈ X and ‖x‖ ≤ ‖y‖. Here and in what follows z∗(t) is
the nonincreasing rearrangement of a function |z(t)| with respect to the Lebesgue
measure denoted by meas [10, page 83].
Important examples of r.i.s.’s are Marcinkiewicz and Orlicz spaces. Let � denote

the cone of nonnegative increasing concave functions on the semiaxis (0,∞).
If ϕ ∈�, then the Marcinkiewicz space M(ϕ) consists of all measurable functions

x = x(t) such that

‖x‖M(ϕ) = sup

{
1

ϕ(t)

∫ t

o
x∗(s)ds : 0< t ≤ 1

}
<∞. (1.5)
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If S(t) is a nonnegative convex continuous function on [0,∞), S(0) = 0, then the
Orlicz space LS consists of all measurable functions x = x(t) such that

‖x‖S = inf

{
u> 0 :

∫ 1

0
S
(∣∣x(t)∣∣

u

)
dt ≤ 1

}
<∞. (1.6)

In particular, if S(t)= tp (1≤ p <∞), then LS = Lp .
For any r.i.s. X on [0,1] we have L∞ ⊂ X ⊂ L1 [10, page 124]. Let X0 denote the

closure of L∞ in an r.i.s. X.
In problems discussed below, a special role is played by the Orlicz space LN , where

N(t) = exp(t2)−1 or, more precisely, by the space G = L0N . In [19], V. A. Rodin and
E. M. Semenov proved a theorem about the equivalence of Rademacher system to the
standard basis in the space l2.

Theorem 1.1. Suppose that X is an r.i.s. Then

‖Ta‖X =
∥∥∥∥∥∥
∞∑
k=1

akrk

∥∥∥∥∥∥
X

� ‖a‖2 (1.7)

if and only if X ⊃G.

By Theorem 1.1, the space G is the minimal space among r.i.s.’s X such that the
Rademacher system is equivalent in X to the standard basis of l2.
In this paper, we consider problems related to the behaviour of Rademacher series

in r.i.s.’s intermediate between L∞ and G. Here a major role is played by concepts and
methods of interpolation theory of operators.
For a Banach couple (X0,X1), x ∈ X0+X1 and t > 0, we introduce the Peetre �-

functional

�
(
t,x;X0,X1

)= inf
{∥∥x0

∥∥
X0+t

∥∥x1
∥∥
X1 : x = x0+x1, x0 ∈X0, x1 ∈X1

}
. (1.8)

Let Y0 be a subspace of X0 and Y1 a subspace of X1. A couple (Y0,Y1) is called a
�-subcouple of a couple (X0,X1) if

�
(
t,y ;Yo,Y1

)��
(
t,y ;X0,X1

)
, (1.9)

with constants independent of y ∈ Y0+Y1 and t > 0.
In particular, if Yi = P(Xi), where P is a linear projector bounded from Xi into itself

for i = 0,1, then (Y0,Y1) is a �-subcouple of (X0,X1) (see [3] or [21, page 136]). At
the same time, there are many examples of subcouples that are not �-subcouples (see
[21, page 589], [22], and Remark 3.2 of this paper).
Let T(l1) (respectively T(l2)) denote the subspace of L∞ (of G) consisting of all

functions of the form x = Ta, where T is given by (1.2) and a ∈ l1(∈ l2). From (1.4)
and Theorem 1.1 it follows that

�
(
t,Ta;T

(
l1
)
,T
(
l2
))��

(
t,a;l1, l2

)
. (1.10)

In spite of the fact that T(l1) is uncomplemented in L∞ (see [17] or [11, page 134]) the
following assertion holds.
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Theorem 1.2. The couple (T(l1),T(l2)) is a �-subcouple of the couple (L∞,G). In
other words (see (1.10)),

�
(
t,Ta;L∞,G

)��
(
t,a;l1, l2

)
, (1.11)

with constants independent of a= (ak)∞k=1 ∈ l2 and t > 0.

We will use in the proof of Theorem 1.2 an assertion about the distribution of
Rademacher sums. It was proved by S. Montgomery-Smith [13].

Theorem 1.3. There exists a constant A ≥ 1 such that for all a = (ak)∞k=1 ∈ l2 and
t > 0

meas


s ∈ [0,1] :

∞∑
k=1

akrk(s) >ϕa(t)


≤ exp

(
− t2

2

)
,

meas


s ∈ [0,1] :

∞∑
k=1

akrk(s) > A−1ϕa(t)


≥A−1 exp

(−At2),
(1.12)

where ϕa(t)=�(t,a;l1, l2).

Now we need some definitions from interpolation theory of operators. We say that a
linear operator U is bounded from a Banach couple

�→
X = (X0,X1) into a Banach couple�→

Y = (Y0,Y1) (in short, U :
�→
X → �→

Y ) if U is defined on X0 +X1 and acts as bounded
operator from Xi into Yi for i= 0,1.
Let

�→
X = (X0,X1) be a Banach couple. A space X such that X0∩X1 ⊂ X ⊂ X0+X1 is

called an interpolation space between X0 and X1 if each linear operator U :
�→
X → �→

X is
bounded from X into itself.
To every r.i.s. X assign the sequence space FX of Rademacher coefficients of func-

tions of the form (1.2) from X:

∥∥(ak)∥∥FX =
∥∥∥∥∥∥
∞∑
k=1

akrk

∥∥∥∥∥∥
X

. (1.13)

Well-known properties of Rademacher functions imply that FX is an r.i. sequence
space [19]. Furthermore, Theorem 1.3 and properties of the �-functional show that
FX is an interpolation space between l1 and l2 (see the proof of Theorem 1.2 later).
For interpolation r.i.s. between L∞ and G the correspondence X � FX can be defined
by using the real interpolation method.
For every p ∈ [1,∞], we denote by lp(uk), uk ≥ 0 (k = 0,1, . . .) the space of all

two-sided sequences of real numbers a = (ak)∞k=−∞ such that the norm ‖a‖lp(uk) =
‖(akuk)‖p is finite. Let E be a Banach lattice of two-sided sequences, (min(1,2k))∞k=−∞
∈ E. If (X0,X1) is a Banach couple, then the space of the real �-method of interpolation
(X0,X1)�

E consists of all x ∈X0+X1 such that

‖x‖ = ∥∥(�(2k,x;X0,X1
))

k
∥∥
E <∞. (1.14)

It is readily checked that the space (X0,X1)�
E is an interpolation space between X0 and

X1 (cf. [15, page 422]). In the special case E = lp(2−kθ) (0 < θ < 1, 1 ≤ p ≤ ∞) we
obtain the spaces (X0,X1)θ,p (for the detailed exposition of their properties see [4]).
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A couple
�→
X = (X0,X1) is said to be a �-monotone couple if for every x ∈ X0+X1

and y ∈X0+X1 there exists a linear operator U :
�→
X → �→

X such that y =Ux whenever

�
(
t,y ;X0,X1

)≤�
(
t,x;X0,X1

) ∀t > 0. (1.15)

As it is well known (cf. [15, page 482]), any interpolation space X with respect to
a �-monotone couple (X0,X1) is described by the real �-method. It means that for
some E

X = (X0,X1
)�
E . (1.16)

In particular, by the Sparr theorem [20] the couple (l1, l2) is a �-monotone couple.
Therefore, if F is an interpolation space between l1 and l2, then there exists E such
that

F = (l1, l2)�
E . (1.17)

Hence Theorem 1.2 allows to find an r.i.s. that contains Rademacher series with co-
efficients belonging to an arbitrary interpolation space between l1 and l2. In [19], the
similar result was obtained for sequence spaces satisfying more restrictive conditions
(see Remark 3.3).

Theorem 1.4. Let F be an interpolation sequence space between l1 and l2 and F =
(l1, l2)�

E . Then for the r.i.s. X = (L∞,G)�
E we have

∥∥∥∥∥∥
∞∑
k=1

akrk

∥∥∥∥∥∥
X

� ‖a‖F (1.18)

with constants independent of a= (ak)∞k=1.

Combining Theorem 1.4 with the above remarks, we get the following assertion. If
F is a sequence space, then

∥∥(ak)∥∥F �
∥∥∥∥∥∥
∞∑
k=1

akrk

∥∥∥∥∥∥
X

for some r.i.s. X (1.19)

if and only if F is an interpolation space between l1 and l2.
The last result shows that the restriction of the correspondence (1.13) to interpo-

lation r.i.s. between L∞ and G is bijective.

Theorem 1.5. Let r.i.s.’s X0 and X1 be two interpolation spaces between L∞ and G.
If ∥∥∥∥∥∥

∞∑
k=1

akrk

∥∥∥∥∥∥
X0

�
∥∥∥∥∥∥
∞∑
k=1

akrk

∥∥∥∥∥∥
X1

, (1.20)

then X0 =X1 and the norms of X0 and X1 are equivalent.

In [16, 19], the similar results were obtained by additional conditions with respect
to spaces X0 and X1.
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2. Proofs

Proof of Theorem 1.2. It is known [10, page 164] that the �-functional of a cou-
ple of Marcinkiewicz spaces is given by the formula

�
(
t,x;M

(
ϕ0

)
,M

(
ϕ1

))= sup
0<u≤1

∫u
0 x∗(s)ds

max
(
ϕ0(u),ϕ1(u)/t

) . (2.1)

If N(t)= exp(t2)−1, then the Orlicz space LN coincides with the Marcinkiewicz space
M(ϕ1), whereϕ1(u)=u log1/22 (2/u) [12]. In addition, L∞ =M(ϕ0), whereϕ0(u)=u.
Therefore,

�
(
t,x;L∞,G

)= sup
0<u≤1

{
1
u

∫ u

0
x∗(s)dsmin

(
1, t log−1/22

(
2
u

))}
for x ∈G. (2.2)

Since x∗(u)≤ 1/u
∫u
0 x∗(s)ds, then from (2.2) it follows that

�
(
t,x;L∞,G

)≥ sup
k=0,1,...

{
x∗

(
2−k

)
min

(
1, t(k+1)−1/2)}. (2.3)

Hence,
�
(
t,x;L∞,G

)≥ x∗
(
2−kt

)
for t ≥ 1, (2.4)

where kt = [t2]−1 ([z] is the integral part of a number z).
Now let a = (ak)∞k=1 ∈ l2 and x(t) = Ta(t) = ∑∞

k=1akrk(t). By the Holmstedt
formula [7],

ϕa(t)≤
[t2]∑
k=1

a∗k +t



∞∑
k=[t2]+1

(
a∗k
)2

1/2

≤ Bϕa(t), (2.5)

whereϕa(t)=�(t,a;l1, l2), (a∗k )
∞
k=1 is a nonincreasing rearrangement of the sequence

(|ak|)∞k=1, and B > 0 is a constant independent of a= (ak)∞k=1 and t > 0.
Assume, at first, that a �∈ l1. Then inequality (2.5) shows that

lim
t→0+

ϕa(t)= 0, lim
t→∞

ϕa(t)=∞. (2.6)

The function ϕa belongs to the class � [4, page 55]. Therefore it maps the semiaxis
(0,∞) onto (0,∞) one-to-one, and there exists the inverse function ϕ−1

a . By
Theorem 1.3, we have

n|x|(τ)=meas
{
s ∈ [0,1] :

∣∣x(s)∣∣> τ
}≥ψ(τ) for τ > 0, (2.7)

where ψ(τ)=A−1 exp{−A[ϕ−1
a (τA)]2}. Passing to rearrangements we obtain

x∗(s)≥ψ−1(s) for 0< s <A−1. (2.8)

Obviously, by condition t ≥ C1 = C1(A)=
√
2log2(2A), it holds

2−kt/2 <A−1 for kt =
[
t2
]−1. (2.9)

Hence (2.4) and (2.8) imply

�
(
t,x;L∞,G

)≥ψ−1(2−kt ). (2.10)
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Combining the definition of the function ψ with (2.9), we obtain

ψ−1(2−kt )=A−1ϕa
(
A−1/2 ln1/2

(
A−12kt

))≥A−1ϕa

(√
kt ln2
2A

)

≥A−3/2
√
ln2
2
ϕa

(√
kt
)
≥A−3/2

√
ln2
2
t−1

√
ktϕa(t).

(2.11)

From the inequality t ≥ C1 ≥
√
2 it follows that

√
kt
t
≥
√
[t2]−1√
[t2]+1 ≥ 3−1/2. (2.12)

Therefore, by (2.10), we have

�
(
t,x;L∞,G

)≥ C2ϕa(t) for t ≥ C1, (2.13)

where C2 = C2(A)=
√
ln2/6A−3/2.

If now t ≥ 1, then the concavity of the �-functional and the previous inequality
yield

�
(
t,x;L∞,G

)≥ C−11 �
(
tC1,x;L∞,G

)≥ C2

C1
ϕa

(
C1t

)≥ C2

C1
ϕa(t). (2.14)

Using the inequalities ‖a‖2 ≤ ‖a‖1 (a∈ l1) and ‖x‖G ≤ ‖x‖∞ (x ∈ L∞), the definition
of the �-functional, and Theorem 1.1, we obtain

�
(
t,x;L∞,G

)= t‖x‖G ≥ C3t‖a‖2 = C3ϕa(t) for 0< t ≤ 1. (2.15)

Thus,
�
(
t,a;l1, l2

)≤ C�
(
t,Ta;L∞,G

)
, (2.16)

if C =max(C−13 ,C1/C2).
Suppose now a ∈ l1. By (2.5), without loss of generality, we can assume that the

function ϕa maps the semiaxis (0,∞) injectively onto the interval (0,‖a‖1). Hence
we can define the mappings ϕ−1

a : (0,‖a‖1)→ (0,∞), ψ : (0,A−1‖a‖1)→ (0,A−1), and
ψ−1 : (0,A−1)→ (0,A−1‖a‖1). Arguing as above, we get inequality (2.16).
The opposite inequality follows from Theorem 1.1 and relation (1.4). Indeed,

�
(
t,Ta;L∞,G

)≤ inf
{∥∥Ta0

∥∥∞+t∥∥Ta1
∥∥
G : a= a0+a1, a0 ∈ l1, a1 ∈ l2

}
≤D�

(
t,a;l1, l2

)
.

(2.17)

Proof of Theorem 1.4. It is sufficient to use Theorem 1.2 and the definition of
the real �-method of interpolation.

For the proof of Theorem 1.5 we need some definitions and auxiliary assertions.
These results are also of some independent interest.
Let f(t) be a function defined on the interval (0, l), where l= 1 or l=∞. Then the

dilation function of f is defined as follows:

�f (t)= sup
{
f(st)
f (s)

: s,st ∈ (0, l)
}
, if t ∈ (0, l). (2.18)
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Since this function is semimultiplicative, then there exist numbers

γf = lim
t→0+

ln�f (t)
lnt

, δf = lim
t→∞

ln�f (t)
lnt

. (2.19)

A Banach couple
�→
X = (X0,X1) is called a partial retract of a couple

�→
Y = (Y0,Y1) if

each element x ∈X0+X1 is orbitally equivalent to some element y ∈ Y0+Y1. The last
means that there exist linear operators U :

�→
X → �→

Y and V :
�→
Y → �→

X such that Ux = y
and Vy = x.

Proposition 2.1. Suppose that M(ϕ) is a Marcinkiewicz space on [0,1]. If γϕ > 0,

then
�→
X = (L∞,M(ϕ)) is a �-monotone couple.

Proof. It is sufficient to show that the couple
�→
X is a partial retract of the couple

�→
Y = (L∞,L∞(ϕ̄)), where

‖x‖L∞(ϕ̃) = sup
0<t≤1

ϕ̃(t)
∣∣x(t)∣∣, ϕ̃(t)= t

ϕ
(t). (2.20)

Indeed, a partial retract of a�-monotone couple is a�-monotone couple [15, page 420],
and by the Sparr theorem [20]

�→
Y is a �-monotone couple.

First note that the inclusion L∞ ⊂ M(ϕ) implies L∞ +M(ϕ) = M(ϕ). So, let x ∈
M(ϕ). Without loss of generality [10, page 87], assume that x(t)= x∗(t). Define the
operator

U1y(t)=
∞∑
k=1

2k
∫ 2−k

0
y(s)dsχ(2−k,2−k+1](t) for y ∈M(ϕ). (2.21)

Clearly, U1 maps L∞ into itself. In addition, the concavity of the functionϕ and prop-
erties of the nonincreasing rearrangement imply

∥∥U1y
∥∥
L∞(ϕ̄) ≤ 2 sup

k=1,2,...

(
ϕ
(
2−k+1

))−1∫ 2−k

0
y∗(s)ds ≤ 2‖y‖M(ϕ). (2.22)

Hence U1 :
�→
X → �→

Y . Since x(t) is nonincreasing, then U1x(t) ≥ x(t). Therefore the
linear operator

Uy(t)= x(t)
U1x(t)

U1y(t) (2.23)

is bounded from the couple
�→
X into the couple

�→
Y . In addition, Ux(t)= x(t).

Take for V the identity mapping, that is, Vy(t) = y(t). Since γf > 0, then, by [10,
page 156], we have

‖Vy‖M(ϕ) ≤ C sup
0<t≤1

ϕ̃(t)y∗(t)≤ C sup
0<t≤1

ϕ̃(t)
∣∣y(t)∣∣= C‖y‖L∞(ϕ̃). (2.24)

Therefore V :
�→
Y → �→

X and Vx = x.
Thus an arbitrary element x ∈M(ϕ) is orbitally equivalent to itself as to element

of the space L∞+L∞(ϕ̃). This completes the proof.
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Corollary 2.2. If γϕ > 0, then (L∞,M(ϕ)0) is a �-monotone couple.

Proof. Assume that x and y belong to the space M(ϕ)0 and

�
(
t,y ;L∞,M(ϕ)0

)≤�
(
t,x;L∞,M(ϕ)0

)
for t > 0. (2.25)

If z ∈M(ϕ)0, then

�
(
t,z;L∞,M(ϕ)0

)=�
(
t,z;L∞,M(ϕ)

)
. (2.26)

Therefore,
�
(
t,y ;L∞,M(ϕ)

)≤�
(
t,x;L∞,M(ϕ)

)
for t > 0. (2.27)

Hence, by Proposition 2.1, there exists an operator T : (L∞,M(ϕ))→ (L∞,M(ϕ)) such
that y = Tx. It is readily seen that M(ϕ)0 is an interpolation space of the couple
(L∞,M(ϕ)). Therefore T : (L∞,M(ϕ)0)→ (L∞,M(ϕ)0).

We define now two subcones of the cone �. Denote by �0 the set of all functions
f ∈ � such that limt→0+f(t) = limt→∞f(t)/t = 0. If f ∈ �, then 0 ≤ γf ≤ δf ≤ 1 [10,
page 76]. Let �+− be the set of all f ∈� such that 0 < γf ≤ δf < 1. It is obvious that
�+− ⊂�0.
A couple (X0,X1) is called a �0-complete couple if for any function f ∈ �0 there

exists an element x ∈X0+X1 such that

�
(
t,x;X0,X1

)� f(t). (2.28)

In other words, the set�(X0+X1) of all�-functionals of a�0-complete couple (X0,X1)
contains, up to equivalence, the whole of the subcone �0.

Proposition 2.3. The Banach couple (L1(0,∞),L2(0,∞)) is a �0-complete couple.

Proof. By the Holmstedt formula for functional spaces [7],

�
(
t,x,L1,L2

)�max



∫ t2

0
x∗(s)ds,t

[∫∞
t2

(
x∗(s)

)2ds
]1/2

. (2.29)

If f ∈ �0, then g(t) = f(t1/2) belongs to �0. We denote x(t) = g′(t). Then x(t) =
x∗(t) and ∫ t

0
x(s)ds = g(t). (2.30)

Assume that f ∈�+−. If δf < 1, then there exists ε > 0 such that for some C > 0

G(s)= f
(
s1/2

)≤ C
(√

s
t

)1−ε
f
(
t1/2

)
, if s ≥ t. (2.31)

Since g ∈�0, then g′(t)≤ g(t)/t. Therefore for t > 0∫∞
t

(
x(s)

)2ds ≤ ∫∞
t

g2(s)
s2

ds ≤ C2tε−1
(
f
(
t1/2

))2∫∞
t
s−1−ε ds = C2εt−1

(
g(t)

)2. (2.32)

Combining this with (2.29) and (2.30), we obtain

�
(
t,x;L1,L2

)� g
(
t2
)= f(t). (2.33)
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Thus �(L1+L2) ⊃�+−. Hence, in particular, the intersection �(X0+X1)∩�+− is not
empty. Therefore, by [6, Theorem 4.5.7], (L1,L2) is a �0-complete Banach couple. This
completes the proof.

Let �(l1+l2) be the set of all �-functionals corresponding to the couple (l1, l2). By
� we denote the set of all functions f ∈� such that

f(t)= f(1)t for 0< t ≤ 1, lim
t→∞

f(t)
t

= 0. (2.34)

Corollary 2.4. Up to equivalence,

�
(
l1+l2

)⊃�. (2.35)

Proof. It is well known (cf. [4, page 142]) that for x ∈ L1(0,∞)+ L∞(0,∞) and
u> 0

�
(
u,x;L1,L∞

)= ∫ u

0
x∗(s)ds. (2.36)

In addition,
L1 =

(
L1,L∞

)�
l∞ , L2 =

(
L1,L∞

)�
l2(2−k/2). (2.37)

The spaces l∞ and l2(2−k/2) are interpolation spaces with respect to the couple
(l∞, l∞(2−k)) [4]. Therefore, by the reiteration theorem (see [5] or [14]),

�
(
t,x;L1,L2

)��
(
t,�

(·,x;L1,L∞);l∞, l2(2−k/2)) for x ∈ L1+L2. (2.38)

Introduce the average operator:

Qx(t)=
∞∑
k=1

∫ k

k−1
x(s)dsχ(k−1,k](t), if t > 0. (2.39)

From (2.36) it follows that

�
(
t,Qx∗;L1,L∞

)=�
(
t,x;L1,L∞

)
(2.40)

for all positive integers t. Both functions in (2.40) are concave. Therefore,

�
(
t,Qx∗;L1,L∞

)��
(
t,x;L1 ·L∞

) ∀t ≥ 1. (2.41)

Hence (2.38) yields

�
(
t,Qx∗;L1,L2

)��
(
t,x;L1,L2

)
, if t ≥ 1. (2.42)

Now let f ∈ �. Since � ⊂ �0, then, by Proposition 2.3, there exists a function x ∈
L1(0,∞)+L2(0,∞) such that

�
(
t,x;L1,L2

)� f(t). (2.43)

Clearly, the operatorQ is a projector in the spaces L1 and L2 with norm 1. Moreover,
Q(L1) = l1 and Q(L2) = l2. Hence, by the theorem about complemented subcouples
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mentioned in Section 1 (see [3] or [21, page 136]),

�
(
t,Qx∗;L1,L2

)��
(
t,a;l1, l2

)
for t > 0, (2.44)

where a= (
∫ k
k−1x∗(s)ds)

∞
k=1.

Thus (2.42) and (2.43) imply

�
(
t,a;l1, l2

)� f(t) for t ≥ 1. (2.45)

The last relation also holds if 0< t ≤ 1. Indeed, in this case

�
(
t,a;l1, l2

)= t‖a‖2 = t�
(
1,a;l1, l2

)� tf (1)= f(t). (2.46)

This completes the proof.

Proof of Theorem 1.5. As it was alreadymentioned in the proof of Theorem 1.2,
theOrlicz space LN ,N(t)= exp(t2)−1, coincideswith theMarcinkiewicz spaceM(ϕ1),
for ϕ1(u) = u log1/22 (2/u). Since γϕ1 = 1, then Corollary 2.2 implies that the couple
(L∞,G) is a �-monotone couple. Hence,

X0 =
(
l∞,G

)�
E0 , X1 =

(
l∞,G

)�
E1 , (2.47)

for some parameters of the real �-method of interpolation E0 and E1. By Theorem 1.4,

∥∥∥∥∥∥
∞∑
k=1

akrk

∥∥∥∥∥∥
Xi

� ∥∥(ak)∥∥Fi , (2.48)

where Fi = (l1, l2)�
Ei(i= 0,1). So

(
l1, l2

)�
E0 =

(
l1, l2

)�
E1 . (2.49)

Equation (2.49) means that the norms of spaces E0 and E1 are equivalent on the set
�(l1 + l2). It is readily to check that this set coincides, up to the equivalence, with
the set �(L∞ +G) of all �-functionals corresponding to the couple (L∞,G). More
precisely,

�
(
l1+l2

)=�
(
L∞+G

)=�. (2.50)

In fact, by Theorem 1.2 and Corollary 2.2, � ⊂ �(l1+ l2) ⊂ �(L∞+G). On the other
hand, since L∞ ⊂ G with the constant 1 and L∞ is dense in G, then �(L∞ +G) ⊂ �

[15, page 386].
Now let x ∈X0. By (2.47), we have (�(2k,x;L∞,G))k ∈X0. Using (2.50), we can find

a∈ l2 such that
�
(
2k,a;l1, l2

)��
(
2k,x;L∞,G

)
(2.51)

for all positive integers k. Since a parameter of �-method is a Banach lattice, then
this implies (�(2k,a;l1, l2))k ∈ E0. Therefore, by (2.49), (�(2k,a;l1, l2))k ∈ E1, that
is, (�(2k,x;L∞,G))k ∈ E1 or x ∈ X1. Thus X0 ⊂ X1. Arguing as above, we obtain the
converse inclusion, and X0 =X1 as sets. Since X0 and X1 are Banach lattices, then their
norms are equivalent. This completes the proof.
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3. Final remarks and examples

Remark 3.1. Combining Theorems 1.2, 1.4, and 1.5 with results obtained in [8],
we can prove similar assertions for lacunary trigonometric series. Moreover, taking
into account the main result of [1], we can extend Theorems 1.2, 1.4, and 1.5 to Sidon
systems of characters of a compact abelian group.

Remark 3.2. In Theorem 1.2, we cannot replace the spaceG by Lq with some q <∞.
Indeed, suppose that the couple (T(l1),T(l2)) is a �-subcouple of the couple (L∞,Lq),
that is,

�
(
t,a;l1, l2

)��
(
t,Ta;L∞,Lq

)
. (3.1)

Let E = lp(2−θk), where 0< θ < 1 andp = q/θ. Applying the�-method of interpolation
(·,·)�

E to the couples (l1, l2) and (L∞,Lq), we obtain

‖Ta‖p � ‖a‖r ,p =



∞∑
k=1

(
a∗k
)pkp/r−1



1/p

. (3.2)

Since r = 2/(2−θ) < 2 [4, page 142], then this contradicts with (1.3).

Remark 3.3. Clearly, a partial retract of a couple
�→
Y = (Y0,Y1) is a �-subcouple

of
�→
Y . The opposite assertion is not true, in general (nevertheless, some interesting

examples of �-subcouples and partial retracts simultaneously are given in [9]). Indeed,
by Theorem 1.2, the subcouple (l1, l2) is a �-subcouple of the couple (L∞,G). Assume
that (l1, l2) is a partial retract of this couple. Then (see the proof of Proposition 2.1)
(l1, l2) is a partial retract of the couple (L∞,L∞(log

−1/2
2 (2/t))), as well. Therefore, by

Lemma 1 from [2] and [4, page 142] it follows that

[
l1, l2

]
θ =

(
l1, l2

)
θ,∞ = lp,∞, (3.3)

where [l1, l2]θ is the space of the complex method of interpolation [4], 0< θ < 1, and
p = 2/(2−θ). On the other hand, it is well known [4, page 139] that

[
l1, l2

]
θ = lp for p = 2

2−θ . (3.4)

This contradiction shows that the couple (l1, l2) is not a partial retract of the couple
(L∞,G).

Using Theorem 1.4, we can find coordinate sequence spaces of coefficients of
Rademacher series belonging to certain r.i.s.’s.

Example 3.4. LetX be the Marcinkiewicz spaceM(ϕ), whereϕ(t)=t log2 log2(16/t),
0< t ≤ 1. Show that ∥∥∥∥∥∥

∞∑
k=1

akrk

∥∥∥∥∥∥
M(ϕ)

� ‖a‖l1(log), (3.5)

where l1(log) is the space of all sequences a= (ak)∞k=1 such that the norm

‖a‖l1(log) = sup
k=1,2,...

log−12 (2k)
k∑
i=1

a∗i (3.6)
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is finite. Taking into account Theorem 1.4, it is sufficient to check that

(
l1, l2

)�
F = l1(log), (3.7)(

l∞,G
)�
F =M(ϕ), (3.8)

for some parameter F of the �-method of interpolation. More precisely, we will prove
that (3.7) and (3.8) are true for F = l∞(uk), where uk = 1/(k+1) (k ≥ 0) and uk = 1
(k < 0).
By the Holmstedt formula (2.5),

ϕa
(
2k
)≤ 22k∑

i=1
a∗i +2k


 ∞∑
i=22k+1

(
a∗i
)21/2 ≤ Bϕa

(
2k
)

for k= 0,1,2, . . . , (3.9)

where, as before, ϕa(t) = �(t,a;l1, l2). Without loss of generality, assume that ai =
a∗i . If ‖a‖l1(log) = R <∞, then by (3.6),

22k∑
i=1

a∗i ≤ 2R(k+1). (3.10)

In particular, this impliesa22k ≤ 2−2k+1R(k+1), for nonnegative integer k. Using (3.10),
we obtain

∞∑
i=22k+1

a2
i =

∞∑
j=k

22(j+1)∑
i=22j+1

a2
i ≤ 3

∞∑
j=k

22ja2
22j
≤ 12R2

∞∑
j=k

2−2j(j+1)2

≤ 192R2
∫∞
k+1

x22−2x dx ≤ 144R2(k+1)22−2k.
(3.11)

Hence the second term in (3.9) does not exceed 12R(k+1). Therefore, if E = (l1, l2)�
F ,

then (3.10) implies

‖a‖E = sup
k=0,1,...

ϕa
(
2k
)

k+1 ≤ 14‖a‖l1(log). (3.12)

Conversely, if 22j+1≤ k≤ 22(j+1) for some j = 0,1,2, . . . , then from (3.9) it follows
that

k∑
i=1

ai ≤ Bϕa
(
2j+1

)≤ 22(j+1)∑
i=1

ai ≤ B‖a‖E(j+2)≤ 2B log2(2k)‖a‖E. (3.13)

Therefore, ‖a‖l1(log) ≤ 2B‖a‖E and (3.7) is proved.
We pass now to function spaces. At first, we introduce one more interpolation

methodwhich is, actually, a special case of the realmethod of interpolation. For a func-
tion ϕ ∈� and an arbitrary Banach couple (X0,X1) define generalized Marcinkiewicz
space as follows:

Mϕ
(
X0,X1

)=
{
x ∈X0+X1 : sup

t>0

�
(
t,x;X0,X1

)
ϕ(t)

<∞
}
. (3.14)
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Let ϕ0(t) = min(1, t), ϕ1(t) = min(1, t log1/22 [max(2,2/t)]), and N(t) = exp(t2)−1,
as before. By equation (2.36), we have

L∞ =Mϕ0

(
L1,L∞

)
, LN =Mϕ1

(
L1,L∞

)
, (3.15)

(here L∞ and LN are functional spaces on the segment [0,1]). In addition, using similar
notation, it is easy to check that

(
X0,X1

)�
F =Mρ

(
X0,X1

)
, (3.16)

for an arbitrary Banach couple (X0,X1) and ρ(t)= log2(4+t). Hence, by the reiteration
theorem for generalized Marcinkiewicz spaces [15, page 428], we obtain

(
L∞,LN

)�
F =Mρ

(
Mϕ0

(
L1,L∞

)
,Mϕ1

(
L1,L∞

))=Mϕρ

(
L1,L∞

)=M
(
ϕρ

)
, (3.17)

where ϕρ(t) = ϕ0(t)ρ(ϕ1(t)/ϕ0(t)). A simple calculation gives ϕρ(t) � ϕ(t), if
t > 0. Thus, (

L∞,LN
)�
F =M(ϕ). (3.18)

It is readily seen that �
(
t,x;L∞,G

)=�(t,x;L∞,LN), for all x ∈G. Therefore, for such
x the norm ‖x‖M(ϕ) is equal to the norm ‖x‖Y , where Y = (L∞,G)�

F . On the other
hand, for x ∈M(ϕ)

1

t log1/22 (2/t)

∫ t

0
x∗(s)ds ≤ ‖x‖M(ϕ)

log2 log2(16/t)
log1/22 (2/t)

�→ 0 as t �→ 0+ . (3.19)

This implies that M(ϕ) ⊂ G [10, page 156]. Thus Y = M(ϕ), and (3.8) is proved.
Equivalence (3.5) follows now, as already stated, from (3.7) and (3.8).

Remark 3.5. Theorems 1.4 and 1.5 strengthen results of [18, 19], where similar
assertions are obtained for sequence spaces F satisfying more restrictive conditions.
For instance, we can readily show that the norm of the dilation operator

σna=

a1,·,a1︸ ︷︷ ︸

n

,a2,·,a2︸ ︷︷ ︸
n

, . . .


 (3.20)

in the space l1(ln) (see Example 3.6) is equal to n. Therefore, condition (11) from
[19] fails for this space and the theorems obtained in [18, 19] cannot be applied to
it. Similarly, the Marcinkiewicz space M(ϕ) from Example 3.4 does not satisfy the
conditions of Theorem 8 of [19].

Using Theorems 1.4 and 1.5, we can derive certain interpolation relations.

Example 3.6. Let ϕ ∈ � and 1 ≤ p < ∞. Recall that the Lorentz space Λp(ϕ)
consists of all measurable functions x = x(s) such that

‖x‖ϕ,p =
{∫ 1

0

(
x∗(s)

)p dϕ(s)
}1/p

<∞. (3.21)
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In [19], V. A. Rodin and E. M. Semenov proved that∥∥∥∥∥∥
∞∑
k=1

akrk

∥∥∥∥∥∥
ϕ,p

� ∥∥(ak)∥∥p, (3.22)

where ϕ(s) = log1−p2 (2/s) and 1 < p < 2. Moreover, the space Λp(ϕ) is the unique
r.i.s. having this property. Note that lp = (l1, l2)θ,p , where θ = 2(p−1)/p [4, page 142].
Therefore, by Theorem 1.4, we obtain

(
L∞,G

)
θ,p =Λp(ϕ) (3.23)

for the same p and θ.
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