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Abstract

In this paper we prove that the social equilibrium set, of an exchange economy,
with consumption space as a subset of a Banach space is a Banach manifold, and
this characterization does not depend on the number of commodities. In the way
to obtain this characterization we will show that the set of social weights of equi-
librium, associated with a given distribution of the initial endowments, is finite.

Resumen

En este artículo se demuestra que el conjunto de equilibrio social de una
economía de intercambio, con espacio de consumo contenido en un espacio de
Banach, es una variedad en dicho Banach, cuya caracterización no depende
del número de bienes. Con el fin de obtener esta caracterización, se demuestra
que el conjunto de ponderaciones sociales de equilibrio asociadas a una
distribución dada de dotaciones iniciales, es finito.
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1. INTRODUCTION

In principle the structure of a set in a mathematical model is not mastered
until it can be described locally, trough parameters or coordinates. This de-
scription is resumed by means of the concept of manifold. If a set is a manifold,
then it is possible to use to understand its main characteristics, the differential
analysis. Intuitively, manifolds in two or three dimensional spaces, are smooth
curves or surfaces. In general. if a set M is a manifold, then locally, i.e. in a
neighborhood of each point p ∈ M, but in general not globally, looks like a
Banach space.

In this work we show that the social equilibrium set, i.e. the set of social
weights and the set of initial endowments such that the excess utility function
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vanishes, is a Banach manifold. At the same time that we show this fact, we
show that the equilibrium set is generically determined, this means that given
the utility functions of the agents of the economy except for very particular
combinations of parameter the number (the initial endowments) of distinct equi-
libria is finite i.e. the local uniqueness of the equilibrium social weights follow.

The determinacy of the equilibrium set is one of the main features of the
classical models of General Equilibrium. For smooth economies with finitely
many agents an commodities it is a well know fact, see for instance Debreu, G.
(1970). The approach followed by G. Debreu, can’t be follows in infinite di-
mensional models, in particular because the excess demand function is not nec-
essarily a smooth function. Nevertheless it is possible to follow a similar ap-
proach considering the excess utility function in the place of the excess demand
function. In this case we deal with the social equilibrium set more than with the
walrasian equilibrium. This means that we work with the social weights more
than with the prices, nevertheless, for a given economy there exists a biunivocal
correspondence between the social equilibrium and the set of equilibrium prices.

2. THE MODEL

We consider an economy where each agent’s consumption set is a subset of
a Banach space. Agents will be indexed by i ∈ I = {1, 2, ...n}; and X+ will
denote the positive cone of the Banach space X. We do not assume separability
in the utility functions ui : X+ → R. Utility functions are in the C2(X, R) space,
i.e. the set of the functions with continuous second F-derivatives, and we sup-
pose that they are increasing functions it is to say that, each agent prefer more
than less, formally, each first order F-derivative is positive. Where F-derivative
define f ′(x) in the usual way of the linearization f (x + h) = f(x) + f ′(x)h + o(||h||).
In order to assure the uniqueness of equilibrium allocation we will assume strictly
quasi-concave utility functions. In addition, we suppose that for all x ∈ X the
inverse operator ( ′′ui )–1 of ui at x, exists. Here ′′ui (x) is identified with the qua-
dratic form (h, k) → u′′(x)hk. In this work Ck(X, Y) denote the space of k – times
continuously F-differentiable operators from X into Y, and L(X, Y) denote the
space of linear and continuous operators from X into Y. By C∞(X, Y) we denote
the set of functions belonging to Ck(X, Y) for all integer k.

The consumption set of each agent is the same one, and it will be symbol-
ized by X. The cartesian product of these n consumption sets is represented by
Ω. So, a bundle set for the i-agent will be symbolized by xi ∈ X and an alloca-
tion will be denoted by x = (x1, x2, ..., xn) ∈ Ω. The i-agent endowments will be
symbolized by wi, and w = (w1,w2, ...,wn), symbolize the initial allocation. The
total mounts of available goods will be denoted by W wii

n= =∑ 1 .  All of them
contingent goods in time or state of the world.

With the purpose to obtain strictly positive equilibria, we will assume that
utilities satisfy at least one of the following two, widely used assumptions in
economics, conditions:

(i) (Inada condition) lim ′′u j (x) = ∞ if x → ∂(X+), for each j = 1, 2, ..., l and
for each utility function, by ∂(X+), we denote the frontier of the positive
cone. It assumes that marginal utility is infinite for consumption at zero.
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(ii) All strictly positive bundle set is preferable to all bundle set with at least one
zero component in one state of the world.
An economy will be represented by

ε = {ui, wi, I}.

As examples of economies with the properties above mentioned, consider
those where the consumption set is X+ = C++(M Rn) and utility functions are
ui(x) = ∫M Ui(x(t), t)dt, see  [Chichilnisky, G. and Y. Zhou (1988)], and [Aliprantis,
C.D; D.J. Brown and O. Burkinshaw (1990)].

It is well known that the demand function is a good tool to deal with the
equilibrium manifold in economies in which consumption spaces are subset of
Hilbert spaces, in particular Rl [Mas-Colell, A. (1985)]. But unfortunately if the
consumption spaces are subsets of infinite dimensional spaces (not a Hilbert
space), the demand function may not be a differentiable function [Araujo, A.
(1987)], or it is not well definite because the price space is very large or the
positive cone where prices are definite has empty interior. Despite in many of
these cases it is possible, to characterize the equilibria set using the function of
excess of utility , see for instance Accinelli, E. (1996), and it is possible using
this function to introduce in infinite dimensional models differentiable tech-
niques with wide generality. Then it is possible to solve problems defined in
spaces of infinite dimension by means of techniques of differential calculus
own of the finite case. And in this way to generalize the result obtained by
Chichilnisky, G. and Zhou, Y. for smooth infinite dimensional economies to the
case with no separable utilities.

In this work, following the Negishi approach, we will characterize the equilib-
rium set of the economy, as the set of zeroes of the excess utility function
e : ∆ × Ω → Rn-1. So, the equilibrium set will be denoted by

εq = {(λ, w) ∈ ∆ × Ω : e((λ, w) = 0}

Where ∆ symbolize the social weight set,

∆ = ∈ = ≤ ≤ ∀
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and w = (w1,w2, ...,wn) are the initial endowments. In the considered hypothesis,
the fact that each agent has non-null initial endowments, implies that the result
of a process of maximization of the utility functions will be a strictly positive
bundle set. Then each relative weight cannot be zero. So, without loss of gener-
ality, we can consider only cases where λ ∈ ∆+ = int[∆].

In order to prove that εq restricted to w ∈ Ω0, where Ω0 is an open and dense
subset included in Ω is a Banach manifold, we will assume that the positive
cone Ω+ of the consumption space has non-empty interior. Typically examples
of such spaces are L∞(M, Rn) where M is any compact manifold, with the
supremun norm, see Chichilnisky, G. and Zhou, Y. So, we show that in this
cases, the set of regular economies is large, and its complement is a rare set.
This is not a consequence of the Debreu theorems, here it follows from an
alternative approach with particular interest in infinite dimensional cases. If the
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only interest is to show that the set of the social equilibria, associated to each
distribution of the initial endowments is finite, then we don’t need to assume
the non emptiness of the positive cone. In this case it is enough to allow for the
possibility that w is not positive.

3. SOME OF NOTATION AND MATHEMATICAL FACTS

In this section we recalling some basic mathematical definitions that will be
used later. Our main reference for considerations on Functional Analysis is
Zeidler, E. (1993).

Definition 1 Let f : Dom(f) ⊆ X → Y be a mapping between two Banach spaces,
(B-spaces) X and Y over K, here Dom(f) is the domain of f, and let f ′(x) be the
Fréchet derivative (F-derivative) at the point x for the map f

1. f ′ : D(f ′) ⊆ X → L(X, Y) i.e. f ′(x) is a continuous linear map from X to Y.

2. f is called a submersion at the point x if and only if f is a C1–mapping on a
neighborhood of x, if f ′(x) : X → Y is surjective and if the null space

Ker(f ´(x)) = {x ∈ X : f ′(x) = 0},

splits X. The null space Y1 = Ker(f ′(x)) splits X means that X = Y1 ⊕ Y2
(topological direct sum).  f is called submersion on the subset M ⊆ X iff f is
a submersion at each x ∈ M.
We will denote the image set of a linear operator T : X → Y by

R(T) = {y ∈ Y : there exists x ∈ X : y = T(x)},

the dimension of R(T) will be denoted by rankT, and the codimension of
(R(f)) will be symbolized as corankT = dim[X / ker(T)] , where X / ker(T) is
the factor space.

3. The point x ∈ X is called a regular point of f iff f is a submersion at x.
Otherwise x is called singular point.

4. The point y ∈ Y is called a regular value of f if and only if f -1 is empty or
consists solely of regular points. Otherwise y is called singular value.

5. Let X be a Banach space, it follows that f : U(x0) ⊂ X → R has a singular
point at x0 if an only if f ′(x0) = 0. Such point will be non-degenerate if and
only if the bilinear form (h, k) → f ´´(x0)hk is non-degenerate.

Recall that a linear map T : X → Y is called a Fredholm operator if and
only if is continuous and both numbers the dimension of the ker(T), dim(Ker(T))
and the codimension of the rank of f, codim(R(T)) are finite. The index of f is
defined by: ind(T) = dim(Ker(T)) – codim(R(T)).
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Definition 2 A Ck, 0 ≤ k Banach manifold M, is a topological space with the
following additional properties:

1. Locally coordinate system. For every point p ∈ M there is an open neigh-
borhood U(p), a Banach space Bp and a mapping Φp which maps U(p)
homeomorphically onto an open set V(p) ∈ Bp.

If q ∈ U(p) then w = Φp(q) is called de coordinate of q for Φp.

2. Coordinate transformation. If r ∈ U(p) ∩ U(q) then r has a local coordi-
nates x = Φp(r) and y = Φq(r). The change of these local coordinates is given

by y = Φq[Φp
-1](x).

4. THE NEGISHI APPROACH

The Negishi approach start considering a social welfare function given by:
Wλ : Ω+ → R defined as:

(1) W x u xi
i

n

i iλ λ( ) = ( )
=
∑

1
.

where ui is the utility function of the agent indexed by i, λ = (λ1, λ2, …,λn) ∈
int[∆] (each λi represents the social weight of the agent in the market), and Ω+
is the positive cone in the consumption space Ω.

As it is well know if x* ∈ Ω solves the maximization problem of Wλ*(x) for
a given λ*, subject to be a feasible allocation i.e.,

x* ∈ F = x x wi i
i
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then x* is a Pareto optimal allocation. Reciprocally it can be proved that if a
feasible allocation x*, is Pareto optimal, then there exists any λ* ∈ ∆ such that
x*, maximize Wλ*, see [Accinelli, E. (1996)]. There exists some Pareto optimal
allocation where xi

* = 0 for some i ∈ {1, 2, …,n} if each agent has positive no
null endowments, these cases are possible if and only if the agents indexed in
this subset be out of the market, i.e., if and only if λi = 0. Then we can restrict
ourselves, without loss of generality, to consider only cases where λ ∈ ∆+.

In this way characterized the set of Pareto optimal allocations, our next step
is to choose the elements x* in the Pareto optimal set such that can be supported
by a price p and satisfying px* = pwi for all i = 1, 2, …,n i.e., an equilibrium
allocation.

Suppose that the aggregate endowment of the economy is, w Wi
i

n

=
∑ =

1
.  We

will use the following notation:
For any λ ∈ int [∆] = {λ ∈ ∆ : λi > 0 ∀ i ∈ I},

(2) x(λ, W) = argmax λi i i
i
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and let e : ∆ × Ω → Rn be the excess utility function, which coordinates are
given by:

ei(λ, W) = ′′u i (xi(λ, W))(xi(λ, W)) – wi).

Here ′′u i (xi(λ, W)) : X → R is the F-differential of the utility ui(xi(λ, W)).

Definition 3 For fixed utility functions, for each w ∈ Ω∈, where

Ω∈ = {w ∈ Ω+ : ∈ ≤ wi, i = 1, 2, …,n}, for a given ∈

we define the set

εq(w) = {λ ∈ ∆+ : ew(λ) = 0},

it will be called the set of the Equilibrium Social Weights.
In Accinelli, E. (1996) is show that the equilibrium social weights is a non-

empty set.

Theorem 1 Let λ ∈ εq(w), and let x*(λ) be a feasible allocation, solution of the
maximization problem of Wλ and let γ(λ) be the corresponding vector of
Lagrange multipliers. Then, the pair (x*(λ), γ(λ)) is a walrasian equilibrium
and reciprocally, if (p, x) is a walrasian equilibrium then, there exists λ ∈ εq
such that x maximize Wλ  restricted to the feasible allocations set, and p will be
the corresponding vector of Lagrange multipliers i.e., p = γ(λ).

The proof can be see in [Accinelli, E. (1996)].

5. THE EQUILIBRIUM SET AS A BANACH MANIFOLD

The first order conditions for (2) are:

(3) λ λ λ λi i i h h hu x u x h i′ ( )( ) = ′ ( )( ) ∀ ≠′ ′, , , W W  

xi λ , ,w Wi
n ( ) ==∑ 1

where W= wii
n
=∑ 1 . It follows that for each i, the consumption of the i-agent,

given by the function xi : ∆ × Ω → X is, for all λ ∈ int[∆] and w ∈ Ω, a
F-differentiable function.

The following are well know properties of the excess utility function:

(1) λe(λ, w) = 0.

(2) e(αλ, w) = e(λ, w),    α > 0.

See for instance Accinelli, E. (1996).
From item (1) it follows that the rank of the jacobian matrix Jλe(⋅, w) of the

excess utility function e(⋅, w) : ∆ → Rn is at most equal to n – 1. And as from

∀
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item (2) we know that if ei(λ, w) = 0 ∀ i = 1, 2, …,n – 1, then en(λ, w) = 0, we
will consider the restricted function e : ∆ × Ω → Rn-1 obtained from the excess
utility function removing one of its coordinates.

The following theorem holds:

Theorem 2 If the positive cone of the consumption space, has a non-empty
interior then, there exists an open and dense subset Ω0 ⊆ Ω∈ such that

εq / Ω0 = {(λ, w) ∈ int[∆] × Ω0 : e(λ, w) = 0}

is a Banach manifold.

Proof: To prove this theorem, we will prove the following assertions:

(i) There exist a residual set Ω0 ⊆ Ω such that, the mapping e : int[∆] × Ω0 →
Rn-1 is C1, and zero is a regular value of e i.e. for all (λ, w) ∈ int[∆] × Ω0,
such that e(λ, w) = 0 the mapping e is a submersion.

(ii) For each parameter w ∈ Ω0 , the mapping e(⋅, w) : int[∆] → Rn-1 is Fredholm
of index zero.

• Now, from Zeidler, E. (1993) section (4.19), the theorem follows.

As a corollary of this theorem, it follows that: For each w ∈ Ω0 the
equation e(λ, w) = 0, λ ∈ int[∆] has at most finitely many solutions λ of
ew(λ) = 0.

(iii) This corollary follows from the fact that: Convergence of e(λn, wn) → 0 as
n → ∞ and convergence of {wn} implies the existence of a convergent sub-
sequence of {λn} in int[∆].

• The oddness of this solutions follows using differential techniques is
proved in [Accinelli, E. (1996)].

Proof of the step (i): Consider the mapping from int[∆] × Ω0 → Rn-1 defined
by the formula:

λ, w → e(λ, w),

where e(λ, w) is the vector (in Rn-1) defined by n –1 coordinates of the vector
e(λ, w).

We need to prove that 0 is a regular value of the restricted excess utility
function e. It is to say that the restricted excess utility function e is a submersion
at each point (λ, w) ∈ λ × Ω, i.e., e′(λ, w) : int[∆] × Ω0 → Rn-1 is surjective and
the null space Ker(e´(λ, w)) splits X.

We begin showing that the linear tangent mapping is always onto, or equiva-
lently that the rank of the linear map e′ will be always equal to n – 1. We will
prove that the affirmation is true in a residual set Ω0.
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To see this consider a little change in the endowments given by w(v) = w + va,
where x ∈ Ω+ with a = (1, 1, …,1) and v = (v1, v2, …,vn) ∈ Rn is a vector in a

small open neighborhood U of zero, such that vn = vii
n
=∑ 1

1– . The vector v will be

thought as a state-independent parameter for redistributions of initial endow-

ments. Observe that w v w Wii
n

ii
n

= =∑ ∑( ) = =1 1 .

The excess utility function for the economy ε(v) = {ui, w(v)i} will be:

(4) e(λ, v) = (e1(λ, v1), …,en(λ, vn)),

where

ei(λ, v) = ′′u i (xi(λ, W))[xi(λ, W) – wi –via].

Observe that the allocations that solve (2) for the economies ε(v) and ε are
the same.

It is easy to see that:
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The rank of this matrix is equal to n – 1, as the rank of a matrix is locally
invariant, then for each w + va, there exists a neighborhood Uv such that the
rank of e′(λ, w(v)) is equal to n – 1, for all w ∈ Uv. Since e(λ, v) is arbitrarily
close to e(λ, w) this prove the denseness of Ω0.

To prove that zero is a regular value for e we need to prove that Ker(e′)
splits. In our case, as R(e) = Rn-1, the quotient space (∆ × Ω0) / Ker(e′) has finite
dimension, then codim[Ker(e´)] < ∞ and the splitting property is automatically
satisfied, see Zeidler, E. (1993).

Proof of the step (ii): We will prove that, e(⋅, w) : ∆ → Rn-1 is a Fredholm
operator of index zero. This map will be a Fredholm operator if is a C1–map
and if Jλe(⋅, w) : ∆ → L(∆, Rn-1) is a linear Fredholm operator for each λ ∈ ∆.
Where Jλe(⋅, w) : ∆ → Rn-1 is the jacobian matrix of e(⋅, w). The index of Jλe(⋅, w)
at λ is

ind(Jλe(λ, w)) = dim(Ker(Jλe(λ, w))) - codim(R(Jλe(λ, w))).

The operator, (Jλe(λ, w)) is, for each w ∈ Ω0 a finite linear operator from
Rn-1 → Rn-1 and then, for each λ ∈ ∆ is a Fredholm map of index zero.

The economies ε = {wi, ui, I} where w ∈ Ω0 will be called Regular Econo-
mies.

Proof of the step (iii): Note that under the assumptions of our model and as
wi > 0 ∀i , if λn → λ ∈ Fr(∆) then there exists some i such that λi = 0 then xi(λn)
→ 0 and ′′u i (x(λn)) → ∞ when λn → λ. So ||ei(λn)|| → ∞.
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To prove that the set of regular economies is an open and dense set in the
space of the economies, it is not necessary to assume the non-emptiness of the
interior of the positive cone of the consumption space. It is sufficient to allow
for the possibility that w is not positive. In this work, we use this assumption to
characterize the equilibria set as a Banach manifold with a positive consump-
tion space.

6. CONCLUSIONS

The Negishi approach allows us consider the models of finite dimensional
economies and those of infinite dimension of unified way. It shows to us that
generically both types of models display a similar behavior.

These economies behave well, in the sense that in sufficiently small neigh-
borhoods of them great changes do not take place. That is to say, small changes
in the fundamentals do not imply great changes in the behavior of the economic
system. These economies are called regular.

In contrast, a complementary set of these exists, where small changes of the
foundations imply absolutely unpredictable changes, these are the calls singu-
lar economies. These economies also can be studied of unified way using the
method of Negishi.
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