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ABSTRACT. The Rademacher series in rearrangement invariant function spaces “close” to
the space L are considered. In terms of interpolation theory of operators, a correspon-
dence between such spaces and spaces of coefficients generated by them is stated. It is
proved that this correspondence is one-to-one. Some examples and applications are pre-
sented.
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1. Introduction. Let
1 (t) = signsin2* 't (k=1,2,...) (1.1)

be the Rademacher functions on the segment [0, 1]. Define the linear operator

Ta(t) = > axrk(t) fora=(ak),_, € L. 1.2)
k=1
It is well known (cf. [23, pages 340-342]) that Ta is an almost everywhere finite func-
tion on [0, 1]. Moreover, from Khintchine’s inequality it follows that

ITal, < llall; forl=<p <o, (1.3)

where |lall, = (3¢, lak|?)}/P. The symbol < means the existence of two-sided esti-
mates with constants depending only on p. Also, it can easily be checked that

ITalr. = llal. (1.4)

A more detailed information on the behaviour of Rademacher series can be obtained
by treating them in the framework of general rearrangement invariant spaces.

Recall that a Banach space X of measurable functions x = x(t) on [0,1] is said
to be a rearrangement invariant space (r.i.s.) if the inequality x*(t) < y*(t), for t €
[0,1] and v € X, implies x € X and | x| < ||y|l. Here and in what follows z*(t) is
the nonincreasing rearrangement of a function |[z(t)| with respect to the Lebesgue
measure denoted by meas [10, page 83].

Important examples of r.i.s.’s are Marcinkiewicz and Orlicz spaces. Let % denote
the cone of nonnegative increasing concave functions on the semiaxis (0, o).

If @ € P, then the Marcinkiewicz space M () consists of all measurable functions
x = x(t) such that

1 t
IxIM(q,)—sup{(p(t)Lx*(s)ds:0<tsl}<oo. (1.5)
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If S(t) is a nonnegative convex continuous function on [0,), S(0) = 0, then the
Orlicz space Lg consists of all measurable functions x = x(t) such that

1
leg—inf{u>0:JOS<|x$)|)dtsl}<oo. (1.6)

In particular, if S(t) =t (1 <p < o), then Lg = L,.

For any r.i.s. X on [0,1] we have L, ¢ X C Ly [10, page 124]. Let X° denote the
closure of L., in an r.i.s. X.

In problems discussed below, a special role is played by the Orlicz space Ly, where
N(t) = exp(t?) — 1 or, more precisely, by the space G = LY. In [19], V. A. Rodin and
E. M. Semenov proved a theorem about the equivalence of Rademacher system to the
standard basis in the space [,.

THEOREM 1.1. Suppose that X is an r.i.s. Then

o0
> agri

k=1

ITalx = = |lall2 (1.7)

X

if and only if X O G.

By Theorem 1.1, the space G is the minimal space among r.i.s.’s X such that the
Rademacher system is equivalent in X to the standard basis of I,.

In this paper, we consider problems related to the behaviour of Rademacher series
inr.i.s.’s intermediate between L., and G. Here a major role is played by concepts and
methods of interpolation theory of operators.

For a Banach couple (X, X;), x € Xo+X; and t > 0, we introduce the Peetre -
functional

I (t,x;X0,X1) =inf{||x0||X0+t||xl||X1 X = X0+ X1, X0 € Xo, X1 eXl}. (1.8)

Let Y, be a subspace of X, and Y; a subspace of X;. A couple (Yy,Y7) is called a
H-subcouple of a couple (Xp,X7) if

H(t, 53 Yo, Y1) = H(t,¥: X0, X1), (1.9)

with constants independent of y € Yo +Y; and t > 0.

In particular, if Y; = P(X;), where P is a linear projector bounded from X; into itself
for i = 0,1, then (Yy, Y1) is a H-subcouple of (Xy,X1) (see [3] or [21, page 136]). At
the same time, there are many examples of subcouples that are not ¥-subcouples (see
[21, page 589], [22], and Remark 3.2 of this paper).

Let T(l;) (respectively T(l>)) denote the subspace of L. (of G) consisting of all
functions of the form x = Ta, where T is given by (1.2) and a € [, (€ l»). From (1.4)
and Theorem 1.1 it follows that

H(t, Ta;T(L), T (L)) = (L, a;li, L) (1.10)

In spite of the fact that T(l,) is uncomplemented in L., (see [17] or [11, page 134]) the
following assertion holds.
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THEOREM 1.2. The couple (T(l1),T (1)) is a X-subcouple of the couple (L,G). In
other words (see (1.10)),

H(t,Ta;Ls,G) =K (t,a;11,12), (1.11)
with constants independent of a = (ax)y_, € l» and t > 0.

We will use in the proof of Theorem 1.2 an assertion about the distribution of
Rademacher sums. It was proved by S. Montgomery-Smith [13].

THEOREM 1.3. There exists a constant A = 1 such that for all a = (ay)y_, € lo and
t>0

i 2
meas{s €[0,11: Z axr(s) > (pa(t)]» < exp (—tz),

k=t (1.12)

[

meas {s e[0,1]: z arre(s) > Al(pa(t)]» > A lexp (- At?),

where @, (t) =H(t,a;l,lp).

Now we need some definitions from interpolation theory of operators. We say that a
linear operator U is bounded from a Banach couple X = (Xo,X1) into a Banach couple
Y = (Yo,Y1) (in short, U : X — ?) if U is defined on Xy + X; and acts as bounded
operator from X; into Y; for i =0, 1.

Let X = (Xo0,X1) be a Banach couple. A space X such that XonX; C X C Xo +X1 is
called an interpolation space between X, and X; if each linear operator U : X - X is
bounded from X into itself.

To every r.i.s. X assign the sequence space Fx of Rademacher coefficients of func-
tions of the form (1.2) from X:

ak HFX (1.13)

[e<]
Z axri

Well-known properties of Rademacher functions imply that Fx is an r.i. sequence
space [19]. Furthermore, Theorem 1.3 and properties of the J{-functional show that
Fx is an interpolation space between l; and I, (see the proof of Theorem 1.2 later).
For interpolation r.i.s. between L., and G the correspondence X — Fy can be defined
by using the real interpolation method.

For every p € [1,00], we denote by l,(ux), ux = 0 (k = 0,1,...) the space of all
two-sided sequences of real numbers a = (ax);__,, such that the norm [lally, @) =
[l (akui)llp is finite. Let E be a Banach lattice of two-sided sequences, (min(1, 2")),‘?:,00
€ E.If (Xo, X1) is aBanach couple, then the space of the real ¥-method of interpolation
(Xo,X1)¥ consists of all x € Xo+X; such that

X

1l = |[( (2%, x5 X0, X1) ) || < . (1.14)

It is readily checked that the space (Xy,X1)¥ is an interpolation space between X, and
X (cf. [15, page 422]). In the special case E =1,(27%%) (0 <0 <1, 1<p <) we
obtain the spaces (Xo,X1)¢,, (for the detailed exposition of their properties see [4]).
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A couple X = (Xo,X1) is said to be a J-monotone couple if for every x € Xy + X,
and y € Xy + X, there exists a linear operator U : X — X such that y = Ux whenever

I (t,v; X0, X1) < (t,x;X0,X1) Vt>0. (1.15)

As it is well known (cf. [15, page 482]), any interpolation space X with respect to
a J-monotone couple (Xy,X7) is described by the real J-method. It means that for
some E

X = (X0, X))} (1.16)

In particular, by the Sparr theorem [20] the couple (l1,17) is a #-monotone couple.
Therefore, if F is an interpolation space between [; and [», then there exists E such
that

= (I, L)} (1.17)

Hence Theorem 1.2 allows to find an r.i.s. that contains Rademacher series with co-
efficients belonging to an arbitrary interpolation space between [; and l,. In [19], the
similar result was obtained for sequence spaces satisfying more restrictive conditions
(see Remark 3.3).

THEOREM 1.4. Let F be an interpolation sequence space between |, and l, and F =
(I1,12)%. Then for the r.is. X = (L, G)¥ we have

= |lallr (1.18)
X

00
> arri
k=1

with constants independent of a = (ax)y_,-

Combining Theorem 1.4 with the above remarks, we get the following assertion. If
F is a sequence space, then

[(ar) || = for some r.i.s. X (1.19)

o0
Z axvk

X

if and only if F is an interpolation space between l; and [,.
The last result shows that the restriction of the correspondence (1.13) to interpo-
lation r.i.s. between L and G is bijective.

THEOREM 1.5. Let r.i.s.’s Xy and X, be two interpolation spaces between L., and G.

If

, (1.20)
X1

00 (o]
> arrk > arrk
k=1 k=1

Xo
then Xy = X, and the norms of Xy and X, are equivalent.

In [16, 19], the similar results were obtained by additional conditions with respect
to spaces Xj and X;.
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2. Proofs

PROOF OF THEOREM 1.2. Itis known [10, page 164] that the J-functional of a cou-
ple of Marcinkiewicz spaces is given by the formula

(8,3 M (o), M (1)) = sup ——A0 X ()ds

. 2.1
o<u=1 Max (@o(u), @ (u)/t) @1

If N(t) = exp(t?) — 1, then the Orlicz space Ly coincides with the Marcinkiewicz space
M (1), where @1 (1) = ulogy/*(2/u) [12]. In addition, L. = M (@), where @ (u) = u.

Therefore,

u -
J(t,x;Le,G) = sup {IJ x*(s)dsmin(l,tlog;”2 <2>)} forxeG. (2.2)
o<u<1 (U Jo u

Since x*(u) < l/uf(;‘x* (s)ds, then from (2.2) it follows that

H(t,x;Lew,G) = sup {x*(27%)min(1,t(k+1)"12)]. (2.3)
k=0,1,...
Hence,
H(t,x;Leo,G) = x*(27%) fort=1, (2.4)

where k; = [t?]—1 ([z] is the integral part of a number z).
Now let a = (ax)y_, € b and x(t) = Ta(t) = ko1 axrk(t). By the Holmstedt
formula [7],

[tz] o 1/2
%(t)szazw«: > (a:)z} <B@a(t), (2.5)

k=1 k=[t2]+1

where @, (t) = ¥(t,a;11,12), (af) -, is anonincreasing rearrangement of the sequence
(lax)g-;, and B > 0 is a constant independent of a = (ax)y_, and t > 0.
Assume, at first, that a & 1. Then inequality (2.5) shows that

lim @, (t) =0, lim @, (t) = oo. (2.6)
t—0+ t—oo

The function @, belongs to the class % [4, page 55]. Therefore it maps the semiaxis
(0,00) onto (0,0) one-to-one, and there exists the inverse function @;!. By
Theorem 1.3, we have

Nix (T) =meas{s € [0,1]: |x(s)| > T} =w(T) forT>0, (2.7)
where @ (1) = A~texp{—A[@;' (TA)]?}. Passing to rearrangements we obtain
x*(s)zywNs) forO<s<Al. (2.8)
Obviously, by condition t = C; = C;(A) = \/m , it holds
27k/2 < A71 for ke = [t2] 1. (2.9)
Hence (2.4) and (2.8) imply

H(t,x;Le,G) = =t (27k). (2.10)
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Combining the definition of the function ¢ with (2.9), we obtain

W) = A g (a7 (4124 = 4 (K82 )
(2.11)
In2 In2
> A73? TCPa(\/kT) > A2, Ttil\/k»t(p“(t)'
From the inequality t > C;, > +/2 it follows that
21—
ke > vir]-1 > 3712, (2.12)
t o VItP1+1
Therefore, by (2.10), we have
H(t,x;Le0,G) = Cou(t) fort=Cy, (2.13)

where C> = Co(A) = /In2/6A3/2,
If now t > 1, then the concavity of the ¥-functional and the previous inequality
yield
H(t,x;Le,G) = CT'H(tC1,x;Le0,G) = %wu(Clt) > %(pu(t). (2.14)
1 1

Using the inequalities ||all> < [lall1 (a € 1) and || x]lg < [|X]lo (X € L), the definition
of the ¥-functional, and Theorem 1.1, we obtain

H(t,x;L0,G) = tlx|lg = Cstllall, = C3pa(t) forO<t<1. (2.15)

Thus,
J(t,a;l1,l) <CH(t,Ta;L»,G), (2.16)

if C = max(C;',C1/Ca).

Suppose now a € l;. By (2.5), without loss of generality, we can assume that the
function @, maps the semiaxis (0, ) injectively onto the interval (0, ||a|,). Hence
we can define the mappings @' : (0,llall1) — (0,), ¢: (0,A 'all;) — (0,A7!), and
@Y1:(0,A7Y) — (0,A 1]|all1). Arguing as above, we get inequality (2.16).

The opposite inequality follows from Theorem 1.1 and relation (1.4). Indeed,

*(t,Ta;Lw,G) <inf{||Ta’||, +t||Tat||l;:a=a’+a', a® €Ly, a* € I}

2.17
<D¥(t,a;ly,12). ( )

O

PROOF OF THEOREM 1.4. It is sufficient to use Theorem 1.2 and the definition of
the real J{-method of interpolation. O

For the proof of Theorem 1.5 we need some definitions and auxiliary assertions.
These results are also of some independent interest.

Let f(t) be a function defined on the interval (0,l), where [ = 1 or |l = c. Then the
dilation function of f is defined as follows:

f(st)

Mg (t) = sup{ 70s)

s,ste (0,1)}, if t € (0,0). (2.18)
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Since this function is semimultiplicative, then there exist numbers

Inlg(t
5y = lim O,

t~0+ Int - Int (2.19)

A Banach couple X = (Xp,X1) is called a partial retract of a couple Y = (Yo, Y7) if
each element x € X, + X is orbitally equivalent to some element y € Yy + Y;. The last
means that there exist linear operators U : X —~YandV:Y — X such that Ux = %
and Vy = x.

PROPOSITION 2.1. Suppose that M (@) is a Marcinkiewicz space on [0,1]. If yo > 0,
then X = (Lo,M(@)) is a X-monotone couple.

PROOF. It is sufficient to show that the couple X is a partial retract of the couple
Y = (Lw,Ls(®)), where

. - t
X110 (@) = sup @) [x ()|, @) =—(1). (2.20)
O<t=<1 @

Indeed, a partial retract of a ¥-monotone couple is a J-monotone couple [15, page 420],
and by the Sparr theorem [20] Y is a %-monotone couple.

First note that the inclusion L., € M (@) implies Lo, + M(@) = M (). So, let x €
M (). Without loss of generality [10, page 87], assume that x(t) = x*(t). Define the

operator
© 2-k
Upy(t) = > 2k . Y($)dsX -k p-ke1p(t) for y € M(). (2.21)
k=1
Clearly, U; maps L into itself. In addition, the concavity of the function @ and prop-
erties of the nonincreasing rearrangement imply

2—’(
|’U1y||Lm(®)52k§Fg (qo(:rk“))’lj0 y*(s)ds < 2]y M- (2.22)

Hence U; : X — Y. Since x(t) is nonincreasing, then U;x(t) = x(t). Therefore the
linear operator

x(t)
Ui x(t)

Uy(t) = Uy y(1) (2.23)
is bounded from the couple X into the couple Y.In addition, Ux (t) = x(t).

Take for V the identity mapping, that is, Vy(t) = y (¢). Since y¢ > 0, then, by [10,
page 156], we have

IVY M) < C sup @(t)y*(t) < C sup @) |y ()| = CllylLag)- (2.24)
O<t=<1 O<t=<1

Therefore V:Y — X and Vx = x.
Thus an arbitrary element x € M (@) is orbitally equivalent to itself as to element
of the space L + Lo (®). This completes the proof. O
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COROLLARY 2.2. If yp, > 0, then (L, M(®)°) is a ¥-monotone couple.

PROOF. Assume that x and v belong to the space M (@)? and
H(t,¥;Leo, M(@)°) < H(t,x;Le,M(@)?) fort>0. (2.25)
If ze M(p)?, then
H(t,z;Loo, M(@)°) =% (t,z; Lo, M(®)). (2.26)

Therefore,
H(t,v;Lo,M(@)) <H(t,x;Le,M(p)) fort>0. (2.27)

Hence, by Proposition 2.1, there exists an operator T : (Lo,M(@)) — (Lo,M(@)) such
that y = Tx. It is readily seen that M(g)° is an interpolation space of the couple
(Lo, M(@)). Therefore T : (Lo, M(®)?) — (Lo, M (g)°). O

We define now two subcones of the cone %. Denote by P the set of all functions
S € @ such that lim; g, f(t) = lim;_ f(£)/t =0.If f € P, then0<y; <5 <110,
page 76]. Let ?*~ be the set of all f € % such that 0 < yr < 65 < 1. It is obvious that
P CPo.

A couple (Xp, X)) is called a Jp-complete couple if for any function f € P there
exists an element x € Xy + X; such that

I (t,%; X0, X1) = £(0). (2.28)

In other words, the set 3 (X, + X;) of all J-functionals of a 3{y-complete couple (Xo, X1)
contains, up to equivalence, the whole of the subcone .

PROPOSITION 2.3. The Banach couple (L,(0,c0),L>(0,00)) is a Hy-complete couple.
PROOF. By the Holmstedt formula for functional spaces [7],

2 w0 1/2
9 (t,x,L1,L) xmax«“ x*(s)als,t“2 (x*(s))zds] } (2.29)
t

0

If f € P, then g(t) = f(t'/?) belongs to Py. We denote x(t) = g’ (t). Then x(t) =
x*(t) and

t
Jox(s)d5=g(t). (2.30)

Assume that f € ®*~.If 6 < 1, then there exists € > 0 such that for some C > 0

1-¢
G(S):f(s”z)sC(\/g) (%), ifs=t. (2.31)

Since g € Py, then g’ (t) < g(t)/t. Therefore for t > 0

) 9] 2 (9]
J (x(s))zdssj gs(;) dssCth’l(f(tl/z))ZJ st ds = C2et 1 (g(1))%. (2.32)
t t t

Combining this with (2.29) and (2.30), we obtain

H(t,x;L1,L2) =< g(t?) = f(b). (2.33)
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Thus H (L, +L2) D P*~. Hence, in particular, the intersection 7 (Xy + X1) n®*~ is not
empty. Therefore, by [6, Theorem 4.5.7], (L1,L;) is a #y-complete Banach couple. This
completes the proof. O

Let (11 + 1) be the set of all ¥-functionals corresponding to the couple (ly,1,). By
% we denote the set of all functions f € % such that

f)y=Ff(t forO<t=<l, hmf(t) 0. (2.34)
COROLLARY 2.4. Up to equivalence,
H(ly+1) > F. (2.35)

PROOF. It is well known (cf. [4, page 142]) that for x € L;(0,%) + L (0,0) and
u>0

H(u,x;L1,Le) = J:x*(s)ds. (2.36)

In addition,
Li=(Li,Ls)l,,  Lo=(Li,Le)p o ke (2.37)

The spaces I, and [>(27%/2) are interpolation spaces with respect to the couple
(Lo, Lo (27%)) [4]. Therefore, by the reiteration theorem (see [5] or [14]),

H(t,x;L1,L2) <K (t, K (-, x;L1,Le); 1o, 12(27%/?)) for x € Ly + L. (2.38)

Introduce the average operator:
® ok
Qx(t) = > Jk 1x(s)dsx(k,l,k](t), if t > 0. (2.39)
k=1"%"

From (2.36) it follows that
H(t,Qx*;L1,Lo) = H(t,x;L1,Lo) (2.40)
for all positive integers t. Both functions in (2.40) are concave. Therefore,
H(t,Qx*;L1,Le) < (t,x;L1 -Lo) V= 1. (2.41)
Hence (2.38) yields
H(t,Qx*;L1,Ly) < H(t,x;L1,Lp), ift=>1. (2.42)

Now let f € %. Since ¥ C Py, then, by Proposition 2.3, there exists a function x €
L1(0,00) +L>(0,0) such that

H(t,x;L1,L2) = f(£). (2.43)

Clearly, the operator Q is a projector in the spaces L; and L, with norm 1. Moreover,
Q(L1) =1; and Q(Ly) = l». Hence, by the theorem about complemented subcouples
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mentioned in Section 1 (see [3] or [21, page 136]),
fK(t,Qx*;Ll,Lz) X?f(t,a;ll,lz) f0rt>0, (244)

where a = (J§ , x*(s)ds)g_,-
Thus (2.42) and (2.43) imply

J(t,a;li,lp) < f(t) fort=1. (2.45)
The last relation also holds if 0 < t < 1. Indeed, in this case
K(t,a;h, 1) =tllallz = t%(1,a;1,12) < tf(1) = f(1). (2.46)

This completes the proof. O

PROOF OF THEOREM 1.5. Asitwas already mentioned in the proof of Theorem 1.2,
the Orlicz space Ly, N(t) = exp(t?) — 1, coincides with the Marcinkiewicz space M (@),
for @i (u) = ulogé/z(Z/u). Since yg, = 1, then Corollary 2.2 implies that the couple

(L, G) is a H-monotone couple. Hence,

Xo=(le,G)gy X1 =(lw, Gy, (2.47)

for some parameters of the real J{-method of interpolation Ey and E;. By Theorem 1.4,

S| = l(a)llg,, (2.48)
k=1 X;

where F; = (ll,lz)%‘i(i =0,1).So
(I1,12)z, = (I, L2)F,- (2.49)

Equation (2.49) means that the norms of spaces Ey and E; are equivalent on the set
H(l; +1). It is readily to check that this set coincides, up to the equivalence, with
the set 5 (Lo + G) of all H-functionals corresponding to the couple (L.,G). More
precisely,

H(l1+1) =H (Lo +G) = F. (2.50)

In fact, by Theorem 1.2 and Corollary 2.2, & C #(l; + 1) C H (L« + G). On the other
hand, since L., C G with the constant 1 and L. is dense in G, then # (L, + G) C &F
[15, page 386].
Now let x € Xp. By (2.47), we have (¥(2¥,x;L,G))x € Xo. Using (2.50), we can find
a € I, such that
H (2K, a;11,12) =K (2%, x; Lo, G) (2.51)

for all positive integers k. Since a parameter of #-method is a Banach lattice, then
this implies (¥(2%,a;11,1>))x € Eo. Therefore, by (2.49), (¥(2%,a;l1,1»))x € E;, that
is, (% (2%, x;L»,G))x € E1 or x € X;. Thus Xy C X;. Arguing as above, we obtain the
converse inclusion, and Xy = X; as sets. Since X, and X; are Banach lattices, then their
norms are equivalent. This completes the proof. O
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3. Final remarks and examples

REMARK 3.1. Combining Theorems 1.2, 1.4, and 1.5 with results obtained in [8],
we can prove similar assertions for lacunary trigonometric series. Moreover, taking
into account the main result of [1], we can extend Theorems 1.2, 1.4, and 1.5 to Sidon
systems of characters of a compact abelian group.

REMARK 3.2. In Theorem 1.2, we cannot replace the space G by L, with some g < co.
Indeed, suppose that the couple (T'(1;),T(l>)) is a #-subcouple of the couple (L,L;),
that is,

H(t,a;h, ) <H(t,Ta;Le,Lg). (3.1)

LetE =1, (279%) where 0 < 6 < 1 and p = q/6. Applying the ¥%-method of interpolation
(-, )]{ to the couples (ly,1>) and (L,Ly), we obtain

o p
ITall, = llally,, = «= > (a,’j)”k””l} . (3.2)
k=1

Since v =2/(2—0) < 2 [4, page 142], then this contradicts with (1.3).

REMARK 3.3. Clearly, a partial retract of a couple Y = (Yo, Y1) is a H-subcouple
of Y. The opposite assertion is not true, in general (nevertheless, some interesting
examples of J{-subcouples and partial retracts simultaneously are given in [9]). Indeed,
by Theorem 1.2, the subcouple (l1,1>) is a J-subcouple of the couple (L, G). Assume
that (I1,1,) is a partial retract of this couple. Then (see the proof of Proposition 2.1)
(11,1>) is a partial retract of the couple (Lm,Lm(loggl/z(Z/t))), as well. Therefore, by

Lemma 1 from [2] and [4, page 142] it follows that

[11112]9 = (lhlz)e,oo :lp,oo, (33)
where [11,1>]0 is the space of the complex method of interpolation [4], 0 < 6 < 1, and
p =2/(2-0). On the other hand, it is well known [4, page 139] that

[L,l2]p=1, forp= (34

2-0°
This contradiction shows that the couple (l;,1,) is not a partial retract of the couple
(Leo, G).

Using Theorem 1.4, we can find coordinate sequence spaces of coefficients of
Rademacher series belonging to certain r.i.s.’s.

EXAMPLE 3.4. Let X be the Marcinkiewicz space M (¢), where @ (t)=tlog,log,(16/t),
0 <t < 1. Show that

(o)
> arri

k=1

= HaHll(log), (3.5)
M(p)

where [; (log) is the space of all sequences a = (ax)y_, such that the norm

k
lalliaog = sup logy'(2k) > af (3.6)
k=1,2,... i=1
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is finite. Taking into account Theorem 1.4, it is sufficient to check that

(Li,12)§ = L (log), 3.7)
(Lo, G)f = M(®), (3.8)

for some parameter F of the J-method of interpolation. More precisely, we will prove
that (3.7) and (3.8) are true for F = l. (uy), where uy =1/(k+1) (k =0) and ux =1
(k <0).

By the Holmstedt formula (2.5),

22k % 1/2
Pa(2¥) < Zaj‘+2k[ > (af)z} <B®,(2%) fork=0,1,2,..., (3.9)
i=1

i=22k 41

where, as before, @, (t) = #(t,a;l;,l>). Without loss of generality, assume that a; =
af. If llally qog) = R < o0, then by (3.6),

22k
> af <2R(k+1). (3.10)

i=1

In particular, this implies a,2 < 272k+1R(k+1), for nonnegative integer k. Using (3.10),
we obtain

00 00 22(j+1) ) )
> oai=> > al=3)2%a,; <12R*Y 274 (j+1)?
i=22k 41 J=k i=22i+1 j=k j=k (3.11)
<192R?| x227%Xdx < 144R?(k+1)2272k,
k+1
Hence the second term in (3.9) does not exceed 12R (k + 1). Therefore, if E = (11,1,)%,
then (3.10) implies
(pa(zk)
= — <14 . 12
llallg k:S(l)l? el S llalli; qog) (3.12)
Conversely, if 22/ +1 < k < 22U+ for some j =0,1,2,..., then from (3.9) it follows
that

k 22(j+1)

>ai<Bpa(2Y) = > a; <Bllallg(j+2) <2Blog,(2k)|allg. (3.13)

i=1 i=1

Therefore, ||alli, qog) < 2Bllallg and (3.7) is proved.

We pass now to function spaces. At first, we introduce one more interpolation
method which is, actually, a special case of the real method of interpolation. For a func-
tion @ € % and an arbitrary Banach couple (Xy, X;) define generalized Marcinkiewicz
space as follows:

Mq,(Xo,Xl)—{XEX0+X1:Sup%(t’X;XO’X1)<oo}. (3.14)

t>0 @ (t)



ABOUT INTERPOLATION OF SUBSPACES OF REARRANGEMENT ... 463

Let @o(t) = min(1,t), @1 (t) = min(1,tlogs/*[max(2,2/t)]), and N(t) = exp(t2) — 1,
as before. By equation (2.36), we have

Lo =Mg,(L1,Lw), Ly =My, (L1,Ls), (3.15)

(here L, and Ly are functional spaces on the segment [0, 1]). In addition, using similar
notation, it is easy to check that

(Xo,Xl)lf = M, (Xo,X1), (3.16)

for an arbitrary Banach couple (Xy, X;) and p(t) = log,(4+t). Hence, by the reiteration
theorem for generalized Marcinkiewicz spaces [15, page 428], we obtain

(LOO!LN)?-:C = Mﬂ (M(PO (Ll!LOO)!M(Pl (leLOO)) = M(Pp (leLOO) = M((pp), (3.17)

where @, (t) = @o(t)p(@1(t)/Po(t)). A simple calculation gives @, (t) < @(t), if
t > 0. Thus,
(Leos L) = M(@). (3.18)

It is readily seen that ¥ (t,x;L«,G) = #(t,x;L~,Ly), for all x € G. Therefore, for such
x the norm [|x|lmp) is equal to the norm ||x|ly, where Y = (Lw,G)}‘. On the other
hand, for x € M ()

1 Jt ‘ log,log, (16/t)
o s — X (S)dS < ||xX —_—
tlogi/Z(Z/t) H HM((P)

0 ast—0+. (3.19)
0 log%/2(2/t)

This implies that M (@) C G [10, page 156]. Thus Y = M(p), and (3.8) is proved.
Equivalence (3.5) follows now, as already stated, from (3.7) and (3.8).

REMARK 3.5. Theorems 1.4 and 1.5 strengthen results of [18, 19], where similar
assertions are obtained for sequence spaces F satisfying more restrictive conditions.
For instance, we can readily show that the norm of the dilation operator

ona = | ai,-,ai,az,-,Aaz,... (3.20)

n n

in the space l;(In) (see Example 3.6) is equal to n. Therefore, condition (11) from
[19] fails for this space and the theorems obtained in [18, 19] cannot be applied to
it. Similarly, the Marcinkiewicz space M(g) from Example 3.4 does not satisfy the
conditions of Theorem 8 of [19].

Using Theorems 1.4 and 1.5, we can derive certain interpolation relations.

EXAMPLE 3.6. Let @ € ¥ and 1 < p < . Recall that the Lorentz space A, ()
consists of all measurable functions x = x(s) such that

1/p

1
Ixllpp = {JO (x*(S))”de(s)} < o0, (3.21)
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In [19], V. A. Rodin and E. M. Semenov proved that

Soan| = |l(ad)ll,, (3.22)
k=1

Q,p

where @ (s) = log%_p(Z/s) and 1 < p < 2. Moreover, the space A, (@) is the unique
r.i.s. having this property. Note that I, = (11,1>)¢,,, where 0 = 2(p —1)/p [4, page 142].
Therefore, by Theorem 1.4, we obtain

(Lo G) o =Ap(@) (3.23)
for the same p and 6.
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