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Abstract. It is well-known that the Lagrangian dual of an Integer Linear Program (ILP) provides the same
bound as a continuous relaxation involving the convex hull of all the optimal solutions of the Lagrangian
relaxation. It is less often realized that this equivalence is effective, in that basically all known algorithms for
solving the Lagrangian dual either naturally compute an (approximate) optimal solution of the “convexified
relaxation”, or can be modified to do so. After recalling these results we elaborate on the importance of
the availability of primal information produced by the Lagrangian dual within both exact and approximate
approaches to the original (ILP), using three optimization problems with different structure to illustrate some
of the main points.

Keywords: Lagrangian dual, integer linear programs

Introduction

Most Integer Linear Programs (ILP) exhibit a structure that can be exploited in order to
construct efficient solution approaches. One of the most general and common forms of
structure is

(P) min{cx : Ax =b,Ex =d, x € N}

where the constraints Ex = d are “easy”, i.e., (P) would be an “easy” problem if the
complicating constraints Ax = b could be removed. In other words, the constraints
Ax = b break down the structure of the constraints Ex = d, and such a structure could
be exploited to efficiently solve the problem if the complicating constraints were not
present; one typical example is that of separable constraints Ex = d, i.e., the one where
(P) would decompose into a number of smaller independent subproblems if the linking
constraints Ax = b could be removed. We remark that the same kind of structure is often
found in problems where some (or even all) of the variables are not constrained to be
integer-valued; since for most purposes the two cases are identical except for the heavier
notation required by the Mixed-Integer one, in the following we will mainly work with
the pure integer case, discussing the extension of the results to the other one only when
it is not straightforward.

As a first example (others will be presented later), let us consider the Unsplittable
Multicommodity Min-Cost Flow problem (UMMCEF). A directed graph G = (N, A) is
given, e.g. representing a communication network; each arc (i, j) € A has an associated
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routing cost ¢;; > 0 and upper capacity u;; > 0. A set K of origin-destination pairs
(on, dp), h € K, is defined; for each o-d pair 4, an amount §;, is given which represents
the “demand of communication” between o, and d,. The problem is to select a set of | K |
paths in G of minimal total cost such that all the communication between each origin and
the corresponding destination can be routed on the corresponding path without violating
the arc capacity constrains. Using flow variables xh = [xi}l’].](,», jea for each commodity
h € K, the problem can be formulated as

min E Sn E c,'jxl-hj

hekK (i,j)eA

doxhi— Y xl=bl ieN, hek ()
(J,i)eA @i,))eA
Zéhxihj + i = uij(Q, j) € A
hek
x)€{0,1},5; =0 (i, j)eA hekK 2

where bf’ is —1ifi = op, 1if i = dj, and O otherwise, and the s;; are slack variables.

The arc capacity constraints (2) are “complicating” in that, if they were removed,
the problem would decompose into | K| independent “easy” Shorthest Path problems,
one for each o-d pair. Thus, the complicating constraints both prevent decomposition and
destroy the special structure of the “easy” constraints (total unimodularity of the flow
conservation constraints). Due to the presence of (2), (UMMCEF) is both large-scale and
NP-hard.

A well-known way to exploit this structure is to form the Lagrangian relaxation of
(P) with respect to the complicating constraints Ax = b, i.e., the problem

(Py) min{cx + y(b — Ax) : Ex =d, x ¢ N"}

for a fixed vector y of Lagrangian multipliers. While the complicating constraints are
relaxed in (Py), a penalty term is added to the objective function to discourage their
violation. Due to the structure of (P), (P,) is “easy”, i.e., significantly easier than (P)
to solve. In the (UMMCEF) case, for instance, there is a Lagrangian multiplier y;; for
each arc capacity constraint, and therefore one for each arc; the Lagrangian relaxation
decomposes into |K | Shortest Path problems with modified costs ¢;; + y;;, one for each
o-d pair, plus the | A| problems miny, {—y;;s;; : s;; > 0}, that have finite optimal solution
s;j = 0if and only if y;; < O forall (i, j) € A.

In the following, m will denote the number of complicating constraints Ax = b,
and therefore of Lagrangian multipliers, and v(-) the (possibly infinite) optimal value
of the objective function of an optimization problem. It is easy to check that, for each
choice of y € R™, (Py)is arelaxation of (P),i.e., v(P,) < v(P). Since (Py) can be easily
solved, it can be computationally feasible to find the best possible Lagrangian relaxation,
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i.e., to solve the Lagrangian dual

(D) myax{v(Py) cy e R"}

of (P) with respect to the complicating constraints Ax = b. Since v(Py) < v(P) Vy €
R™, (D) is still a relaxation of (P), that is, v(D) < v(P).

This technique has been used in the past with remarkable success in several appli-
cations to derive tight lower bounds and/or to help constructing good feasible solutions
for difficult optimization problems, especially large-scale ones like multicommodity
Network Design problems, Unit Commitment problems, stochastic integer problems,
and others. The literature on the subject is immense and cannot be reviewed here;
we just refer to a few representative papers (Held and Carp, 1971; Geoffrion, 1974;
Gavish, 1985; Guignard and Kim, 1987; Zhuang and Galiana, 1988; Guignard and
Rosenwein, 1989; Balakrishnan, Magnanti, and Wong, 1989; Barnhart and Sheffi, 1993;
Farwolden and Powell, 1994; Balakrishnan, Magnanti, and Wong, 1995; Chang and
Gavish, 1995; Carraresi, Girardi, and Nonato, 1995; Gouveia, 1995; Takriti and Birge,
2000; Bacaud et al., 2001; Crainic, Frangioni, and Gendron, 2001; Dentcheva, Prékopa,
and Ruszczynski, 2002; Borghetti et al., 2003; Cappanera, Gallo, and Maffioli, 2003;
Schultz, 2003) and the references therein.

Even with the best possible choice y* of the Lagrangian multipliers, there is no
guarantee that the penalty term in the objective function will lead to a feasible solution,
i.e., that the optimal solution of (P,+) satisfies the relaxed constraints Ax = b. In fact, this
is most often not the case: whenever this happens, the optimal solution of (Py-) is also
optimal for (P). Thus, when solving (D) by some standard subgradient method (Held,
Wolfe, and Crowder, 1974; Camerini, Fratta, and Maffioli, 1975; Poljak, 1977) at the end
of the optimization process only an (approximately) optimal dual solution y*, and the
corresponding lower bound, are available, together with the unfeasible primal solution
x of the last Lagrangian relaxation solved. The subgradient algorithm has been for a
long time the only computationally viable approach for solving (D), up to the point that
“Lagrangian approach’ has been often used as a shorthand for “Lagrangian dual solved by
means of a subgradient algorithm”, and still attracts interest today (Larsson, Patriksson,
and Stromberg, 1999; Barahona and Anbil, 2000) for its simplicity and relatively good
performances. Thus, a number of ways have been proposed to exploit the unfeasible
primal information provided by the Lagrangian relaxation within exact and approximate
approaches for (P) (Geoffrion, 1974; Guignard and Kim, 1987; Guignard, 1998).

It is also well-known (Geoffrion, 1974) that the Lagrangian dual (D) is equivalent
to the following convexified relaxation of (P)

(P) min{cx : Ax = b, x € conv(X)}

where X = {x € N" : Ex = d}isthefeasible set of the Lagrangian relaxation (Py) of (P)
with respect to constraints Ax = b, and conv(-) denotes the convex hull. In other vords,
the Lagrangian dual is equivalent, from a primal viewpoint, to a partial convexification
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operation that is only applied to the “easy” constraints Ex = b. This result has been
primarily used (in some ways to be recalled below) to compare the relative strenght of
the bounds obtained by different Lagrangian relaxations and the one obtained by the
continuous relaxation.

Despite efforts for recalling it (Lemaréchal, 2001), it is less well-known that the
equivalence between (D) and (P) is effective, in that basically all known algorithms
for solving (D) either naturally compute an (approximate) optimal solution of (P), or
can be modified to do so. The goal of this paper is to remind this fact and point out
its implications upon the possible use of Lagrangian approaches within algorithms for
solving (P), i.e., that a Lagrangian dual provides as much as precious information as a
continuous relaxation and possibly more, and therefore that it can—at least, in theory—
be used in every application where a continuous relaxation is used. We will stick to
applications of the Lagrangian approach to “essentially discrete” cases, for which the
only required theoretical tool is the familiar linear duality; for a more detailed and through
treatment of the technical issues in Lagrangian duality the interested reader is warmly
referred to the excellent Lemaréchal (2001). Also, we will not even attempt at describing
the numerous and intricate relationships between choosing the right model and choosing
the right Lagrangian approach for different classes of problems, since these aspects are
fully and clearly covered in the recent Guignard (2003).

The structure of the paper is the following: in Section 1 the main theoretical results
about the Lagrangian dual (D) and the convexified relaxation (P) are reviewed. Section
2 is devoted to remind how an (approximate) optimal solution of (P) is automatically
obtained when solving (D) by means of one of the very many variants of the Cutting
Plane/Dantzig Wolfe approach or by some recent forms of subgradient algorithms; more-
over some relevant algorithmic details and extensions are discussed. Then, in Section 3
and in Section 4 the usefulness of the primal information within approximate and exact
approaches, respectively, for the solution of (P) is discussed, using three optimization
problems with very different structure to illustrate some of the main issues. Finally, in
Section 5 some conclusions are drawn.

1. The equivalence result

It is well-known that, for any (ILP), the feasible set can be replaced with its convex hull;
as a consequence, one has

v(Py) = min{cx + y(b — Ax) : x € conv(X)}

for each y € R™. It is also well-known that, if all entries of E and d are rational, then
conv(X) is a convex polyhedron, i.e., there exists a finite set of linear constraints such
that

conv(X) = {x : Ax > D} .
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We can therefore show the announced result:
Theorem 1.1. v(D) = v(P).
Proof. We have
v(P) = mxin{cx : Ax = b, Ax > D).
Then, by linear duality

v(P) = max{yb + wh : yA + wA = ¢, w > 0}
y,w

which can be rewritten as

max{yb + max{wb : wA = c — yA, w > 0}}.
¥ w

Then, applying again linear duality to the inner problem, one has

v(P) = max{yb + min{(c — yA)x : Ax > b}} = v(D).
y X
O

A straightforward corollary of the above Theorem is that the Lagrangian dual of
a Linear Program (LP) is equivalent to the classical linear dual; X is a convex set, and
therefore it is equal to its convex hull. For instance, for the continuous relaxation of

(P)

(P) min{cx : Ax =b, Ex =d, x > 0},
X

the Lagrangian dual with respectto Ax = b is

(D)  max{v(P,) = min{ cx + y(b — Ax) : Ex =d, x > 0}}

= max{yb + wd : wE + yA <c};
y,w

i.e., the linear dual of (P). In particular, the Lagrangian multipliers are the dual variables
relative to the relaxed constraints Ax = b, and the Lagrangian dual can be considered
a partial dual of (P). Indeed, the Lagrangian dual follows the same rules as the linear
dual regarding the sign of the multipliers; for instance, if the complicating constraints
have the form Ax < b, then the Lagrangian multipliers are constrained to be nonpositive
(y < 0), while if the constraints have the form Ax > b then the Lagrangian multipliers
are constrained to be nonnegative (y > 0).
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Theorem 1 is typically used to prove the following facts:

e Since the feasible region of (I~’)~is contained in that of (P), and the two problems have
the same objective function, (P) is a better (not worse) relaxation of (P) than (P),
i.e., v(D) > v(P).

o However, if the “easy” constraints Ex = d have the integrality property,i.e., v(P)) =
v(Py) for each y € R™, then v(D) = v(P) = v(P). The integrality property implies
that all vertices of the feasible region of (Py) are integral, i.e., that (Py) is as easy as
a (LP); this is a “no free lunch” principle, in that, in order for the Lagrangian dual
to provide a better bound than the continuous relaxation, the Lagrangian relaxation
must be “more difficult” than a (LP), i.e., the Ex = d constraints must not already
provide an “exact” description of conv(X).

e The above observations may allow to estimate the quality of the bound provided by
different Lagrangian duals of the same problem. For instance, consider the Lagrangian
dual of (P) with respectto Ex = d

(D) max{min{cx + y(d — Ex) : x € X'}}.

where X’ = {x € N" : Ax = b}. If both blocks of constraints Ax = b and Ex = d
have the integrality property, then v(D’) = v(D) = v(P). If, instead, Ex = d has
the integrality property but Ax = b has not, then (D) may provide a strictly better
bound than (D), i.e., v(D’) > v(D) = v(P) and the inequality can be strict. This
happens for instance for (UMMCEF): the Lagrangian dual with respect to the flow
conservation constraints (1) decomposes into |A| independent Knapsack problems.
These subproblems are easier to solve than (UMMCEF) but they do not have the
integrality property, and therefore the corresponding Lagrangian bound can be strictly
better than the one provided by the continuous relaxation, or, equivalently, by the
Lagrangian dual with respect to the capacity constraints (2), whose subproblems have
the integrality property.

o A different way of exploiting the structure of (P) via a Lagrangian relaxation is the
Lagrangian Decomposition (Guignard and Kim, 1987), which amounts at rewriting
(P) in its equivalent form

c(x +x7)/2
A =b, X eN
(P) min
xx | Ex=d, xeN"
x=x
and solving the corresponding Lagrangian dual with respect to the constraints x = x’,
ie.,

, min{(c/2 — w)x : x € X}
(D7) M) + min{(c/2 + w)x": x" € X'}*
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From Teorem 1.1 it is easy to prove that

v(D") = minf{cx : x € conv(X) N conv(X")},
X

and therefore v(D") > max{v(D’), v(D)} > v(P). Hence, the Lagrangian Decompo-
sition provides a bound on v(P) that is not worse than the best among the ones provided
by the Lagrangian duals with respect to Ax = b and Ex = d individually, at the cost
of a Lagrangian relaxation that requires the solution of both the individual Lagrangian
subproblems. In particular, it is easy to see that v(D"”) = max{v(D’), v(D)} if at least
one of the two blocks of constraints has the integrality property, that v(D") = v(P) if
both blocks have it, while v(D”) can be strictly better than max{v(D"), v(D)} if none
of the two blocks of constraints has the integrality property.

All the above observations derive from the fact that the optimal objective function
values of (D) and (P) are equal. However, the proof of Theorem 1.1 actually shows
something more:

e (D) and (P) are the linear dual of each other;

e in order to prove the optimality of an optimal solution y* to (D), any algorithm for
(D) must also construct and optimal solution X of (P) (as an “optimality certificate”).

In the next section we remind that one of the simplest algorithms that can be
used to solve (D) proving optimality of the obtained solution, Kelley’s Cutting Plane
method (Kelley, 1960), is the “dual interpretation” of the well-known Dantzig-Wolfe
decomposition method (Dantzig and Wolfe, 1960) for structured (LP)s, and therefore it
provides an optimal solution of (P) as well.

2.  Cutting planes, Dantzig-Wolfe decomposition and columns generation

To simplify the treatment we temporarly assume that X is a compact set; later on in
this section we show how this assumption can be dropped at the only cost of slightly
complicating the notation. We also assume that X is nonempty; if this is not the case,
(P) has no feasible solution, and we can assume that this is “easily” found out the first
time (Py) is solved (whatever the vector y). Therefore, the Lagrangian function

o(y) = rriin{cx +y(b — Ax):x € X}

is finite everywhere; also, ¢ is proper,i.e., p(y) < +ooVy. Being the pointwise minimum
of a set of linear functions, ¢ is concave; in particular, since X is a discrete set ¢ is
polyhedral, i.e., its epigraph

Epi(¢) = {(v, y) : v < ¢(y)}

is a polyhedron. In other words, each solution % to (P,) for a given y is associated
with the support hyperplane b — Ax to Epi(¢), known as a subgradient of ¢ in y.
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(Actually, the terms “subgradient” and “epigraph” are suited to a convex function, while
for the concave ¢ “supergradient” and “ipograph” should be used.) Note that this is
true even if (P) is a Mixed-Integer Linear problem, since in this case too (P,) has
only a finite number of possible extremal solutions; for each non-extremal solution x the
corresponding constraint v < cx 4 y(b — Ax) in the definition of Epi(¢) can be obtained
as a convex combination of the constraints corresponding to some extremal (optimal)
solutions, and therefore it is redundant. Clearly, ¢ is not differentiable everywhere, and
therefore the algorithms for smooth optimization cannot be used for solving (D).

2.1. The cutting plane algorithm
It is straightforward to see that (D) can be rewritten as a Linear Program:

(D) max{v:v <cx+ylb— Ax), x € X} 3)
v,y

(this is not surprising since, as shown above, (D) is the dual of (P)). This does not
mean that solving (D) is an easy task: (3) has, in principle, as many constraint as there
are solutions of (P,), and this number can be huge. However, not all constraints in (3)
are actually necessary; indeed, the m + 1 constraints corresponding to an optimal base
would suffice. This immediately suggests a constraints generation approach, where at
each iteration the (Dual) Master Problem

(D) max{v:v <cx+ yb— Ax), x € B} )
v,y

is solved where B is a “small” subset of X. This corresponds to solving

max{¢pp(y) = min{cx + y(b — Ax) : x € B}},
y X

i.e., to minimizing the concave polyhedral upper approximation ¢z of ¢; ¢ is known as
the cutting plane model of ¢. It is easy to check whether or not the optimal solution (7, y)
of (Dp) is also optimal for (D) by solving the separation problem (Py), i.e., computing
@(y): if » > ¢(¥) then any optimal solution X of (Py) provides a violated constraint of
(3) that can be added to B, otherwise ¥ = ¢(¥) = v(D).

Kelley’s Cutting Plane algorithm applied to the solution of (D), shown in figure 1,
determines at each step a lower and an upper bound on v(D), in that ¥ > v(D) > ¢(y),
and terminates in a finite number of steps (eventually, B = X) when the two coincide. In
order for the algorithm to be well-defined, the initial set 3 must be “sufficiently large”
to ensure that (Dp) has a finite optimal solution; this can always be obtained e.g. by
setting 5 = {&} where % is a feasible solution for (P), which corresponds to inserting
the constraint v < c¢X into (Dp).

It may be worth noting in passing that Kelley’s algorithm works for any convex
function, and therefore it has numerous applications outside Lagrangian relaxation. Also,
this is by no means the only important algorithmic paradigm using the cutting plane idea;
apart from polyhedral approaches in integer programming, either “pure” or “Branch
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( initialize B );
do
(0,9) = argmax, { v:v<cr+ylb—Az), z€B}; /*(Ds)*/
7 = argmin{ (c —§AY o € X } /* (Py) */
6(7) = ez + §(b — Az); B= BU{a};
while( 7 > ¢(7) );

Figure 1. The cutting plane algorithm.

& Cut” ones, the “dual” of the Dantzig-Wolfe decomposition method described next,
Bender’s Decompositon (Benders, 1962), is also a cutting plane algorithm.

2.2. The Dantzig-Wolfe decomposition method

From a “primal viewpoint”, the Cutting Plane algorithm is equivalent to the well-known
Dantzig-Wolfe decomposition method. In fact, the linear dual of (D) is the Primal Master
Problem

(Pg) min:c<2x9x> :A(Zx9x> = b, 96@} Q)
o xeB xeB

where © = {6 > 0: ) _z0, = 1}is the unitary simplex of proper dimension. (Pg) has

a variable for each row of (Dg), i.e., for each element of B. The “explicit form” (5) of

(Pp) is equivalent to the following “implicit form™:

(Pg) min{cx : Ax = b, x € Xg = conv(B)}. (6)

The latter definition immediately shows the relationship between the Cutting Plane al-
gorithm and (P): (5) with B = X is just a formulation of (P) where the constraint
x € conv(X) is explicitly written in terms of the convex multipliers 6. In particular, (5)
with B = X is the linear dual of (3), as anticipated by Theorem 1; here conv(X) is
expressed in terms of its extreme points, rather than in terms of its faces.

From the primal viewpoint, the cutting plane algorithm is the same as a column
generation approach for solving the “explicit form” of (P), which is a (LP) with “many”
columns. At each step, the restriction of (P) to the subset of columns 3 is solved, yielding
a primal optimal solution 6*, and therefore a feasible solution ¥ = )" 5 x0; for (P),
and a dual solution y corresponding to constraints Ax = b. The pricing problem (Py)
determines the column X € X of least reduced cost (c — yA)x: if (c — yA)x < 0 then X
can be added to B in the hope to construct a better primal solution at the next iteration,
otherwise # = x* is optimal for (P). These steps are exactly those of the algorithm shown
in figure 1, except that there X is not explicitly computed. Hence, upon termination, the
Cutting Plane algorithm constructs an optimal solution x* for (P).

The above analisys shows that the Cutting Plane algorithm used to solve (D) solves
also (P), and suggests the following considerations:
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e From the primal viewpoint, the Master Problem uses the inner approximation Xp
of conv(X), that is iteratively enlarged with the points X generated by the pricing
problem (Pj) until it contains one optimal solution of (P); from the dual viewpoint,
the Master Problem uses the outer approximation ¢ of ¢, that is iteratively refined
with the subgradients b — AX generated by the separation problem (Py) until it is
“exact” at one optimal solution of (D).

e The structure of (P) is used to generate (extreme) points of conv(X); thus, this
approach is particularly attractive for all situations where obtaining an explicit rep-
resentation of conv(X) is more difficult than actually optimizing over X. In fact, the
Lagrangian dual is especially interesting when the Ex = d constraints do not possess
the integrality property, but a “reasonably efficient” way for solving the Lagrangian
relaxation is available.

e The Cutting Plane algorithm for solving (D) is exactly the standard column generation
approach applied to the “explicit form” of (P) as a (LP) with many columns; hence,
there is adeep link between Lagrangian techniques and column generation approaches,
that is discussed more in details below.

2.3. Extension: noncompact X

The Cutting Plane algorithm can be extended to the case where X is noncompact, pro-
vided that the algorithm that solves the Lagrangian relaxation is capable of providing
a unbounded ascent direction v for conv(X) whenever ¢(y) = —oo. Since for any y
such that (c — yA)v < 0 the Lagrangian relaxation (P,) is unbounded, each such v is
associated with a linear constraint (¢ — yA)v > 0 that is valid for the effective domain
Y of ¢(y) (the set of all points where it is finite-valued). In other words, the the extreme
rays of the recession cone C of conv(X) carachterize the effective domain of ¢.

The Cutting Plane algorithm can be extended to the noncompact case by replacing
Bby B°U B! where B’ € C and B! C X. The Primal and Dual Master Problem become
respectively

c( Z x60, + Z V9u>
xeB! veR0
(Pe)  min A(Zx@x—l—Zv@,,) b, @
xeB! veR0
ZxEBl Qx =1
6=>0
yb+v

(Dp) max v<(c—yAx xehB!
Y o<—yap veB
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or, equivalently,

(Pg) min{cx : Ax = b, x € conv(B") + cone(B°)},
(Dp) man{¢Bl (y):y € ¥Yg},

where Yz = {y : (c — yA)v > 0,v € B°} is an outer approximation of the effective
domain of ¢. At each iteration of the algorithm, the Lagrangian relaxation computes
either an optimal solution ¥ € X, that is added to B, or a feasible unbounded direction
D € C, that is added to B°. It should be noted that in the latter case ¢(j) = —oo, and
therefore no new lower bound on v(D) is found.

It is interesting to remark that conv(X) may be a cone; in this case, no iteration,
except the last one, produces a lower bound on v(D), i.e., at all iterations, except the
last one, ¢(y) = —oo. The corresponding “explicit” form (8) is a generic problem
amenable of solution by a column generation approach, where B; = {0}, i.e., there is
no convexity constraint. Note that, without loss of generality, one may always assume
conv(X) to be a cone by simply regarding the convexity constraint as a generic one,
i.e., considering the Lagrangian multipliers space to be R™*!, and v to be just like any
other Lagrangian multiplier. However, exploiting the presence of a convexity constraint
in the formulation allows one to derive lower bounds on v(D) at all iterations, which is
useful to early terminate the algorithm (see e.g. Carraresi, Girardi, and Nonato, 1995;
Ben Amor, 2002).

2.4. Extension: decomposable X

The Cutting Plane algorithm can also be specialized to the decomposable case where the
Lagrangian relaxation decomposes into k£ independent problems, as e.g. for (UMMCEF).
This means that X = X; x X, x -+ X X, i.e., X is the Cartesian product of k sets
(which we temporarily assume to be compact); any optimal solution X of the Lagrangian
relaxation has the form [%!, X2, ..., x¥], where %" is an optimal solution of the A-th
subproblem. In other words, the Lagrangian function

¢(y)=yb+ Y ¢"(y)

hek

(K =1{1,2,...,k})is the sum of its k component functions

¢" () = min{(c" — yA"x" : x" € X"},

and —A"x" is a subgradient of ¢".
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At each iteration the disaggregated Primal Master Problem

Zch Z x6,

heK xeBh
h _
(Pgymin 1 2 A" ) xb:=1b (8)
0 heK xepBh
Zele hekK, 6>0
xeBh

is solved instead of (5). Each component x" of each of the solutions generated so far in
the process is kept in the set B" and has an associated convex multiplier 6+, independent
from the multiplier associated to other components belonging to the same solution. The
corresponding disaggreagted Dual Master Problem is

(D) max {yb-l— th " < ("= yAMxXt X" e Bhh e K}.
vy hek

The two problems can be equivalently rewritten as

heK hek

(Pg) min [ Zchxh : ZAhxh =b, x" e conv(Bh)h € K} 9)

heK

(Dp)  max {yb +y ¢>Bh<y>}

where ¢ is the cutting plane model of the i-th component ¢" of ¢, while conv(B")
is an inner approximation of conv(X"). From the column generation viewpoint, this
corresponds to the case where there is not a unique convexity constraint covering all
columns, but the columns can be partitioned into k disjoint subsets, each one having its
separate convexity constraint; v” are the dual variables of the convexity constraints, and
their sum (plus the linear term yb, corresponding to a linear “O-th component” of ¢)
gives a lower bound on v(P).

It is easy to see that, for the same set of Lagrangian solutions B € X, the feasible
set of (10) strictly contains that of (6); in fact, (5) is the restriction of (8) where all the
components X" corresponding to the same solution ¥ must have the same convex multi-
plier. In other words, conv(B') x conv(BB?) x - - - x conv(B*) is a better approximation of
conv(X) than conv(B); equivalently, the sum of the k cutting plane models ¢ is a better
approximation of ¢ than the “aggregated” cutting plane model ¢3. The tradeoff is that
the disaggregated Master Problems are k times larger than the corresponding aggregated
ones, and therefore they are more costly to solve; however, they use the available infor-
mation about the “true” problems (P) / (D) much more efficiently, which often results
in a much faster convergence, and ultimately in better overall performances (Jones et al.,
1993; Borghetti et al., 2003). This approach can be easily extended to the case where
some of the sets X" are noncompact in the same way as in the aggregated case.
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2.5. Extension: the nonlinear case
The above analysis can be easily extended to the case where (P) is

(P) min{c(x): Ax =b, x € X}

where c() is a nonlinear, non necessarily convex, function. Although extending the proof
of Theorem 1 to this case is not trivial, it is still true that (D) can be written as

max{v : v < c(x)+ y(b — Ax), x € X}
v,y

and therefore its linear dual (P) has the form

min {erx (), : A(erx x9x> =b,0c @}.

(P) can be stated also in the “explicit form”
rr;in{éx(x) :Ax =b, x € conv(X)}
where
cx(x) = mvin{v s (v, x) € comv({(c(X), %) : x € X})}

is the “smallest” convex function “compatible” with ¢() on X. This shows once again
that the Lagrangian Dual is a “convexification tool”: the (possibly nonconvex) set X and
function c() are replaced with their “convexified versions” conv(X) and ¢x(), i.e., the
best convex approximations that can be built up with the information produced by the
Lagrangian relaxation.

The above treatment is still valid for the Mixed-Integer case if c() is nonlinear
only on the integer variables, and linear on the continuous ones; in fact, once again the
set of extremal solutions of the Lagrangian relaxation is finite. For more general cases,
tricky things may happen and more sophisticated tools from convex analisys are required
that are out of the scope of the present paper; the interested reader is referred e.g. to
Lemaréchal and Renaud (2001).

2.6. Other Algorithms for (D)

In the previous sections we have focussed on the Cutting Plane/Dantzig Wolfe algorithm
because, with the sole help of elementary duality theory, it points out the algorithmic
relationships between (D) and (P). However, basically all the above considerations
extend to most known algorithmic approaches to (D).
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The study of other approaches for solving (D) has been motivated by some se-
rious drawbacks of the Cutting Plane algorithm, which severely impact on its perfor-
mances in practice. Without going into details, we only mention that the main prob-
lems with the Cutting Plane algorithm are its instability, i.e., the fact that the sequence
of dual solutions {y} generated by the approach has no locality properties, and the
need for solving Master Problems whose size grows with the iterations. The instabil-
ity of the approach is the main cause of its slow convergence rate on many practi-
cal problems (the well-known “tailing-off” effect); in turn, this may cause the Master
Problem to become exceedingly large and costly. It should be noted, however, that
despite these problems the Cutting Plane approach, possibly “hybridized” (Fréville,
Guignard, and Zhu, 1999), still manages to obtain very interesting performance in
some applications (Jones et al., 1993; Carraresi, Girardi, and Nonato, 1995; Ben Amor,
2002).

The alternative approaches proposed for the solution of (D) can be grouped in two
categories:

e cutting-plane-type approaches;

e subgradient-type approaches.

The first class of algorithms can be further subdivided into two different (but re-
lated) groups: bundle-type algorithms and algorithms based on “centers”. The first group
squarely aim at reducing the instability of the Cutting Plane algorithm by introducing
some “stabilization device” that enhances the locality properties of the sequence of dual
solutions, thereby improving the rate of convergence of the approach. A number of
different variants of this approach have been proposed: among them, generalized bun-
dle methods (Frangioni, 2002) (that comprise proximal bundle methods (Hiriart-Urruty
and Lemaréchal, 1993—Algorithm XV.3.1.4), trust region bundle methods (Hiriart-
Urruty and Lemaréchal, 1993—Algorithm XV.2.1.1) and methods based on exponential
(Grigoriadis and Kahchiyan, 1995) or linear-quadratic (Pinar and Zenios, 1994) stabi-
lization terms), proximal level methods (Lemaréchal, Nemirovskii, and Nesterov, 1995),
¢-descent methods, (Hiriart-Urruty and Lemaréchal, 1993—Algorithm XIV.3.4.2), prox-
imal trajectory methods (Fuduli and Gaudioso, 2000) and Bregman barrier methods
(Kiwiel, 1999). These approaches differ in the form (and, therefore, the cost) of the
Master Problem they solve and in the properties required for convergence. In most cases
they permit to control the size of the set B, allowing some control on the trade-off
between the size of the Master Problem and the corresponding convergence speed of
the method (Crainic, Frangioni, and Gendron, 2001; Lemaréchal, 2001); this is sim-
ply done by inserting the optimal solution X of the previous Master Problem in B
and then deleting any number of the other elements in 3. The second group of ap-
proaches focuses instead on providing performance guarantees for the convergence
speed by choosing the point y as a “center” of the set of points that is known to
contain the optimum (localization set). For instance, approaches based on the ana-
Iytic center (du Merle, Goffin, and Vial, 1998) have better theoretical performances
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(Nesterov, 1995) than bundle-type methods and good practical performances on “diffi-
cult” cases (Goffin et al., 1997); however, the corresponding Master Problem may be
more costly, and they are somewhat less flexible as far as the handling of the set B is
concerned.

Subgradient-type methods are simpler in that they do not, on the surface, require
the solution of a Master Problem. However, most variants of the algorithm chose the
next point y where the Lagrangian function has to be evaluated along the direction
d = g + 6d_, where g is the subgradient obtained at the current iteration, d_ is the
direction used at the previous iteration and & > 0 is chosen according to some rule. It
is easy to check that d is therefore chosen using “very aggregated information” about
the points X obtained at all the previous iterations, i.e., that d = (b — AX) for some
a > 0 and ¥ € conv(X); hence, even subgradient methods in fact compute convex
combinations of points in X. It is therefore not surprising that, with a proper choice
of the weighting scheme, ¥ can be made to converge to an optimal solution x* of (P)
(Larsson, Patriksson, and Stromberg, 1999; Barahona and Anbil, 2000). In fact, this kind
of subgradient approach is very similar to a bundle-type approach where the set B is
always kept at a maximum size of two (Bahiense, Maculan, and Sagastizdbal, 2002).

For some specific optimization problems, dual approaches that exploit more closely
the structure have been proposed (e.g. Balakrishnan, Magnanti, and Wong, 1989;
Guignard and Rosenwein, 1989); these are usually aimed at obtaining a potentially
rough estimate of z(D) at a very low computational effort, and can therefore be useful
within enumerative approaches. This kind of methods do not, in general, “automatically”
produce primal optimal solutions.

However, it can be safely asserted that whatever method one elects for solving
(D) can be easily modified to also produce a solution of (P); at the very least, the
obtained estimate of y* can be used to “warm-start” a cutting-plane-like method. Example
of “hybrid” procedures along these lines can be found e.g. in Fréville, Guignard, and
Zhu (1999), where, for the case of the generalized assignment problem, subgradient
optimization and column generation are used in conjunction.

It is out of the scope of this paper to discuss the relative merits of the different
algorithms for the solution of (D); the interested reader is referred to the relevant works
in the bibliography (e.g. Crainic, Frangioni, and Gendron, 2001; Lemaréchal, 2001;
Bahiense, Maculan, and Sagastizabal, 2002). What is important for the present discussion
is that all these methods compute a set B which contains points of conv(X), and that
this information is used, at each iteration, to construct a primal point ¥ that can be
made to converge to an optimal solution x* of (P). Thus, the availability of primal
information produced by a Lagrangian approach is the rule, rather than the exception:
we can assume that an estimate of an optimal solution of (P), and the corresponding
set B, is always provided by any “modern” algorithm to solve (D). In the next sections
some possible uses of this information and their impact in some real applications are
discussed.
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3. Lagrangian heuristics

Lagrangian heuristics (Balakrishnan, Magnanti, and Wong, 1989; Barnhart and Sheffi,
1993; Farwolden and Powell, 1994) exploit the solution process of the Lagrangian dual
in order to obtain feasible solutions to (P). Since at each iteration of such a process an
optimal solution X of the Lagrangian relaxation is available, most Lagrangian heuristics
proposed so far attempt at making it feasible, e.g. by means of a greedy procedure,
possibly followed by a refinement phase generally based on local search. Although
subgradient optimization has mostly been used to drive the solution of the Lagrangian
dual, other approaches, such as column generation (Fréville, Guignard, and Zhu, 1999)
or Bundle methods (Carraresi, Girardi, and Nonato, 1995; Borghetti et al., 2003) have
also been proposed.

The iterative process used to solve (D) acts thus as a multistart to classical heuris-
tics, which can also possibly exploit the Lagrangian costs ¢ = ¢ — yA to guide the
search toward feasible solutions. The heuristic procedures can be run at each iteration,
or at specific iterations a priori established, or whenever the solution to the Lagrangian
relaxation satisfies some criteria; the Lagrangian heuristics can be invoked either with
regularity or more intensely toward the end of the iterative process, when the Lagrangian
multipliers are supposed to be of good quality. The feasible solutions provided by the
Lagrangian heuristics might even be used as the initial population in a genetic algorithm.

However, other important primal information is obtained as by-product of the it-
erative process when a “modern” algorithm is used. The algorithms described (or just
alluded to) in the previous sections all collect a set B C conv(X) and, at each iteration,
a multiplier 6 is associated with each x € B which produces a point ¥ € conv(X).
Whether X is feasible or not depends on the algorithm chosen; as a general rule, ¥ rapidly
becomes ‘“almost feasible”, i.e., the violation of constraints Ax = b quickly diminishes
when compared with the “average” one relative to the solutions of the Lagrangian re-
laxations. It is worth noting that the cardinality of B (very limited in the subgradient
algorithms) and the way its elements are stored (aggregated vs. disaggregated) varies
from one algorithm to another, but we need not enter into details here. The solution
X € conv(X) and the associated multipliers 6* provide one alternative source of primal
information, about which the following considerations can be made:

e X is a continuous (almost) feasible solution, and therefore all the rounding techniques
developed in the Linear Programming context can be used as well in the Lagrangian
one. For instance, the components of X corresponding to 0-1 variables, if any, can be
interpreted as the probability that the variable is set to 1 in the optimal solution, thus
suggesting randomized heuristics (Vazirani, 2001).

e The multipliers 6* can also be thought of as a “probability distribution” on the elements
of the set 13, and this information can be used to combine the solutions x € B in
order to yield a feasible solution of (P). When X is decomposable and the solution
information is maintained in disaggregated form, using the multipliers 8* naturally
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leads to construct “hybrid” solutions where the components x” belonging to different
solutions of the Lagrangian relaxations are mixed together. Consider for instance
(UMMCEF): the set of solutions relative to commodity 4 (B") contains paths from o”
to d", and the multipliers 6* can be interpreted as the probability that a given path
belong to an optimal solution to (P).

e When the Lagrangian relaxation decomposes in subproblems with different structure,
the role of the corresponding components of ¥ may be different. The case where only
some components of ¥ correspond to integer variables is particularly interesting, as
shown later on.

e Of course, exploiting X or 6* does not rule out exploiting the solution X of the La-
grangian relaxation and the Lagrangian costs ¢ as well; in fact, the combined use of
all this information can be very effective.

The meaning of some of the above considerations can be made clearer by consider-
ing some actual Lagrangian heuristic implemented for one specific difficult optimization
problem.

The hydro-thermal Unit Commitment (UC) problem in electrical power production
(Zhuang and Galiana, 1988; Bacaud, et al., 2001; Borghetti et al., 2003) is as follows. A
set P of thermal power generation units (burning some type of fuel) and a set H of hydro
power generation units (exploiting waterfalls in river basins) are given on a discretized
time horizon. Each unit is carachterized by a set of technical constraints. For instance, for
thermal units it is often required that whenever an unit is turned on it must remain active
(committed) for at least a given number of consecutive time instants, and, analogously,
whenever an unit is turned off it must remain inactive (decommitted) for at least a given
number of consecutive time instants. Hydro units do not have such constraints, but the
power they can produce is limited by the total quantity of water that can be extracted
from the basin at any given period of time. The objective of the problem is to determine,
in each time period, the commitment status of thermal units and the power production
of both termal and hydro units so as to satisfy a forecasted power demand at minimal
total (essentially fuel) cost. The problem can be written as a large-scale (due to the large
number of units and time instants) nonlinear Mixed-Integer problem, where the nonlinear
objective function takes into account complex phenomena like the impact of the cooling
of a thermal unit over time on its start-up cost. The problem is highly structured; the
variable set x is subdivided into “combinatorial” variables z, corresponding to the 0-1
commitment decisions, and “continuous” variables w corresponding to power production
decisions (w), relative to thermal units and wy, relative to the hydro ones). The Lagrangian
relaxation of the power demand constraints which link together w, and w;, decomposes
into | P| + | H| independent problems, one for each unit; the “thermal problems” can be
solved by dynamic programming, while the “hydro problems” can be solved by means
of flow algorithms—that is, the technical constraints on each hydro unit define a convex
set.
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Apart from providing tight lower bounds on the optimal objective function value of
the original problem, the Lagrangian relaxation can be used to construct good solutions.
In Borghetti et al. (2003) the following three-stage heuristic is proposed:

e some power production 1, for the hydro units is fixed, and total power demand is
decreased accordingly;

e a greedy heuristic is used to decide a commitment status Z of the thermal units in
order to guarantee that the remaining power demand can be satisfied;

o finally, the actual power production (w,, wy,) of thermal and hydro units is determined
by solving a large-scale convex program (the “economic dispatch” problem), given
the commitment status Z of thermal units.

Such complex heuristic is motivated by the fact that adjusting the commitment status
of thermal units is relatively simple because the commitment decision at time ¢ directly
impacts only commitment decisions in a small set of time instants centered on ¢, while
changing the power output of some hydro units at a certain time instant potentially
impacts the hydro power output of the units in all the time horizon. However, once the
combinatorial decisions have been taken, the remaining continuous problem is easy.

A number of possibile choices exist for implementing the above scheme. First of
all, the “fixed ” hydro power production @, can be the hydro solution w;, of the latest
Lagrangian problem, or the “convexified”” hydro power production @y, of the latest primal
Master Problem; since the constraints involving w;, define convex sets, this is a feasible
solution. The greedy heuristic has then to decide which units have to be turned on to satisfy
the remaining power demand; for this purpose, a priority list of units is formed to decide
which ones are more “promising” at any given time instant. This priority list can be based
either on the Lagrangian cost of turning on a unit, or on the “convexified” committment
status Z of the latest primal Master Problem, interpreted as a “probability” that the unit
should be turned on at any time period, or on a combination of both. Finally, the greedy
heuristic may construct 7 either starting from scratch or starting from the commitment
matrix Z produced by the solution of the latest Lagrangian problem, modifying it only if
needed.

The results of these different variants are shown in Table 1 for some classes of
instances. Each class is characterized by the pair (p, h) of, respectively, the number of
thermal and hydro units; for all instances, a time horizont of 24 instants (a day) is used.
For each class, the average gap obtained by five variants of the Lagrangian heuristic are

Table 1
Comparison of Lagrangian heuristics for (UC).

wy, C Wp, Z Wy, € Wy, Z fs

30, 10 5.02 3.82 1.01 0.57 0.99
60, 25 5.74 4.73 1.54 0.69 0.98
90, 40 3.87 3.23 0.94 0.32 0.63
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reported. The first four variants are labelled by a pair (w, z) where w € {wy,, w;,} and z €
{¢, Z}; this indicates whether the “Lagrangian” hydro power wy, or the “convexified” hydro
power wy, is fixed, and whether the Lagrangian costs ¢ or the “convexified commitment”
7 are used to drive the greedy heuristic. In all these cases, the greedy heuristic modifies
from the “Lagrangian” commitment matrix Z; the fifth column, labelled fs, uses the
same heuristic as column (i, Z) except that the 7 is constructed “from scratch”.

The results clearly show that using the “convexified” hydro power W, from the
Master Problem produces much better results than using the Lagrangian hydro power wy,,
and that using the “convexified” committment status Z produces much better results than
using only the Lagrangian costs ¢. Thus, the primal “convexified” information produced
by the Lagrangian dual is very useful to construct efficient heuristics for the problem.
Even more interesting is perhaps the fact that the versions of the heuristic exploiting the
Lagrangian commitment Z are more efficient than those starting from scratch, even if the
“convexified” committment status Z is used; in other words, in this case the combination
of the integer solution produced by the Lagrangian relaxation and the continuous solution
produced by the Master Problem turns out to be the most effective one. This shows that
a Lagrangian approach produces even more valuable information than “just” the optimal
solutions of (D) and (P).

Each time a Lagrangian heuristic is implemented, both lower and upper bounds are
at easy hand; it is thus a natural choice to design an enumerative (Branch and Bound)
approach which is based on such bounds.

4. Enumerative algorithms

The main use of Lagrangian approaches within a Branch and Bound (B&B) is that
of computing (hopefully tight) bounds on the optimal value of the problem, in order
to fathom as many nodes in the search tree as possible. As shown in Section 1, the
Lagrangian bound is equivalent to that of the continuous relaxation if the Lagrangian
relaxation has the integrality property. However, the mere existence of an equivalent
linear formulation does not mean that the Lagrangian approach has to be discarded in
favor of one based on standard Linear Programming tools.

For instance, the Lagrangian relaxation described in the Introduction for computing
a lower bound on (UMMCEF) is equivalent to solving a continuous Multicommodity Min
Cost Flow problem. The sheer scale of the (LP) may not allow to efficiently (if at all)
solve it by standard Linear Programming codes, whereas a Lagrangian approach may
be feasible. A small sample is provided in Table 2, taken from Frangioni and Gallo
(1999), for problems with |K| = 256 and increasing graph size (the instances have
|A| & 4|N|); the row Bdl and Cpx report the running time required to solve the problem
using a proximal bundle approach and Cplex 6.0 respectively, with a “*” indicating
that the corresponding problem is not solved due to memory shortage. Both methods
provide solutions with at least 6-digits accuracy, and the Lagrangian approach provides
at termination the primal optimal solution x* together with the dual bound.
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Table 2
Comparison of (LP) and Lagrangean methods for (MMCEF).
|N| 64 128 256 512 1024
Bdl 17.52 48.72 458.36 218.84 898.51
Cpx 668.27 3525.27 56756.90 * *

The table clearly shows that (MMCEF) instances with very many commodities cannot
be solved in reasonable time by standard (LP) techniques, while a Lagrangian approach
can be successfully used to compute an optimal solution to the problem. We should point
out that specialized (LP) techniques, such as those of McBride (1998), Castro (2000),
may be competitive with Lagrangian ones—but in fact the Lagrangian approach applied
to this case is a specialized (LP) technique itself, namely a variant of the Dantzig-Wolfe
decomposition algorithm. An interesting feature of the Lagrangian approach is that it
can be more easily adapted to related but different problems (e.g. Crainic, Frangioni and
Gendron, 2001) with respect to other specialized (LP) techniques.

However, computing the (LP) bound—or a tighter bound if the Lagrangian prob-
lem does not have the integrality property—efficiently at the root node is not enough
to make a Lagrangian approach a viable alternative to (LP) techniques; it must also
effectively support all the operations of a B&B or Branch and Cut (B&C) (Padberg
and Rinaldi, 1991) algorithm. In particular, three aspects have to be properly taken into
account:

e branching rules: the relaxation must provide appropriate information upon which a
good branching decision can be taken;

e valid inequalities: the relaxation must provide appropriate information to be used
as input for either standard or custom separation algorithms that provide (hopefully
strong) new valid inequalities to tighten the formulation;

e reoptimization: the relaxation must be capable of re-using previously obtained solution
information to speed-up the computation of the bound after that some branching
decision has been taken and/or some new valid inequalities have been added.

It is worth noting here that the use of Lagrangian techniques embedded in enumer-
ative algorithms generalizes the so-called Branch & Price and Branch & Price & Cut
algorithms (Barnhart, Hane, and Vance, 1998), where the bounding procedure requires
the solution of a large-scale (LP) by means of a column generation approach; in fact, any
Lagrangian dual can be seen as a large-scale (LP). Thinking the approach in Lagrangian
terms can be useful just because it suggests the application of the several different algo-
rithms developed for NonDifferentiable Optimization apart from the pure Cutting Plane
one. This may be useful even for problems that are most naturally viewed in terms of
column generation, since e.g. the stabilized variants of the Cutting Plane algorithm can
be remarkably more efficient than the non-stabilized ones (Ben Amor, 2002). One may
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also remark that the “& Price” tag is somewhat superfluous, since combined column and
row generation has been a part of the B&C framework since the very definition of the
approach (Padberg and Rinaldi, 1991); in other words, using Lagrangian techniques can
be seen as just complementing simplex or interior-point methods with ideas from the
NonDifferentiable Optimization world.

4.1. Branching rules

One of the main factors discouraging the use of Lagrangian techniques within B&B
approaches has been the perceived need to develop ad-hoc branching rules based on the
optimal solution X of the Lagrangian problem and/or the Lagrangian costs ¢. Although
some general ways for constructing such rules have been proposed (Geoffrion, 1974;
Guignard and Kim, 1987), they have been most often perceived as more difficult and less
efficient that standard branching rules based on fractional variables.

However, “modern” algorithms for the solution of the Lagrangian Dual also provide
the primal solution x*, that is clearly the ideal candidate for implementing branching rules
based on fractional variables. In fact, an integer x* is optimal for (P), and thus each time
the Lagrangian dual reports a nonzero duality gap some fractional entry of x* exists,
exactly as when a standard (LP) is used. We should note here that although Lagrangian
approaches can in theory—and often in practice too—produce primal solutions of the
same accuracy as those generated by an (LP) approach, the “quality” of such solutions
from a branching standpoint may be quite different, especially on highly degenerated
problems. Common experience is that the solutions produced by Lagrangian approaches
tend to be “more fractional” than basic solutions produced by a simplex algorithm, when
applicable, and possibly more similar to the “central” solution produced by interior point
methods. This fact may have an impact on the branching rules and on the overall efficiency
of the B&B method whose magnitude is still not very well understood. Yet, at least in
principle all the classical branching rules developed for (LP)-based B&B algorithms can
be used for Lagrangian-based ones. For instance, choosing the “most fractional”” variable
x; and adding the constraints x; > [x*] and x; < |x;] to the two sons of the current
node in the enumeration tree is always possible, such as branching on special-ordered
sets or strong branching.

The previous assertion has to be qualified if the branching decision is, as commonly
happen, directly implemented in the Lagrangian relaxation, that is—assuming the above
binary branching for simplicity of notation—if the branching constraints are added to
the Lagrangian problem, thereby impacting the “easy” set X. In this case, particular
attention has to be paid in preventing the branching rules from affecting the structure of
the Lagrangian subproblem.

Consider for instance (UMMCEF) with the above binary branching, that is, where a
fractional variable xihj is selected and fixed to O and 1 in the two subproblems respectively.
Fixing a set of variables to 0 corresponds to removing the relative arcs from the graph
the Shortest Path problem (for that commodity) is computed on; however, fixing a set
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of variables to 1 in the Lagrangian problem requires to compute a shortest path which
touches a given set of arcs, which is known to be a N'P-hard problem. Thus, careless
branching may destroy the structure upon which the Lagrangian approach is based.
However, it is usually possible to design branching rules that are compatible with the
structure of X. For the (UMMCEF) case, for instance, a suitable rule is proposed in
Barnhart, Hane, and Vance (1998) in the context of a Branch & Price & Cut approach. A
“divergence” node is selected, thatis, anode i with two outgoing arcs with nonzero (hence
fractional) flow for one commodity 4. Its forward star is partitioned in two subsets, each
one containing one of the arcs with nonzero flow. Then, in each son of the current node
in the enumeration tree, the flow variables of all the arcs in one subset are fixed to zero.
Note that, when a Lagrangian approach is used to compute the fractional solution, i is a
divergence node if there are two paths entering i, produced at two different Lagrangian
iterations, which have a nonzero optimal multiplier 67 and which leave i along two
different arcs.

Furthermore, “directly” implementing the branching decision in the Lagrangian
subproblem is not the only choice. In fact, once again considering the simple binary
branching rule for simplicity of notation, an alternative is to consider the branching con-
straints x; > [x] and x; < |x;] among the “complicating” ones, and relax them (each
one in the corresponding node of the B&B tree). This clearly does not impact on the struc-
ture of X, but it changes the Lagrangian function, adding one new Lagrangian variable.
Thus, branching can be considered as a special case of producing valid inequalities—for
the subproblems in each node—which lead us to the next point.

4.2. Valid inequalities

The use of “strong” valid inequalities for the convex hull of the feasible region is well-
known to be essential to enhance the performances of enumerative approaches for very
many difficult optimization problems. Thus, the ability to efficiently accommodate gen-
eration of valid inequalities within the lower bound computation is crucial for every
bounding approach that aims at being widely applicable.

Although in some cases separation can be performed on the (integer) solution of
the Lagrangian problem (Gavish, 1985; Gouveia, 1995), most separation algorithms
input a fractional solution to be “cut”; thus, the ability of producing fractional solutions
is usually required in order to accommodate the vast majority of valid inequalities.
Once again, the “convexified” fractional solution x* is clearly the ideal candidate here;
in fact, when the Lagrangian relaxation has the integrality property this is exactly the
optimal solution of the equivalent (LP)—barring the issue relative to being possibly
“more fractional”, which is however likely to be less important in this case. Note that
when, conversely, X does not have the integrality property, x* belongs to conv(X) and
therefore none of the valid inequalities for conv(X) need to be generated; in other words,
using a “difficult” Lagrangian problem is equivalent to adding to an “easy” (LP) all the
defining valid inequalities for conv(X), except that the extreme points of conv(X), rather
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than its faces, are actually generated. Finally, as for the branching rules we can safely
assert that basically all separation algorithms devised for (LP)-based B&C approaches
can be used within Lagrangian-based ones. The use of Lagrangian techniques can be
preferable to that of (LP) techniques, as shown in the example below.

The well-known Max-Cut problem, which requires to find the minimum-weight
cutset of a given weighted graph G = (N, V), can be formulated as

max {cx : Ax < b, x € {0, l}Wl}

where the friangle inequalities Ax < b define the semimetric polytope (for complete
graphs):

Xij + Xk +xj <2
Xij =X —Xjp <0 1=<i<j<k=<n (10)

—Xij + Xk —xjx <0

—Xij — Xik + xXjx <0

The continuous relaxation of the above (ILP) is a sparse Linear Program with O(|N %)
variables and O(|N|?) constraints; somewhat surprisingly, this problem is nontrivial to
solve with standard (LP) technology for large graphs, even if a row generation approach
is used (since the number of triangle inequalities is polynomial, the separation problem
is easy), as shown below. It may be worth noting that, other than for its relationships with
the Max-Cut problem, the semimetric polytope is relevant in several areas of mathemat-
ics (Deza and Laurent, 1997), e.g., feasibility of Multicommodity flows (Lomonosov,
1985). Hence, the problem of optimizing a linear function over M has several relevant
applications.

Although at a first glance, the Max-Cut problem does not seem to possess much of
a structure, a Lagrangian relaxation is still possible with respect to the whole constraints
set Ax < b; this leaves X = {0, 1}!V! as the “easy” set, and therefore the correspond-
ing Lagrangian dual is equivalent to the continuous relaxation. However, solving the
Lagrangian dual with a cutting-plane-type method can be remarkably more efficient
than using state-of-the-art (LP) technology for solving the continuous relaxation. This
is shown in Table 3 for complete random graphs with 25, 50, 100 and 150 nodes: the

Table 3
Comparison of (LP) and Lagrangean methods for max-
cut.
[N| Cpx Bdl BdI-O Bdl-D
25 0.48 0.95 4.39 13.53
50 14.93 12.54 157.22 490.52

100 862.48 182.15 2212.06 10000+
150 10000+ 532.89 10000+ 10000+
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column “Cpx” reports the running time required to solve the continuous relaxation of
Max-Cut using Cplex 7.5, while the column “Bdl” reports the running time required
to solve the corresponding Lagrangian dual with a proximal bundle approach. In both
cases a row generation approach is used, at least 8-digits precision is obtained in the
objective function value and a time limit of 10000 seconds is set.

The table shows very clearly that for graphs with 100 nodes the Lagrangian approach
is already much faster, and for larger graphs the standard (LP) approach is not capable of
solving the problems within the required time limit, while the Lagrangian approach solves
them in less than 10 minutes. Actually, the Lagrangian approach can be made even more
efficient by exploiting a combinatorial structure “hidden” in proper subsets of the whole
set of triangle inequalities, as shown in Frangioni, Lodi, and Rinaldi (2005). The success
of the Lagrangian approach in this case mainly depends on the fact that the separation
routine for collecting new violated triangle inequalities is called every few iterations of
the cutting-plane-like algorithm for the solution of (D), using the (potentially unfeasible
w.r.t. the constraints Ax < b) solution ¥ of the Master Problem; that is, separation is
attempted early on with a (potentially very rough) approximation of the optimal solution
x* for the given set of rows. The importance of this choice is shown by column Bdl-O
which report the running time required by the bundle method if the separation routine is
called only when x* available; not surprisingly, using a Lagrangian approach with such
a “weak” structure to replace an efficient (LP) solver is not convenient unless the extra
flexibility provided by the different algorithm is exploited. This example shows that the
row generation strategies required by B&C approaches can be efficiently integrated with
Lagrangian algorithms.

We should note at this point that, in general, the constraints resulting from the sep-
aration algorithms cannot be treated inside the Lagrangian subproblem; thus, they have
to be treated as new “complicating” constraints and relaxed. Hence, at each node of the
enumeration tree we have to deal with a different Lagrangian function; in particular, the
number of Lagrangian multipliers may significantly increase when descending towards
the leaves of the tree. Since each Lagrangian problem is—being NonDifferentiable—
nontrivial to solve, especially as the number of Lagrangian multipliers grows (Lemaréchal
(2001), there is the concrete possibility that a Lagrangian approach may become less and
less competitive w.r.t. a standard (LP) approach as the enumeration proceeds. Further-
more, the simplex method is known to reoptimize very efficiently after the data changes
corresponding to branching decisions and generation of valid inequalities (in fact, it is
still the preferred algorithm to be used within a B&B approach, even for the problems
where it is outperformed by interior point methods at the root node), thus a Lagrangian
method that is even very competitive at the root node may still not be competitive as
far as the time required to solve the (many, closely related) relaxations at all nodes is
concerned.

Yet, in many cases where B&C approaches are effective the overall number of
enumeration nodes is pretty low, helping to limit the possible “curse of dimensional-
ity” in which a Lagrangian approach could incur. Furthermore, “modern” Lagrangian
approaches are able to reoptimize as well, which lead us to the final point.



ABOUT LAGRANGIAN METHODS IN INTEGER OPTIMIZATION 187

4.3. Reoptimization

Upon termination of an algorithm for solving (D) a set of relevant information about
the problem has been collected; this is B, a set of points in conv(X) whose convex
hull contains x*. The discussion in Section 2.6 shows that the fundamental difference
between subgradient-type and cutting-plane-type algorithms lies precisely in the size of
the corresponding set 3: very small for the former—essentially containing only x* at
termination—and potentially larger for the latter. The information in B, together with
the optimal solution y* of (D), can be exploited to speed-up the solution of a different
but related Lagrangian dual, thereby suggesting that cutting-plane-type algorithms may
be better suited than subgradient methods for building enumerative approached. We
also mention that, depending on the form of the Master Problem and on the algorithm
that is used to solve it, some other information from the previous problem, such as
the “active set” of nonzero ¢ multipliers (Frangioni, 1996), may be kept which can
be very useful to reduce the—possibly large (Crainic, Frangioni, and Gendron, 2001;
Lemaréchal, 2001)—time spent in the solution of the Master Problem.

Reoptimization for a cutting-plane-like approach after a change in the Lagrangian
function corresponding to the insertion of new “complicating constraints” in the formu-
lation (either valid inequalities or branching constraints) is quite easy. If a new set of
constraints A’x = b’ is appended after Ax = b, the value of the old Lagrangian function
¢ in y* is equal to the value of the new Lagrangian function

¢'(y,y") = minfex + y(b — Ax) + y'(0" = A'x) 1 x € X}

in (y*, 0); in other words, an algorithm for optimizing ¢’ can be provided with a starting
point whose ¢'—value is the optimal value of ¢. Furthermore, if the primal information
x € B is explicitly kept, as opposed to only the corresponding dual information g =
b — Ax for x € B being kept, it is immediate to exploit it to construct a new Master
Problem that contains as much information as the last one in the previous optimization;
in the pure Cutting Plane case, for instance, this is just

max{v : v < cx + y(b — Ax) +y'(b' — A'x), x € B}.

v.y.y
In dual words, each available vector g = b— Ax forsome x € 3, which was a subgradient
of ¢ at some y, can be immediately “extended” to a subgradient [g, g’ = b — A’x] of ¢’
in [y, 0]. Thus, inserting—and relaxing—new complicating constraints in the problem
is equivalent to an implicit “active set” method on the Lagrangian variables; one is in
fact solving a Lagrangian dual with “many” multipliers by allowing at each time only a
“small” set of them to be nonzero, and revising the set from time to time. Although non
completely trivial, this approach can be implemented into general-purpose Lagrangian
solvers without too much of a problem.

The impact of reoptimization in the Max-Cut case is shown in column Bdl-D of

Table 3, which reports the running time required by the proximal bundle method if the
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current set B is emptied each time new triangle inequalities are separated, i.e., if the
Lagrangian optimization process is restarted each time from scratch (actually, in that
case the previous optimal point y* were retained). Clearly, exploiting the information
provided by the set B is crucial for obtaining a competitive approach; this is even more
important in the Max-Cut case because, as discussed in the previous section, it is crucial to
generate new violated inequalities as frequently as possible, and therefore the Lagrangian
approach would basically be restarted every few iterations if reoptimization would not
be used.

Reoptimization is only a little bit trickier when branching decisions are “directly”
implemented in the Lagrangian relaxation. Sticking to a binary branching case for sim-
plicity of notation, the feasible set X of the Lagrangian relaxation at the current node is
subdivided into the (non necessarily disjoint) sets X and X corresponding to its descen-
dants in the enumeration tree. The set 3, which contains points of conv(X), can therefore
be similarly subdivided—if the primal information is explicitly kept, as opposed to only
the corresponding dual information being kept—into the two subsets By = BN conv(X()
and B; = B N conv(X1); these can be used, together with the previous dual optimal so-
Iution y* (and potentially active-set information for the Master Problem), to warm-start
the optimization of the Lagrangian dual corresponding to each son in the enumeration
tree. Note that most “sensible” branching decision must force both By and B; to be
strict subsets of 13, since otherwise the previous optimal solution x* of (P) has remained
feasible for some of the descendants, and therefore the bound is not improving after
branching. For instance, branching on a binary variable with fractional value x means
that B is partitioned into the subset 3, containing all ¥ such that x; = 0, the subset 55,
containing all X such that X; = 1 and, possibly, the subset B containing all X such that
x; is fractional. Thus, some information is “lost” in each son in the enumeration tree; on
the other hand, both sons are likely to start with a nonempty B, at least if an algorithm
allowing a “large” B is used.

Itis interesting to mention at this point that another potentially relevant advantage of
cutting-plane-type approaches over subgradient-type ones is their ability to more easily
exploit multiple solution information if this is provided by the Lagrangian relaxation.
In fact, although inserting at least one optimal solution of (Pj) in B is necessary for
convergence of the algorithms, nothing prevents one from inserting multiple solutions
if they can be (cheaply) obtained. Since collecting the right information is the main
task of any such algorithm, and the solution of the Lagrangian relaxation may be a
costly process, this may make sense in several applications. Indeed, for several column
generation approaches (Carraresi, Girardi, and Nonato, 1995; Ben Amor, 2002) it is well-
known that inserting just one column with negative reduced cost at each iteration would
lead to a very inefficient algorithm, and Lagrangian optimization is a column generation
approach.

It should also be noted that nothing in (4) requires the points x € B to be optimal
solutions of the Lagrangian relaxation anywhere; all non-extremal points are theoretically
dominated by some extremal ones, but chances are that during the optimization process
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the dominating extremal points for some available non-extremal ones are not available.
Thus, as in column generation, inserting suboptimal solutions of (Pj) in B may be a
very sensible move; examples can be found e.g. in Zhao and Luh (2002), Cappanera,
Gallo and Maffioli (2003). A larger set 13, other than enhancing the convergence rate
of a Lagrangian approach, may make it more “resistent” to the loss of information
corresponding to direct implementation of the branching decisions in the Lagrangian
subproblem.

While all the above points are very clear—almost trivial—from a theoretical stand-
point, their practical impact still has to be properly assessed. General guidelines about
when a Lagrangian approach may be competitive with a (LP)-based one within an enu-
merative algorithm are still not available, mostly because they depend from a number of
complex issues such as the exact algorithm used for solving the Lagrangian dual—and
even the exact implementation of the algorithm used for solving the Master Problem,
if any—, the structure of the Lagrangian relaxation, the relative weight of solving the
Lagrangian relaxation w.r.t. solving the Master problem, the availability of multiple so-
lution information and many others. With efficient, standard and easy to use general
codes for solving Lagrangian duals still not nearly as widely available as codes for solv-
ing Linear Programs, it is not surprising that Lagrangian approaches are less commonly
used than standard (LP)-based ones. Yet, the true potential of Lagrangian approaches for
the solution of Integer Programs does not appear to have been fully tapped, and there
seem to be room for extending the use of Lagrangian techniques to many more difficult
optimization problems. We believe that the application of Lagrangian approaches for
the solution of Integer Programs is a promising research avenue which still deserves
attention and development, and we hope to be able to contribute to this process in the
future.

5. Conclusion

Solving the Lagrangian dual (D) of an Integer Linear Program (P) is equivalent to solving
its “convexified relaxation” (P); the equivalence is effective, that is, an (approximate)
optimal solution x* of (P) is constructed by most “modern” algorithms for solving (D).

Therefore, Lagrangian techniques provide an alternative to standard Linear Pro-
gramming techniques for developing exact or approximate solution algorithms for (P).
Barring some important but still overall minor points, discussed in the paper, approaches
based on Lagrangian techniques can exploit the very same strategies (branching rules,
valid inequalities, rounding schemes and so on) developed for (LP)-based approaches.
Actually, in some cases Lagrangian techniques offer a “richer” set of information w.r.t.
(LP) techniques: not only a continuous solution x*, but also a set of solutions B C X
and the relative convex multipliers 6* that make up x*. Conversely, the solution x* built
by Lagrangian approaches is typically not basic, and therefore can be “more fractional”
than that provided by an ordinary continuous relaxation solved by means of a simplex
algorithm.
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Despite this, Lagrangian techniques are much less frequently used than (LP) tech-
niques within approaches for (ILP). This is due to at least three reasons:

e Lagrangian techniques call for a detailed analysis of the model and the solution of
optimization subproblem; therefore, they are more difficult to develop, less resistant
to changes of the optimization problem (that may easily destroy the structure upon
which they are based), and require at least some form of programming, while (LP)
techniques can be used by less experienced personnel through modeling engines and
standard solvers, which makes them preferable in several environments.

e The available general codes for the solution of Lagrangian Duals are still far from the
level of robustness, efficiency, ease of use and standardization currently offered by
(LP) codes.

e Solving a Lagrangian dual with high precision can be a daunting task in many cases,
both for the lack of really efficient codes and for the intrinsic difficulty of the problem
itself.

Thus, the use of Lagrangian techniques is limited both by the intrinsic characteristics
of the approach and by some technological factors, mainly the availability (or lack thereof)
of efficient and easy to use codes for the solution of Lagrangian duals. Improvements in
the available Lagrangian technology might allow to successfully apply these techniques
to many more difficult optimization problems of both academic and practical interest,
providing one more useful tool in the “bag of tricks” available for solving difficult
optimization problems.
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