
����������
�������

Citation: Vodyaho, A.I.; Zhukova,

N.A.; Shichkina, Y.A.; Anaam, F.;

Abbas, S. About One Approach to

Using Dynamic Models to Build

Digital Twins. Designs 2022, 6, 25.

https://doi.org/10.3390/designs

6020025

Academic Editor: Tian Syung Lan

Received: 1 February 2022

Accepted: 25 February 2022

Published: 1 March 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Article

About One Approach to Using Dynamic Models to Build
Digital Twins
Alexander Ivanovich Vodyaho 1,* , Nataly Alexandrovna Zhukova 1,2 , Yulia Alexandrovna Shichkina 1 ,
Fahem Anaam 1 and Saddam Abbas 1

1 Faculty of Computer Science and Technology, Saint Petersburg Electrotechnical University “LETI”,
197376 St. Petersburg, Russia; nazhukova@mail.ru (N.A.Z.); strange.y@mail.ru (Y.A.S.);
fahemye@gmail.com (F.A.); saddamabbas077@gmail.com (S.A.)

2 St. Petersburg Federal Research Centre of the Russian Academy of Sciences (SPCRAS),
199178 St. Petersburg, Russia

* Correspondence: aivodyaho@mail.ru

Abstract: The modern stage of technology development is characterized by the emergence of new
paradigms for the construction of anthropogenic systems, such as cyber-physical systems, socio-
cybernetic systems, etc. The task of data acquisition about the state of a multi-level system and
managing the structure and behavior of a system consisting of many thousands of elements of differ-
ent physical nature is a complex task. This article describes one of possible approaches to solving the
problem of data acquisition and management of the structure of a large-scale heterogeneous system.
The proposed approach is based on the idea of using dynamic digital twins, which are dynamic mod-
els of the observed system. This approach was used for the development of systems in various subject
domains, in particular, in production management systems built on the Industry 4.0 principle, in the
development of a technical support system for cable television networks and in the development of
support systems for the construction of educational trajectories.

Keywords: dynamic digital twins; agile architecture; multilevel relatively finite state operating
automaton

1. Introduction

A distinctive feature of the current stage of the development of modern technologies
is the new level of complexity and intelligence of the created anthropogenic systems, the
specific features of which are large size, complex behavior, as well as variability of structure
and behavior. A significant part of the modern anthropogenic systems can be positioned
as intelligent systems [1,2]. The mechanisms of working with knowledge are increasingly
used in the development of modern information systems to realize “smart” functions [3].

Almost all large-scale systems have the property of variability of structure and/or
behavior, such systems, with a few exceptions, are distributed systems. At the same time,
many of them are built on the basis of such paradigms and platforms as Ambient Intelligence
(AmI) [2], Internet of Things (IoT) [3,4], Industrial Internet of Things (IIoT) [5–7], Cloud [8]
and Fog Computing [9,10]. The increase in the size of the systems and the increase in the
number of sensors and other data sources leads to the need to store and process large
amounts of information (Big Data) [11], which in turn makes it possible to classify such
systems as data centric systems [12,13].

Modern intelligent anthropogenic systems can be considered as information-oriented
systems or Software Intensive Systems (SwIS) [14] and can be classified as a System of
Systems (SoS). The main distinguish features of SoS are the following: (i) loose coupling of
elements, (ii) emergent behavior, (iii) operational element independence, (iv) independent
management of elements, (v) evolutionary development [15].

Designs 2022, 6, 25. https://doi.org/10.3390/designs6020025 https://www.mdpi.com/journal/designs

https://doi.org/10.3390/designs6020025
https://doi.org/10.3390/designs6020025
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/designs
https://www.mdpi.com
https://orcid.org/0000-0002-0933-0933
https://orcid.org/0000-0001-5877-4461
https://orcid.org/0000-0001-7140-1686
https://orcid.org/0000-0001-9931-463X
https://doi.org/10.3390/designs6020025
https://www.mdpi.com/journal/designs
https://www.mdpi.com/article/10.3390/designs6020025?type=check_update&version=1

Designs 2022, 6, 25 2 of 24

In the frames of the present article the main research objective (RO) is investigation
of Dynamic Digital Twins (DDT) Systems (DDTS) as a subclass of Digital Twins Systems
(DTS) and investigation possible approaches to its realization.

The article includes seven sections. Section 2 discusses the main aspects of using
the Model-Based Approach (MBA) at various stages of the SwIS Lifecycle (LC), discusses
possible approaches to using Digital Twins (DT). Section 3 describes the proposed approach
to using the DT concept in Run Time (RT) mode, suggests an approach based on the use of
RT DDT and gives the overview of technologies needed for suggested approach realization.
In the Section 4 the automaton representation of RT DDT is considered, the main tasks
that need to be solved for the implementation of the proposed approach are discusses, the
DDT reference model is described and a model synthesis algorithm is presented. Section 5
describes possible approaches to DDTS implementation. Section 6 provides examples of
the use of the proposed approach. The final part (Section 7) contains conclusions and a
description of possible directions for further research.

2. Digital Twins

Model based approach According to the model theory a model has three main fea-
tures: (i) a model is a mapping of other entity, (ii) a model reflects only parts of the original
entity, (iii) a model fulfills a certain specific function and is used in place of the original
entity for this purpose [16].

MBA has been used for many years, in many different forms, under many different
names [17]. Currently, this approach is increasingly being used at different stages of
the LC of SwIS: at the development stage, in the process of functioning, at the stage of
modification. Today, the MBA is a set of different technologies that relate to different stages
of the SwIS LC.

Table 1 lists the main technologies that are used to support the MBA. These are the
MDA approach, Middleware (MW), containers, virtual machines, DT, DevOps, evolu-
tionary architecture, ITIL/ITSM, etc. In all these cases, the idea is to replace the real
system or subsystem with its model. In particular, when building systems consisting of
elements of different physical nature, this is a natural solution of the problem of integrating
heterogeneous elements into the system.

Table 1. The use of MBA technologies at different stages of SwIS LS.

No. Stages MBA Technologies

1 Development Model Driven Architecture (MDA) [18], DevOPS [19], Agile
Architecture (AA) [20,21], Digital Twins (DT) [22,23]

2 Production DT, Model Driven Engineering [24]

3 Operating DT, AA, containers [25], middleware, virtual machines [26]

4 Modernization DevOPS, evolutionary architectures [15], IT Infrastructure
Library/IT Service Management (ITIL/ITSM) [27]

The use of models involves the use of two entities: the model of the entity and the
simulated entity EM → Et, where EM is the model, and Et is the simulated entity.

Both entities can have different natures: virtual entity (V), physical entity (P), biological
entity (B), social entity (S), etc. Table 2 shows the main types of models.

MDA is actively being developed in relation to the Cyber-Physical Systems (CPS) and
is quite close to such paradigms as Industry 4.0, IIoT, Internet of Production, Made in China
2025, service oriented manufacturing, and cloud manufacturing [28,29] where the idea
of using corporate knowledge graphs is actively being promoted [30], which can also be
considered as DT implemented in terms of knowledge. However, in these systems, models
of the V→ P type are implemented at the lowest level, over which several other levels can
be built, which form a SoS, i.e., at most levels, models of the VV type are used.

Designs 2022, 6, 25 3 of 24

Table 2. Main mapping types.

Mapping Type Examples

V→ V (VV mapping) Classic MW, Containers, Virtual Machines

V→ P (VP mapping) Digital Twins

P→ P (PP mapping) Physical Twins

V→ B (VB mapping) Virtual Hospital

V→ S (VS mapping) Social Network

Currently, the following types of VV models are used: traditional MW systems, which
can be considered as a platform model, containers, which can be considered as a platform
and environment model, virtual machines can also be considered as VV model.

The DT concept. The Digital Twin Model (DTM) was first introduced in 2002 as a
product LC management concept without specifying the model’s name [31], the model was
soon named, but the name changed over time. Initially, it was called the Mirror Model
of Spaces [32], but later it was changed to the model of mirroring information [33]. The
model was finally named DT [34]. In [35], it is indicated that there are several hundred
publications related to DT and their number is constantly increasing. In recent years, one
can observe a steady trend towards increasing interest in the practical use of the DT concept
and expanding the scope of its application. The analysis of the current state-of-the art of
Global Digital DT Market and perspective of its development for 2021–2026 one can find
in the report [36]. The modern DT concept is based on the idea of model support of the
system at all stages of its LC. DT technologies are already being used in different systems
and industries such as manufacturing, construction, health care, aerospace, transportation,
etc. [35,36] and the scope of their applications is constantly expanding.

Depending on the point of view, there are quite a lot of definitions of the concept of
DT [35]. In general, DTS according to ISO/IEC JTC 1/SC 41/WG 6 can be defines as

“a digital twin is a virtual representation of real-world entities and processes, synchro-
nized at a specified frequency and fidelity.

• Digital twin systems transform business by accelerating holistic understanding,
optimal decision-making, and effective action.

• Digital twins use real-time and historical data to represent the past and present and
simulate predicted futures.

• Digital twins are motivated by outcomes, tailored to use cases, powered by inte-
gration, built on data, guided by domain knowledge, and implemented in IT/OT
systems.

The foundational elements of the definition are captured in the first sentence: the virtual
representation, the real-world entities and processes it represents, and the mechanism by
which the virtual and real-world entities are synchronized” [37].

Not only a physical object, but process or system which consists of different nature
elements including humans can be represented with the help of DT.

Another definition is also known, according to which “DT is a combination of Data,
Information and Knowledge (DIK) that represents the structure, behavior and context of the
Observed and Managed System (OMS). A DT offers an interface that allows receive DIK about the
past and present OMS operation and makes prediction about the future state of the OMS” [35].

In this definition, the following points are important: (i) DT is generally multi-level
and can include other models, (ii) different models are used at different stages of the LC,
(iii) DT can be built using different programming methodologies (distributed object systems,
component technologies, Service Oriented Architecture (SOA), Multi-Agent Systems (MAS),
etc., (iv) DT can be built in terms of knowledge, (v) different technologies and platforms
can be used to build DT corresponding to different subsystems of the same system.

Designs 2022, 6, 25 4 of 24

Depending on the tasks specifics and roles of a particular stakeholder one can dis-
tinguish the following main viewpoints on DT: (i) DT is a model (system model) that
accompanies the system during the entire LS, (ii) DT is the access port to other systems, in
particular, physical systems, (iii) DT is an intelligent controller of some entity, (iv) DT is an
architectural style, (v) DT is the OMS itself.

In the first case, we are talking about the implementation of the Digital Thread (DTh)
concept [38], DT is considered as a means of implementing the DTh mechanism. DT in this
case can be defined as a set of models belonging to different stages of the LC and a set of
mechanisms for the transformation of these models. It should be noted that the models at
different stages of the LC differ significantly, and the task of transforming the models is
quite complex.

In the second case, DT is considered as a means of SoS building. Each system that is
part of the SoS can have an arbitrary number of DTS that describe the system in a language
that is understandable to other systems that are part of the SoS. In this case, DT can be
considered as a service available to other systems that are part of SoS.

In the third case, DT is considered as means of implementing the agility mechanism,
i.e., DT manages the OMS reconfiguration.

In the fourth case, DT is considered from the point of view of the software architecture.
DT can be considered as one of the possible implementations of the virtual machines
architectural style.

In the fifth case, the system consisting of OMS and DT is considered as a single system,
which is accessed through DT. This is the user’s point of view.

These points of view can be considered as architectural viewpoints [39].
Maturity levels of DT technology. In contrast to [40], it is proposed to determine the

following levels of maturity of DT technologies.
Level 0. DT architectural style is not used.
Level 1. DT is used at separate stages of the LC and at separate levels. OMS has a fixed

pre-known structure and behavior. DT does not communicate with other DTs. In this case,
DT can be considered as the simplest controller.

Level 2. DT is used at separate stages of the LC. OMS can have a variable structure
and behavior. DT does not communicate with other DTs. DT operates in the intelligent
controller mode.

Level 3. DT is used at several, but not at all stages of the LC. OMS can have a variable
structure and behavior. DT can communicate with other DTs. In this case, DT works as a
reactive agent.

Level 4. DT is used at all stages of the LC. There are means of transforming models
related to different stages of the system LC. OMS can have a variable structure and behavior.
DT can communicate with other DTs and implements proactive behavior.

MAS, similar to DT, are subclasses of the SwIS class that can be considered as an
implementation of virtual machines architectural style [39]. The main difference between
these subclasses is as follows. MAS acts on behalf of and with the rights given by the owner.
DT is a broker between the OMS and the external world. In contrast with MAS, which can
work in several virtual spaces (worlds), DT, on the one hand, is linked with OMS and the
corresponding world, and on the other hand, it must collect data in order to build a model
in different worlds. However, in the case when DTS belongs to the fourth maturity level,
the DTS implement behavior mechanisms such as those used by MAS. In this case, DT can
be considered as a subclass of MAS.

The idea of DT was initially focused on the production stage [31], but gradually the
scope of application of the DT idea has expanded and nowadays they are used almost
everywhere [35,36]. The main idea of DT is that a digital model created at the design stage
should accompany the system throughout the entire LC. However, as mentioned above,
modern large-scale systems have a constantly changing structure and behavior, this leads
to the need to use dynamic DT. This article discusses this possibility.

Designs 2022, 6, 25 5 of 24

DT can be defined as a model that allows the acquisition of DIK about the OMS needed
by the stakeholder, as well as manage the OMS state by changing the model. At the same
time, humans do not necessarily act as stakeholders. DT can interact with OMS, with each
other, with other virtual subsystems, and with users.

A detailed description of the modern DT-technology state-of-the art one can find, e.g.,
in [41–44].

The potential benefits of using DT are quite well known [31,35,37].
There are two main approaches to using DT: (i) DT is a complete functional analog of

OMS and implements all the functions that OMS implements. It allows replace physical
systems with their models, for example, at the design, debugging, testing or even recon-
figuration stage, (ii) DT is a special case model that is built to solve a specific problem in
the interests of a stakeholder, i.e., this approach can be used to collect data and present the
results as a model.

This article discusses a possible approach to use the MBA, in particular, the DT
approach at the operational stage, i.e., in the run time mode. At this stage, mechanisms
such as virtual machines, containers and DT are most often used, the implementation of AA
mechanisms also involves the use of models. The use of virtual machines and containers is
described in sufficient detail in the available literature [25,26] and is not considered in this
article. The main subject of consideration is runtime DDT (RT DDT) and DDT.

DDT can be considered as one of the possible approaches to the use of VV models,
focused on solving the problems of data acquisition and processing in large-scale distributed
systems for various purposes, and the management of OMS belonging to the C*S class
(CPS, socio-cybernetic systems, etc.), the structure and behavior of which is permanently
changing over time and may be completely unknown at a particular moment of time
and there are several stakeholder interested in data acquisition, each of which has its
own concerns.

3. The Proposed Approach: Run Time Dynamic Digital Twins

The developed approach is based on the following principles.

1. RT DDT is considered, first, as a mechanisms of run time agility maintaining [21].
2. The proposed DDT approach involves the construction of a multi-level system of

models operating in discrete time in terms of discrete states. Each element of the
model is a Dynamic Digital Twin Model (DDTM) of the corresponding OMS element.

3. The proposed approach is focused on use in systems with variable structure and
behavior and can be defined as Dynamic Digital Twins (DDT).

4. DDT is considered as one of the possible implementations of the MBA.
5. Models are considered as a full-fledged element of the software architecture. The

model is considered as an object with which any actions that can be performed with
other objects are allowed. Models can be used at all stages of the LC (this article
discusses the use of run-time models).

6. From the point of view of software architecture, the MBA is considered as one of the
possible implementations of the “virtual machine” architectural style [39]. In turn,
DDT is considered as a special case of the “virtual machine” architectural style.

7. DDT can be implemented as objects, services, components, libraries, loadable
modules, etc.

8. The DDT approach is based on the use of models that are built and maintained
up-to-date automatically.

9. All requests to collect data or change the state of the OMS from potential users
are transmitted to the DT, and not directly to the OMS. The model contains all the
necessary DIK to answer all the requests of all potential users.

It is assumed that DT and OMS operate in discrete time with discrete states.
One can define two main ideas that form the basis of the proposed approach: (i) the

model is considered as an object, the construction of which is the purpose of collecting data
about the state of the OMS; (ii) the model is used both for building a script that implements

Designs 2022, 6, 25 6 of 24

the data acquisition and management procedure, and as a repository of collected data about
the state of the OMS.

The idea of DDT can, on the one hand, be considered as a generalization of the DT
approach, and on the other hand, as a domain-specific implementation of the DT approach.

In contrast with classical DTs [33–35], which work mainly with the static OMS model,
which is often built-in the OMS, DDT focuses on the use of dynamic models. The possibility
of using dynamic models within the framework of the classical DT approach is not denied,
but it is not realized [31,37]. This can be explained by the fact that within the framework of
the classical DT approach, practically no restrictions on the methods of constructing the
model are imposed, so it is difficult to speak about dynamic models and it is possible to
implement a dynamic model only for each specific application. Currently, DTS are used
to replace physical objects with virtual ones. To date, this is the only real alternative to
including a physical entity in a virtual space. At higher levels, one can already work with
DT virtual entities.

The overview of technologies needed for suggested approach realization. The key
idea of the proposed approach is the fusion of two known approaches: the process mining
and the structural models’ synthesis approach proposed by the authors. In turn, the idea
of process mining goes back to the ideas of process management systems, and the idea of
structural synthesis goes back to the classical theory of automata synthesis.

Three problems are of the greatest interest for the implementation of the proposed
approach: (i) structural synthesis of systems, (ii) automatic construction of behavior models,
(business processes) and (iii) automatic construction of programs. Automatic program
construction is used to build business processes based on structural models, such as
monitoring processes.

Classical monographs [45–47] can be considered as a theoretical basis for solving
the problems of constructing structural models. As a practical implementation, we can
consider [48–51], where the algorithms of structural synthesis of models are described
considered in sufficient details. The solutions of the problem of business processes synthesis
issues of automatic construction are discussed in detail in [52]. Algorithms for automatic
program synthesis is described in [53].

4. Automata RT DDT Representation

In relation to RT DDT, four basic concepts can be defined: (i) RT DDT, (ii) Digital
Shadow (DS), (iii) Digital Twin System (DTS), (iv) DDT Trace (DDTTr). RT DDT is a
dynamic model of OMS, DS is a snapshot describing the state of OMS at a concrete moment
of time. The set of time-ordered DS forms a trace—DDTTr. DDT System (DDTS) is a system
of RT DDT interacting with each other.

Formally, DDTS can be represented as DDTS = <ODTM, IMODL, DDSLP>, where
ODTM is an OMS-DT Module (DDT associated with one OMS element), IMODL is an Inter
module Links, DDSLP is a Distributed Domain Specific Language (DSL) Processor [54].
The DTS structure is shown in the Figure 1, where M is a ODTM and HMI is a human-
machine interface.

Designs 2022, 6, x FOR PEER REVIEW 7 of 25

Figure 1. DTS generalized structure.

The ODTM structure is shown in Figure 2. ODTM can be defined as follows: ODTM
= <OMS, DDT, II, SI, UI, DI, HMI>, where II is an internal interface between OMS and
DDT, SI is a sibling interface for connection with ODTM, UI (User Interface) is an interface
for connection with upper level ODTMs.

Figure 2. ODTM structure.

OMS in general is a SoS, and each of the systems can be multi-level one. An OMS
element can be a physical entity, a non-physical entity, or a virtual entity. An element can
be represented in different ways: raw data, processed data (information), knowledge,
model, rules, etc. As a rule, interfaces are implemented as services.

The following main special cases can be distinguished: (i) the structure and behavior
of the OMS are static, (ii) the structure and behavior of the OMS are dynamic, and it is
necessary only to monitor the state of the OMS, (iii) the structure and behavior of the OMS
are dynamic and there is only one group of users. In the case when there is no variability
of the structure and behavior or variability is minimal, there is no need to use dynamic
models. In this case, models can be built in statics at the design stage based on MDA mod-
els. If users only want to receive data about the current state of the OMS, then we are
dealing with DS. In this case, the control can be carried out via other channels, e.g., in
manual mode. If there is only one group of users working with OMS, then models can be
built in terms of the proper subject domain. If there are several different groups of users
who have different concerns, then the task of presenting the model becomes more com-
plicated. In this case, it is quite often necessary to build hierarchical models of the OMS,
because different stakeholder groups use DSL with different level of abstraction, e.g., top
managers need only general information about a situation.

Formally, OMS and DDT can be represented as interacting automata.
The OMS automaton can be defined as OMSA = <InO, OutO, STO, TRO>, where InO

is a set of input signals containing information about events, OutO is a set of output sig-
nals (logs), STO is a set of internal states, TRO is a transition function, which is a set of
rules of arbitrary complexity.

The DT Automaton (DTA) can be described as DTA = <In DTA, Out DTA, STDTA,
TRDTA>, where In DTA is logs coming from OMS or commands from users, Out DTA is
basically the results of user requests, STDTA is a set of internal states of the automaton,
TRDTA is a function (table) describing transitions between DTA states. This function can

Figure 1. DTS generalized structure.

Designs 2022, 6, 25 7 of 24

The interaction between separate ODTMs can be organized in an arbitrary way, e.g.,
using the SOA or MAS approach. DDSLP is a distributed system of processors that can be
located, for example, on user workstations or in the cloud.

The ODTM structure is shown in Figure 2. ODTM can be defined as follows:
ODTM = <OMS, DDT, II, SI, UI, DI, HMI>, where II is an internal interface between
OMS and DDT, SI is a sibling interface for connection with ODTM, UI (User Interface) is an
interface for connection with upper level ODTMs.

Designs 2022, 6, x FOR PEER REVIEW 7 of 25

Figure 1. DTS generalized structure.

The ODTM structure is shown in Figure 2. ODTM can be defined as follows: ODTM
= <OMS, DDT, II, SI, UI, DI, HMI>, where II is an internal interface between OMS and
DDT, SI is a sibling interface for connection with ODTM, UI (User Interface) is an interface
for connection with upper level ODTMs.

Figure 2. ODTM structure.

OMS in general is a SoS, and each of the systems can be multi-level one. An OMS
element can be a physical entity, a non-physical entity, or a virtual entity. An element can
be represented in different ways: raw data, processed data (information), knowledge,
model, rules, etc. As a rule, interfaces are implemented as services.

The following main special cases can be distinguished: (i) the structure and behavior
of the OMS are static, (ii) the structure and behavior of the OMS are dynamic, and it is
necessary only to monitor the state of the OMS, (iii) the structure and behavior of the OMS
are dynamic and there is only one group of users. In the case when there is no variability
of the structure and behavior or variability is minimal, there is no need to use dynamic
models. In this case, models can be built in statics at the design stage based on MDA mod-
els. If users only want to receive data about the current state of the OMS, then we are
dealing with DS. In this case, the control can be carried out via other channels, e.g., in
manual mode. If there is only one group of users working with OMS, then models can be
built in terms of the proper subject domain. If there are several different groups of users
who have different concerns, then the task of presenting the model becomes more com-
plicated. In this case, it is quite often necessary to build hierarchical models of the OMS,
because different stakeholder groups use DSL with different level of abstraction, e.g., top
managers need only general information about a situation.

Formally, OMS and DDT can be represented as interacting automata.
The OMS automaton can be defined as OMSA = <InO, OutO, STO, TRO>, where InO

is a set of input signals containing information about events, OutO is a set of output sig-
nals (logs), STO is a set of internal states, TRO is a transition function, which is a set of
rules of arbitrary complexity.

The DT Automaton (DTA) can be described as DTA = <In DTA, Out DTA, STDTA,
TRDTA>, where In DTA is logs coming from OMS or commands from users, Out DTA is
basically the results of user requests, STDTA is a set of internal states of the automaton,
TRDTA is a function (table) describing transitions between DTA states. This function can

Figure 2. ODTM structure.

OMS in general is a SoS, and each of the systems can be multi-level one. An OMS
element can be a physical entity, a non-physical entity, or a virtual entity. An element can be
represented in different ways: raw data, processed data (information), knowledge, model,
rules, etc. As a rule, interfaces are implemented as services.

The following main special cases can be distinguished: (i) the structure and behavior
of the OMS are static, (ii) the structure and behavior of the OMS are dynamic, and it is
necessary only to monitor the state of the OMS, (iii) the structure and behavior of the OMS
are dynamic and there is only one group of users. In the case when there is no variability of
the structure and behavior or variability is minimal, there is no need to use dynamic models.
In this case, models can be built in statics at the design stage based on MDA models. If
users only want to receive data about the current state of the OMS, then we are dealing
with DS. In this case, the control can be carried out via other channels, e.g., in manual
mode. If there is only one group of users working with OMS, then models can be built
in terms of the proper subject domain. If there are several different groups of users who
have different concerns, then the task of presenting the model becomes more complicated.
In this case, it is quite often necessary to build hierarchical models of the OMS, because
different stakeholder groups use DSL with different level of abstraction, e.g., top managers
need only general information about a situation.

Formally, OMS and DDT can be represented as interacting automata.
The OMS automaton can be defined as OMSA = <InO, OutO, STO, TRO>, where InO

is a set of input signals containing information about events, OutO is a set of output signals
(logs), STO is a set of internal states, TRO is a transition function, which is a set of rules of
arbitrary complexity.

The DT Automaton (DTA) can be described as DTA = <In DTA, Out DTA, STDTA,
TRDTA>, where In DTA is logs coming from OMS or commands from users, Out DTA is
basically the results of user requests, STDTA is a set of internal states of the automaton,
TRDTA is a function (table) describing transitions between DTA states. This function can
be quite complex. The output signals can be associated with both states and transitions.
The output signals are DSL messages for stakeholder.

The typical DDT structure is shown in Figure 3. DDTM is a virtual machine that
includes the following main elements: (i) model repository, (ii) OMS controller, (iii) interface
controller, (iv) model processor, (v) script building processor.

Designs 2022, 6, 25 8 of 24

Designs 2022, 6, x FOR PEER REVIEW 8 of 25

be quite complex. The output signals can be associated with both states and transitions.
The output signals are DSL messages for stakeholder.

The typical DDT structure is shown in Figure 3. DDTM is a virtual machine that in-
cludes the following main elements: (i) model repository, (ii) OMS controller, (iii) interface
controller, (iv) model processor, (v) script building processor.

Figure 3. DDT reference structure.

The model repository stores DDTM and DS. The OMS controller is responsible for
interactions with the OMS and solves three main tasks: (i) the controller processes the
events flow received in the form of logs, (ii) the controller forms requests for logs, (iii) the
controller forms control actions that implement the OMS reconfiguration process.

Key tasks that need to be solved when using the DDT approach. The implementa-
tion of RT DDT is reduced to solving three main tasks: (i) building and maintaining a
multi-level DDTM up to date, (ii) building scripts that implement a data acquisition or
management procedure, (iii) support for multiple DSLs, using which different categories
of users communicate with OMS via DDTS.

The task of OMS model building can be defined as (Log, CntxDIK) → OMSM, where
Log is information about events coming in the form of log files, CntxDIK is contextual
knowledge, OMSM is the OMS model. The task of maintaining OMSM is defined as
(OMSMt−1, Log) → OMSMt.

One can distinguish two tasks of the script formation (synthesis): (i) the formation of
a script that implements the data collection procedure, (ii) the construction of a script that
implements the procedure for matching the OMS structure with DS (OMS reconfigura-
tion). Since OMSM changes over time, it is impossible to form scripts in static. The task of
forming a script that implements the data collection procedure can be defined as (OMSM,
RQ) → DAScr, where RQ is a request for data collection, DAScr is a script that implements
the data acquisition procedure. The task of forming a script that implements the reconfig-
uration procedure can be defined as DS → OMSRecScr, where OMSRecScr is the OMS
reconfiguration script.

Complex CPS can have a fairly large number of stakeholders that have different con-
cerns and communicate with OMS using different DSLs. The task of supporting a set of
DSLs is reduced to solving the problem of transforming requests from DSL into an inter-
nal query language and transforming responses to requests from an internal representa-
tion with DS: DSLRQ → IRQ, IntRSP → DSLRSP, where DSLRQ is DSL request, IRQ is an
internal language request, IntRSP is in internal language response.

If OMSM is built on an ontological platform, then SPARQL is used as an internal
language [55].

The functioning of DDT can be organized in different ways: (i) the user requests pro-
cessing is implemented within a single process, each request to DDT is built from scratch,
(ii) there is a separate process responsible for keeping DDT up to date, there is an up-to-
date DS for each specific time, (iii) a mixed strategy is used, for example, at the upper level

Figure 3. DDT reference structure.

The model repository stores DDTM and DS. The OMS controller is responsible for
interactions with the OMS and solves three main tasks: (i) the controller processes the
events flow received in the form of logs, (ii) the controller forms requests for logs, (iii) the
controller forms control actions that implement the OMS reconfiguration process.

Key tasks that need to be solved when using the DDT approach. The implemen-
tation of RT DDT is reduced to solving three main tasks: (i) building and maintaining a
multi-level DDTM up to date, (ii) building scripts that implement a data acquisition or
management procedure, (iii) support for multiple DSLs, using which different categories of
users communicate with OMS via DDTS.

The task of OMS model building can be defined as (Log, CntxDIK)→ OMSM, where
Log is information about events coming in the form of log files, CntxDIK is contextual
knowledge, OMSM is the OMS model. The task of maintaining OMSM is defined as
(OMSMt−1, Log)→ OMSMt.

One can distinguish two tasks of the script formation (synthesis): (i) the formation
of a script that implements the data collection procedure, (ii) the construction of a script
that implements the procedure for matching the OMS structure with DS (OMS reconfig-
uration). Since OMSM changes over time, it is impossible to form scripts in static. The
task of forming a script that implements the data collection procedure can be defined as
(OMSM, RQ)→ DAScr, where RQ is a request for data collection, DAScr is a script that
implements the data acquisition procedure. The task of forming a script that implements
the reconfiguration procedure can be defined as DS→ OMSRecScr, where OMSRecScr is
the OMS reconfiguration script.

Complex CPS can have a fairly large number of stakeholders that have different
concerns and communicate with OMS using different DSLs. The task of supporting a set of
DSLs is reduced to solving the problem of transforming requests from DSL into an internal
query language and transforming responses to requests from an internal representation
with DS: DSLRQ → IRQ, IntRSP → DSLRSP, where DSLRQ is DSL request, IRQ is an
internal language request, IntRSP is in internal language response.

If OMSM is built on an ontological platform, then SPARQL is used as an internal
language [55].

The functioning of DDT can be organized in different ways: (i) the user requests
processing is implemented within a single process, each request to DDT is built from
scratch, (ii) there is a separate process responsible for keeping DDT up to date, there is an
up-to-date DS for each specific time, (iii) a mixed strategy is used, for example, at the upper
level DDT is built in the background, and at the lower level the model is completed when a
specific request appears.

The approach in which two parallel processes are implemented in DDT is of the
greatest practical interest: (i) the process of keeping the model up to date, (ii) the process of
processing user requests. In the most general form, the DDT functioning algorithm in this
case looks similar to this.

A generalized algorithm for keeping the model up to date is the following.

Designs 2022, 6, 25 9 of 24

1. Start the monitoring procedure and get the logs.
2. Build an OMSM.
3. Wait for information about events.
4. Correct OMSM, transfer information about changes in the model to the parent DDT and go

to item 3.

Generalized algorithm for user requests processing.

1. Waiting for a request from the user.
2. If the request is about OMS reconfiguration, then transition to item 10.
3. If the request is about data collection, then continue.
4. Transformation of the DSL→MQL query (Model Query Language, the language of the query

to the model).
5. If the model does not include needed information, then build the model.
6. Formation of a DAScr that implements the data collection procedure.
7. Executing the script.
8. Presentation of results on DSL.
9. Transition to item 1.
10. Building DS.
11. Formation of an OMSRecScr that implements the reconfiguration procedure.
12. Performing OMSRecScr.
13. Presentation of results on DSL.
14. Transition to item 1.

The task of matching the state of the system with the OMSM can be defined as the
task of obtaining a system with the required characteristics according to the DS. If we take
into account the fact that each state of the OMS corresponds to exactly one DS, then the
automaton describing the dynamic structure and behavior, which will be discussed below,
can be represented in terms of DT. In this case, each transition is additionally loaded with
the reference to the script that needs to be executed to make transition to this state. If for
each OMS architectural element there is a Set function that can set the element to any valid
state, and the order of execution does not matter, then the task becomes trivial.

DDT reference model. The basis of DDT is the OMSM, which has the following basic
requirements: (i) the model must contain DIK that are of interest to all stakeholders and
which can be extracted from the model with reasonable time and computing resources,
(ii) the model must be dynamic, i.e., it should allow obtaining up-to-date information about
the current state of the OMS, as well as receiving information about past states, it should
be built and maintained up-to-date automatically with reasonable time and computing
resources, (iii) the model can be used to solve OMS management problems, i.e., to bring
the OMS to the required state, (iv) the model should be built on events, while, on the one
hand, the amount of data in the event streams should be sufficient to build an OMSM with
the required level of quality, and, on the other hand, it should not be too large, (v) the
model should be implementable, i.e., the complexity of the model should not exceed the
capabilities of existing data transmission, processing and storage facilities.

It is possible to define two alternative approaches to the construction of OMSM.
Variant 1:

(1) the interests of all stakeholders are analyzed;
(2) the model is being built;
(3) the DIK required for building the model is determined.

Variant 2:

(1) the DIK, which can be obtained from the input data streams, are analyzed;
(2) the model is being built;
(3) the interests of all stakeholder parties are analyzed and the sufficiency of resources to

meet all the requests of all stakeholder is determined.

Usually, some iterative procedure is used to build models.

Designs 2022, 6, 25 10 of 24

The proposed approach is primarily focused on use in systems with variable structure
and behavior. In most cases, changes in the structure and behavior of OMS are of primary
interest to users.

A detailed classification of the types of variability occurring in CPS one can find
in [56,57].

Generalize (reference) OMSM can be defined as follows: ROMSM = <HLM, {LLM}>,
where HLM is a high-level model, {LLM} is a set of sets of low-level models. HLM is a
model for supporting agility mechanisms at the architectural level. LLM describes an OMS
or its elements in terms of structure and behavior.

HLM can be defined as an automaton presented in Figure 4. The states of the au-
tomaton correspond to the architectural states. An automaton switches to a new state
when information about the event (Ev) appears, which comes in the form of a log. When
information about the event appears, the script (RecScr) is started, which sets the system
into a new architectural state ASt. The automaton according to Figure 4 is a Multi-Level
Relative Finite State Operational Automaton (MLRFSOA) [48–51].

Designs 2022, 6, x FOR PEER REVIEW 10 of 25

Variant 2:
(1) the DIK, which can be obtained from the input data streams, are analyzed;
(2) the model is being built;
(3) the interests of all stakeholder parties are analyzed and the sufficiency of resources

to meet all the requests of all stakeholder is determined.
Usually, some iterative procedure is used to build models.
The proposed approach is primarily focused on use in systems with variable struc-

ture and behavior. In most cases, changes in the structure and behavior of OMS are of
primary interest to users.

A detailed classification of the types of variability occurring in CPS one can find in
[56,57].

Generalize (reference) OMSM can be defined as follows: ROMSM = <HLM, {LLM}>,
where HLM is a high-level model, {LLM} is a set of sets of low-level models. HLM is a
model for supporting agility mechanisms at the architectural level. LLM describes an
OMS or its elements in terms of structure and behavior.

HLM can be defined as an automaton presented in Figure 4. The states of the autom-
aton correspond to the architectural states. An automaton switches to a new state when
information about the event (Ev) appears, which comes in the form of a log. When infor-
mation about the event appears, the script (RecScr) is started, which sets the system into
a new architectural state ASt. The automaton according to Figure 4 is a Multi-Level Rela-
tive Finite State Operational Automaton (MLRFSOA) [48–51].

This model describes the behavior of the OMS in terms of the change of architectural
states (ASt) under the action of external or internal events (Ev) and control actions
(RecScr), which transfer the OMS to a new architectural state. Using this model, it is pos-
sible to describe the agile architecture [20,21] in terms of changes in architectural states.

Figure 4. High level automaton model.

The architectural state of ASt can be defined as ASt = <AL, R2LLM>, where AL is an
attribute list and R2LLM is the reference to LLM. The automaton according to Figure 4 is
a distributed MLRFSOA operating in discrete space and discrete time, which describes
the level-by-level behavior of the OMS.

MLRFSOA is an automaton with a variable structure, in which the functions of tran-
sitions and outputs explicitly depend on time, Ai + 1 = F (Ai, t) or as A = (X(t), Y(t), S(t), T
(t), s0), where Xt are input signals, Yt are outputs, St are internal states, Tt is a transition
function, s0 is an initial state. Since the automaton operates in discrete time and with dis-
crete states, it can be assumed that at each moment of time ti the automaton is in the state
si and then it can be defined as A = (X(si), Y(si), S(si), T(si), s0). It is known that automata
with a variable structure can generally be reduced to ordinary automata, but the number
of states becomes very large, which makes it difficult to synthesize them. This can be dealt
with in 2 ways: by generating a new automaton “on the fly” or by reducing it to special
cases when the number of new states is a countable set. Thus, it seems appropriate to

Figure 4. High level automaton model.

This model describes the behavior of the OMS in terms of the change of architectural
states (ASt) under the action of external or internal events (Ev) and control actions (RecScr),
which transfer the OMS to a new architectural state. Using this model, it is possible to
describe the agile architecture [20,21] in terms of changes in architectural states.

The architectural state of ASt can be defined as ASt = <AL, R2LLM>, where AL is an
attribute list and R2LLM is the reference to LLM. The automaton according to Figure 4 is a
distributed MLRFSOA operating in discrete space and discrete time, which describes the
level-by-level behavior of the OMS.

MLRFSOA is an automaton with a variable structure, in which the functions of tran-
sitions and outputs explicitly depend on time, Ai + 1 = F (Ai, t) or as A = (X(t), Y(t), S(t),
T (t), s0), where Xt are input signals, Yt are outputs, St are internal states, Tt is a transition
function, s0 is an initial state. Since the automaton operates in discrete time and with dis-
crete states, it can be assumed that at each moment of time ti the automaton is in the state si
and then it can be defined as A = (X(si), Y(si), S(si), T(si), s0). It is known that automata with
a variable structure can generally be reduced to ordinary automata, but the number of states
becomes very large, which makes it difficult to synthesize them. This can be dealt with in
2 ways: by generating a new automaton “on the fly” or by reducing it to special cases when
the number of new states is a countable set. Thus, it seems appropriate to consider special
cases when an automaton switching to a new state, but only individual elements of its
description are changed. In this case, an automaton with a variable structure can be defined
as a set of automata Ai ∈ A, Ai = Ai−1, ∆i−1, i, where ∆ is a set of actions to restructure the
automaton, the execution of which leads to the construction of the required automaton.

It should be noted that only in the simplest cases, the structure of the considered
automaton is determined at the design stage. Most often, especially when OMS belongs to
the SoS class, there is some incomplete knowledge about the structure of the automaton. In

Designs 2022, 6, 25 11 of 24

this case, it is necessary to solve the problem of an automaton synthesis. These issues are
considered in sufficient detail in the works of the authors [48–51].

LLM describes a specific ASt in terms of structure and behavior and is considered
as a Structural and Functional Model (SFM), which can be defined as LLM = <MS, MB>,
where MS is a structural model, and MB is a behavior model. It is often necessary to
obtain information only about the structure or behavior, or even about certain aspects of the
structure and/or behavior, for example, about the relationships between elements. Figure 5
shows the classification of attributes that characterize the architectural state.

Designs 2022, 6, x FOR PEER REVIEW 11 of 25

consider special cases when an automaton switching to a new state, but only individual
elements of its description are changed. In this case, an automaton with a variable struc-
ture can be defined as a set of automata Ai A , Ai = Ai−1, Δi−1, i, where Δ is a set of actions
to restructure the automaton, the execution of which leads to the construction of the re-
quired automaton.

It should be noted that only in the simplest cases, the structure of the considered
automaton is determined at the design stage. Most often, especially when OMS belongs
to the SoS class, there is some incomplete knowledge about the structure of the automaton.
In this case, it is necessary to solve the problem of an automaton synthesis. These issues
are considered in sufficient detail in the works of the authors [48–51].

LLM describes a specific ASt in terms of structure and behavior and is considered as
a Structural and Functional Model (SFM), which can be defined as LLM = <MS, MB>,
where MS is a structural model, and MB is a behavior model. It is often necessary to obtain
information only about the structure or behavior, or even about certain aspects of the
structure and/or behavior, for example, about the relationships between elements. Figure
5 shows the classification of attributes that characterize the architectural state.

Figure 5. Architectural states.

SFM can be described using a bipartite multigraph constructed on the basis of the
workflow graph [58,59]: SFM = <OPV, OPA, RV, RA, ORA>, where OPV are operator ver-
tices, OPA (OP arcs) are arcs connecting operator vertices, RV are resource vertices, RA (R
arcs) are connections between resource vertices, ORA (OR arcs) are connections between
operator vertices and resource vertices.

OPV are operators of any level of complexity, operators are connected by OP arcs,
which can be colored in one of 4 colors: arcs through which data is transmitted, arcs
through which control signals are transmitted that allow OPV execution, arcs through
which requests for operator execution are transmitted, arcs through which signals about

Figure 5. Architectural states.

SFM can be described using a bipartite multigraph constructed on the basis of the
workflow graph [58,59]: SFM = <OPV, OPA, RV, RA, ORA>, where OPV are operator
vertices, OPA (OP arcs) are arcs connecting operator vertices, RV are resource vertices, RA
(R arcs) are connections between resource vertices, ORA (OR arcs) are connections between
operator vertices and resource vertices.

OPV are operators of any level of complexity, operators are connected by OP arcs,
which can be colored in one of 4 colors: arcs through which data is transmitted, arcs
through which control signals are transmitted that allow OPV execution, arcs through
which requests for operator execution are transmitted, arcs through which signals about the
availability of resources are distributed. There are 16 different ways to check the readiness
of operators for execution, which determine the strategies for managing the Business
Process (BP).

BP can be described with the help of a modified workflow graphs. Modified process
mining algorithms can be used to construct data flow, control flow, and demand flow
graphs [58,59]. To build a resource graph, which is essentially a structural graph, different
mechanisms can be used at different levels. One can, for example, use the mechanisms
of SNMP [60], also it is possible to use information from routers. There are no visible
general solutions.

Designs 2022, 6, 25 12 of 24

With the help of the described above model, it is possible to present the functioning of
the OMS at each level. However, in practice, it is usually possible to use simplified special
case models.

Estimation of complexity of MLRFSA synthesis. The automaton according to Figure 4
is a MLRFSA operating in discrete space and discrete time. This is a class of automata in
which the sets of acceptable parameters are, in general, finite only at the interval of one
step of operation. It is possible to change the set of valid inputs, internal and output states
of the automaton, as well as the set of valid functions of transitions and outputs of the
automaton, i.e., completely rebuild the automaton.

The procedure for synthesis of OMS models is quite complicated, thus it was suggested
to execute it on multiple levels. The multilevel synthesis is described in sufficient detail in
the publications of the authors [48–51].

The key indicator of the procedure of automaton models’ synthesis from the point of
view of their use in RT mode is the computational complexity, which is determined by the
number of operations or the time required to build the model. The upper bound of time TH
is defined as:

TH ≈ c
K

∑
i=1

m2
i ≤ c(

K

∑
i=1

mi)

2

(1)

where c is a constant coefficient; mi is the number of model elements at the i-th level. This
estimate is valid when the number of the considered model elements for multi-level and
single-level synthesis is the same. Taking into account that at each upper level one step of
synthesis is equivalent to ni steps at level “0”, the estimate of the time TL limit for multilevel
synthesis is:

TL ≈ c
K

∑
i=0

m2
i

ni
2 ≤ c

K

∑
i=0

m2
i (2)

Then the average time is calculated as T = (TL + TH)/2.
In the cases when the probabilities pi of transition to lower levels are known during

the synthesis of object models, the following expression is used to estimate the complexity:
T = (TL + TH)/2

T ≈ cn2
0 + c

K

∑
i=0

pi
m2

i
ni

2 (3)

In order to provide formulas (2) and (3) with specific values, modeling was carried out.
Figure 6a shows the complexity of the synthesis of single-level (k = 1) and two-level

((k = 2) models with a different number of elements m, (m ∈ [20; 90]). The complexity of
two-level synthesis was estimated with the number of elements in the i-th level element
relative to the ‘0’ level equal to two and three (ni = 2; ni = 3). From Figure 6a it can be seen
that for k = 2 and ni = 2 the complexity has decreased by more than four times. As the
number of levels increases, the benefit increase. The results obtained for three levels (k = 3)
are shown in Figure 6b,c.

Events and logs. Information about an event is usually sent to DDT in the form of
logs that are taken from data sources (ports). A finite number of request-response or trap
(interrupt) operations are associated with each port. Events can be divided into elementary
(primitive events) and composite (composite events). Composite event can be considered
as a set of elementary events related to each other by certain relationships. Next, we will
assume that the logs carry information about elementary events.

One can define 5 main sources (methods) for obtaining information about the state of
OMS: direct port polling, traps [60], launching test procedures, analyzing logs coming from
BP, data stored in data warehouses.

In Figure 6 the horizontal axis is the number of elements (m), and the vertical axis is
the synthesis time in seconds (T).

Designs 2022, 6, 25 13 of 24

In some cases, when it is necessary to process information about many events, event
flow processing mechanisms are used [61,62].

Designs 2022, 6, x FOR PEER REVIEW 13 of 25

Events and logs. Information about an event is usually sent to DDT in the form of
logs that are taken from data sources (ports). A finite number of request-response or trap
(interrupt) operations are associated with each port. Events can be divided into elemen-
tary (primitive events) and composite (composite events). Composite event can be con-
sidered as a set of elementary events related to each other by certain relationships. Next,
we will assume that the logs carry information about elementary events.

One can define 5 main sources (methods) for obtaining information about the state
of OMS: direct port polling, traps [60], launching test procedures, analyzing logs coming
from BP, data stored in data warehouses.

(a)

(b) (c)

Figure 6. Complexity of synthesis of multilevel models relative to single-level: (a)—the complexity
of the synthesis of two-level models relative to one-level; (b)—the complexity of the synthesis of
three-level models relative to two-level at n = 2; (c)—the complexity of the synthesis of three-level
models relative to two-level at n = 3.

In Figure 6 the horizontal axis is the number of elements (m), and the vertical axis is
the synthesis time in seconds (T).

In some cases, when it is necessary to process information about many events, event
flow processing mechanisms are used [61,62].

When receiving data from different sources, different formats can be used. It seems
appropriate to use the XES format as a generalized format [63].

Within the framework of the XES standard, such basic concepts as process, case and
event are distinguished. The process is understood as business process (BP), which can be
implemented in any number of instances (cases), information about the event is received

Figure 6. Complexity of synthesis of multilevel models relative to single-level: (a)—the complexity
of the synthesis of two-level models relative to one-level; (b)—the complexity of the synthesis of
three-level models relative to two-level at n = 2; (c)—the complexity of the synthesis of three-level
models relative to two-level at n = 3.

When receiving data from different sources, different formats can be used. It seems
appropriate to use the XES format as a generalized format [63].

Within the framework of the XES standard, such basic concepts as process, case and
event are distinguished. The process is understood as business process (BP), which can be
implemented in any number of instances (cases), information about the event is received in
the form of an event log, a set of logs belonging to one case is called a trace. A process, a
case, and events can have attributes.

In accordance with the standard, logs consist of a kernel and extensions
<Log> = <Ker> <Ext>*. The kernel can be defined as Ker = < PrId, CId, LId, Time Stamp>,
where PrId is the process ID, CId is the case ID, LId is the log ID, and Time Stamp is the
timestamp. Extensions can be defined as Ext = <RSE, CFE, DFE, DME>, where RSE is the
resource section, CFE is the control flow section, DFE is the data flow section, DME is the
demand flow section. Each of these sections describes a set of log attributes that must be
collected to build the appropriate perspective. In general, the described structure of the log
file coincides with the structure proposed by [63]. The generalized structure of the log file
is shown in Figure 7, which includes 5 sections and a header (required).

Designs 2022, 6, 25 14 of 24

Designs 2022, 6, x FOR PEER REVIEW 14 of 25

in the form of an event log, a set of logs belonging to one case is called a trace. A process,
a case, and events can have attributes.

In accordance with the standard, logs consist of a kernel and extensions <Log> =
<Ker> <Ext>*. The kernel can be defined as Ker = < PrId, CId, LId, Time Stamp>, where
PrId is the process ID, CId is the case ID, LId is the log ID, and Time Stamp is the
timestamp. Extensions can be defined as Ext = <RSE, CFE, DFE, DME>, where RSE is the
resource section, CFE is the control flow section, DFE is the data flow section, DME is the
demand flow section. Each of these sections describes a set of log attributes that must be
collected to build the appropriate perspective. In general, the described structure of the
log file coincides with the structure proposed by [63]. The generalized structure of the log
file is shown in Figure 7, which includes 5 sections and a header (required).

Figure 7. Generalized structure of a log file.

The structure of the concrete log is defined by the task being solved. Usually, only a
part of the extension sections is used. Each section can be defined as <Section> =
<Attribute>*. The composition of the attributes of each of the sections is discussed in more
detail below.

The task of an OMSM building is the task of building an SFM. Logs carry information
about the state of the OMS. In reality, it is required to describe the following graphs: a
control flow graph, a data flow graph and a demand flow graph (a program graph (PG)),
as well as a resource graph (RG). PG and RG are two different graphs.

To identify the program, the PrgId (program identifier) is used, and the Process
Identifier PID is used to identify the program instance (process).

To describe the process graph, it is necessary to describe three components: vertices,
arcs, and markup. A vertex can be identified using a VID and arcs can be identified using
an AID.

The data (tokens) that characterize the current markup are linked to arcs and have
the DID identifier (data element identifier).

The TSID identifier is used for timestamps. It should be noted that the execution
process, if necessary, can be divided into smaller phases. The same applies to data. Queues
of tokens can be formed on arcs.

The resource graph RG is described in terms of vertices and connections. Vertexes
are actually resources that are identified using RID. Resources can be of different types:
physical devices, virtual machines, humans.

The relationships RLID between them, respectively, can be very different. For CPS,
these can be physical communication channels through which data is transmitted. These
can also be virtual communication channels, for example, communications via the
Internet. If we work with humans, e. g. in social networks, then these are contacts via a
virtual communication channel.

CF logs. The structure of the log which is used for a CF graph building is similar to
the log structure described in [63]: CFL = <LogID, PrgID, PID, ThrID, EvID, TS>, where
LogID is a unique identifier of the log, PrgID is ID of the application (program), PID is the
process ID (instance, case), ThrID is the ID of the thread (the procedure), EvID—the event

Figure 7. Generalized structure of a log file.

The structure of the concrete log is defined by the task being solved. Usually, only a
part of the extension sections is used. Each section can be defined as <Section> = <Attribute>*.
The composition of the attributes of each of the sections is discussed in more detail below.

The task of an OMSM building is the task of building an SFM. Logs carry information
about the state of the OMS. In reality, it is required to describe the following graphs: a
control flow graph, a data flow graph and a demand flow graph (a program graph (PG)),
as well as a resource graph (RG). PG and RG are two different graphs.

To identify the program, the PrgId (program identifier) is used, and the Process
Identifier PID is used to identify the program instance (process).

To describe the process graph, it is necessary to describe three components: vertices,
arcs, and markup. A vertex can be identified using a VID and arcs can be identified using
an AID.

The data (tokens) that characterize the current markup are linked to arcs and have the
DID identifier (data element identifier).

The TSID identifier is used for timestamps. It should be noted that the execution
process, if necessary, can be divided into smaller phases. The same applies to data. Queues
of tokens can be formed on arcs.

The resource graph RG is described in terms of vertices and connections. Vertexes
are actually resources that are identified using RID. Resources can be of different types:
physical devices, virtual machines, humans.

The relationships RLID between them, respectively, can be very different. For CPS,
these can be physical communication channels through which data is transmitted. These
can also be virtual communication channels, for example, communications via the Internet.
If we work with humans, e. g. in social networks, then these are contacts via a virtual
communication channel.

CF logs. The structure of the log which is used for a CF graph building is similar to
the log structure described in [63]: CFL = <LogID, PrgID, PID, ThrID, EvID, TS>, where
LogID is a unique identifier of the log, PrgID is ID of the application (program), PID is the
process ID (instance, case), ThrID is the ID of the thread (the procedure), EvID—the event
ID, TS—time stamp. The EvID contains complete information about the event and includes
the operator ID and additional information, such as flags.

The CF vertexes are operators of an arbitrary complexity. The problem with nested CF
graphs can be solved as follows. In this case, the operator is considered as a transaction.
If a log comes with information about the launch of this operator, a separate process for
generating a CF graph is started. All logs that have a ThrID and arrive in the time interval
between the start and end of the transaction are used to build a separate CF graph, which
can be interpreted either as a separate thread or as a separate procedure. If it is necessary
to distinguish between these concepts, the type of operator that starts the transaction can
be specified.

Various algorithms and tools can be used to construct a CF graph, in particular, it is
possible to use the well-known alpha algorithm [52].

DF logs. The DF graph describes data dependencies. The use of classical DF schemes
assumes the use of the single assignment principle, i.e., all data elements have different
DID. To build a DF graph, it is necessary to determine the composition of operators and

Designs 2022, 6, 25 15 of 24

clarify the relationships (dependencies) between operators with the data submitted. This is
also a well-known procedure used when building parallel programs [8]. To implement it,
one needs to receive logs of the following types: (i) about the data elements with the DID
identifier received at the input of operator with the OpID identifier, (ii) launching operators
with the OpID identifier.

In general, the log structure used to build a DF graph can be presented as:
<DFL> = <PrgID, PID, ThrID> <OpID> <TS>[<DID>*] [<Data>*] [<Flag>*]. Building

a DF graph does not cause problems. This is a long-solved problem.
Depending on the task statement, logs can contain either the data itself, or only their

identifiers. The data itself can be useful if it is necessary to control the progress of the BP
taking into account the parameters values. In addition, the DF graph can be useful in the
case when a dynamic assignment to resources is used or a BP optimization procedure is
implemented. The main problem of constructing a DF graph is to fulfill the requirement of
unique names for data elements.

DD logs. This type of logs is used to build models describing calculations on de-
mand (demand driven). Demand driven principles have been well known for a very long
time. These are functional programming, recursive machines, machines with dynamic
architecture, Map Reduce [64].

The DD model can be considered as a kind of the model that describes the BP in
terms of calling procedures. Most often these are services. There are 2 main types of DD
calculations. In the first case, operators that can be named Call operators implement some
functionality and return a data element. In this case no new operators are created. This is
how Map Reduce systems work [64]. In the second case, accessing the operator is associated
with creating a new operator. In this case, a Call-Create operator is used. The logs collected
for building the DD model can be defined as <DDL> = <Header><OpID> [<newOpID>]<TS>,
where newOpID is a reference to a created new operator.

R logs. OMS resources can be defined as follows <Resource> = <Physical Device>|<Virtual
device>|<Person>. OMS resources can be described in terms of subsystems and relation-
ships between them. Subsystems of a physical device can be connected through physical
connections or virtual communication channels (for example, over a network). Virtual
devices and people deal with virtual communication channels.

In relation to physical devices, a typical task is to determine the real (current) OMS
structures the in terms of subsystems and links. When using virtual channels, in some cases
it is enough to build a “flower” diagram [59], where links are considered as an integral part
of the element. If we are talking about humans, then most often such tasks as determining
the structure of the organization (who performs the functions) and determining the presence
of contacts between members of the organization are to be solved.

One can define the following main tasks of the resource perspective: the definition of
a physical structure, the definition of a virtual structure, the definition of human activity.

DDTS. DS is a model containing DIK about the current state of the OSM. The DS can be
represented in different ways. In general, a large-scale system model is a System of Model
(SoM). Depending on the type of OMS, SoM can be organized in different ways. Different
ways of representing DS can be used at different levels. It is obvious that functionally SoM
repeats the structure of OMS, but DTS can be deployed in different ways.

Figure 8 shows two typical variants of an OMS SoM deployment. Figure 8a shows
a variant when all interactions between the OMS elements are implemented through the
use of DDT, and Figure 8b, shows a variant when deferred processing is implemented and
the OMS and DDTS interact through a telemetric communication channel and through a
database (DB). In reality, there may be a large number of intermediate variants that are
most often used in practice.

In Figure 8, the following designations are used: P is a physical entity, OMSi is i-th
level of OMS, DTi is a model of the i-th level, DSL is an interpreter of a domain-specific
language. In the first case, the DTS are deployed in close proximity to the simulated
entity. DSL modules can be deployed in close proximity to a stakeholder, e.g., they can

Designs 2022, 6, 25 16 of 24

be deployed at the stakeholder workstations. In the second case, DTS can be hosted on
servers or in the cloud. The most rational solution is to deploy HLM in the cloud, and
deploy LLMs in fog-level servers.

Designs 2022, 6, x FOR PEER REVIEW 16 of 25

One can define the following main tasks of the resource perspective: the definition of
a physical structure, the definition of a virtual structure, the definition of human activity.

DDTS. DS is a model containing DIK about the current state of the OSM. The DS can
be represented in different ways. In general, a large-scale system model is a System of
Model (SoM). Depending on the type of OMS, SoM can be organized in different ways.
Different ways of representing DS can be used at different levels. It is obvious that func-
tionally SoM repeats the structure of OMS, but DTS can be deployed in different ways.

Figure 8 shows two typical variants of an OMS SoM deployment. Figure 8a shows a
variant when all interactions between the OMS elements are implemented through the
use of DDT, and Figure 8b, shows a variant when deferred processing is implemented and
the OMS and DDTS interact through a telemetric communication channel and through a
database (DB). In reality, there may be a large number of intermediate variants that are
most often used in practice.

Figure 8. OMSM deployment.

In Figure 8, the following designations are used: P is a physical entity, OMSi is i-th
level of OMS, DTi is a model of the i-th level, DSL is an interpreter of a domain-specific
language. In the first case, the DTS are deployed in close proximity to the simulated entity.
DSL modules can be deployed in close proximity to a stakeholder, e.g., they can be de-
ployed at the stakeholder workstations. In the second case, DTS can be hosted on servers
or in the cloud. The most rational solution is to deploy HLM in the cloud, and deploy
LLMs in fog-level servers.

Model patterns and frameworks. In accordance with the proposed approach, mod-
els are considered as objects with which any actions that can be performed with other
objects are allowed.

To solve practical problems, it seems appropriate to create sets of domain-oriented
model patterns, as it is carried out, for example, for the workflow [58].

The key element in this case is DDTM, DDTM can be considered as a class, and DS
as an instance of the class. The DDT system can be represented as a 3-level hierarchy (Fig-
ure 9).

Figure 9. DDTM hierarchy.

Figure 8. OMSM deployment.

Model patterns and frameworks. In accordance with the proposed approach, models
are considered as objects with which any actions that can be performed with other objects
are allowed.

To solve practical problems, it seems appropriate to create sets of domain-oriented
model patterns, as it is carried out, for example, for the workflow [58].

The key element in this case is DDTM, DDTM can be considered as a class, and DS
as an instance of the class. The DDT system can be represented as a 3-level hierarchy
(Figure 9).

Designs 2022, 6, x FOR PEER REVIEW 16 of 25

One can define the following main tasks of the resource perspective: the definition of
a physical structure, the definition of a virtual structure, the definition of human activity.

DDTS. DS is a model containing DIK about the current state of the OSM. The DS can
be represented in different ways. In general, a large-scale system model is a System of
Model (SoM). Depending on the type of OMS, SoM can be organized in different ways.
Different ways of representing DS can be used at different levels. It is obvious that func-
tionally SoM repeats the structure of OMS, but DTS can be deployed in different ways.

Figure 8 shows two typical variants of an OMS SoM deployment. Figure 8a shows a
variant when all interactions between the OMS elements are implemented through the
use of DDT, and Figure 8b, shows a variant when deferred processing is implemented and
the OMS and DDTS interact through a telemetric communication channel and through a
database (DB). In reality, there may be a large number of intermediate variants that are
most often used in practice.

Figure 8. OMSM deployment.

In Figure 8, the following designations are used: P is a physical entity, OMSi is i-th
level of OMS, DTi is a model of the i-th level, DSL is an interpreter of a domain-specific
language. In the first case, the DTS are deployed in close proximity to the simulated entity.
DSL modules can be deployed in close proximity to a stakeholder, e.g., they can be de-
ployed at the stakeholder workstations. In the second case, DTS can be hosted on servers
or in the cloud. The most rational solution is to deploy HLM in the cloud, and deploy
LLMs in fog-level servers.

Model patterns and frameworks. In accordance with the proposed approach, mod-
els are considered as objects with which any actions that can be performed with other
objects are allowed.

To solve practical problems, it seems appropriate to create sets of domain-oriented
model patterns, as it is carried out, for example, for the workflow [58].

The key element in this case is DDTM, DDTM can be considered as a class, and DS
as an instance of the class. The DDT system can be represented as a 3-level hierarchy (Fig-
ure 9).

Figure 9. DDTM hierarchy. Figure 9. DDTM hierarchy.

At the top level, there is a meta-meta model, which corresponds to a set of domain
models, each of which can belong either to the domain of tasks (subject domain) or to the
domain of solutions. This can be represented as a Meta meta_model→Meta_model (domain)
Model→Working mode.

The structure of the Meta-meta model is shown in Figure 10. Each model can be built
from higher-level models and can be used to build lower-level models. In general (for
medium levels), this is a VV model. For the lower level, an entity of any nature can act as a
modeled entity, i.e., the DDTM of the lower level is of type xV, and the DDTM of the upper
level belongs to models of type Vx.

Designs 2022, 6, x FOR PEER REVIEW 17 of 25

At the top level, there is a meta-meta model, which corresponds to a set of domain
models, each of which can belong either to the domain of tasks (subject domain) or to the
domain of solutions. This can be represented as a Meta meta_model → Meta_model (domain)
Model → Working mode.

The structure of the Meta-meta model is shown in Figure 10. Each model can be built
from higher-level models and can be used to build lower-level models. In general (for
medium levels), this is a VV model. For the lower level, an entity of any nature can act as
a modeled entity, i.e., the DDTM of the lower level is of type xV, and the DDTM of the
upper level belongs to models of type Vx.

Figure 10. The Meta model interfaces.

Models related to the meta level describe a set of models related to a certain subject
area (domain of tasks). Typical examples of problem domains can be: CPS, socio-
cybernetic systems, or some method of describing the structure and behavior of systems.
Typical domains of solutions are BP models and structural models. These models can be
used for working models generation.

An arbitrary number of working models can be built on the basis of domain models.
Models related to a certain domain can be used to create a domain-oriented framework.

5. Possible Approaches to the RT DDT Implementation
There are 3 main approaches to the implementation of the DDTM: (i) the

implementation of the model using standard high-level languages, e.g., JAVA, in the form
of an object model, (ii) the use of ontologies [65]: (iii) the use of knowledge graphs [30].
Using JAVA to build models allows archeive minimal delays. The use of ontologies and
KG gives slower solutions, but allows use COTS tools, such as SPARQL [55]. Since the
models are quite complex, it is advisable to implement them as cloud services, individual
domain-oriented fragments of models can be deployed in a fog layer. In this case, the SoM
is a distributed system. Possible approaches to the implementation of logical inference
systems in distributed systems are described in detail in [66].

Another group of problems that arise when using RT DDTS in systems belonging to
the SoS class, such as Internet of Production Systems, are problems related to security and
privacy. To build OMS models in RT, it is necessary to implement a data acquisition
procedure that requires access to data sources located in systems managed by sysadmins
from other organizations.

In addition to general problems related to the security of SwIS, such as
confidentiality, integrity and availability, authorization, and accountability [67], there are
such specific problems as the authenticity of information, scope of data access, and
anonymity.

The first problem covers all aspects related to the correctness and origin of the data
to be collected. The second problem is the bundle of subproblems related to the access to
data. The third problem deals with the anonymity of participants. Detailed analysis of
different approaches to solving these problems one can find, e.g., in [67,68].

6. Use Cases
The proposed approach is focused on use in large scale distributed SwIS and is not

directly related to any of the subject domains. It should be noted that the proposed ap-
proach is quite general. In relation to specific tasks, there is no need to use it in full scale.

Figure 10. The Meta model interfaces.

Models related to the meta level describe a set of models related to a certain subject
area (domain of tasks). Typical examples of problem domains can be: CPS, socio-cybernetic
systems, or some method of describing the structure and behavior of systems. Typical

Designs 2022, 6, 25 17 of 24

domains of solutions are BP models and structural models. These models can be used for
working models generation.

An arbitrary number of working models can be built on the basis of domain models.
Models related to a certain domain can be used to create a domain-oriented framework.

5. Possible Approaches to the RT DDT Implementation

There are 3 main approaches to the implementation of the DDTM: (i) the implemen-
tation of the model using standard high-level languages, e.g., JAVA, in the form of an
object model, (ii) the use of ontologies [65]: (iii) the use of knowledge graphs [30]. Using
JAVA to build models allows archeive minimal delays. The use of ontologies and KG gives
slower solutions, but allows use COTS tools, such as SPARQL [55]. Since the models are
quite complex, it is advisable to implement them as cloud services, individual domain-
oriented fragments of models can be deployed in a fog layer. In this case, the SoM is a
distributed system. Possible approaches to the implementation of logical inference systems
in distributed systems are described in detail in [66].

Another group of problems that arise when using RT DDTS in systems belonging
to the SoS class, such as Internet of Production Systems, are problems related to security
and privacy. To build OMS models in RT, it is necessary to implement a data acquisition
procedure that requires access to data sources located in systems managed by sysadmins
from other organizations.

In addition to general problems related to the security of SwIS, such as confidentiality,
integrity and availability, authorization, and accountability [67], there are such specific
problems as the authenticity of information, scope of data access, and anonymity.

The first problem covers all aspects related to the correctness and origin of the data to
be collected. The second problem is the bundle of subproblems related to the access to data.
The third problem deals with the anonymity of participants. Detailed analysis of different
approaches to solving these problems one can find, e.g., in [67,68].

6. Use Cases

The proposed approach is focused on use in large scale distributed SwIS and is not
directly related to any of the subject domains. It should be noted that the proposed
approach is quite general. In relation to specific tasks, there is no need to use it in full scale.
In particular, it is possible to essentially simplify the used models. This applies to both the
top-level automaton model and the multi-level SF model.

The described approach was used by the authors to build a number of real systems,
including the production system for an automated assembly and welding site [69], a system
for monitoring the state of cable television networks [50,51]. Currently, the authors are
working on creating an educational content management system for one of the universities
designed to support dynamic educational trajectories.

Use case 1. Industrial internet applications [69]. This example illustrates the possi-
bility of using the proposed approach to build systems belonging to the industrial internet
applications class [5–7], which use mobile components at the lower levels.

The structure of the complex. The production system is intended for use as part of a
production complex, which is an element of a flexible production system of an automated
assembly and welding site. The generalized structure of the production system is shown in
Figure 11. The enterprise includes several sites, each site includes several workshops.

From 20 to 100 cranes with bridge structure and with semi-gantry structure work in
each of the workshops (Wsh). The cranes work automatically and move around the shop at
a speed of about 3 m per second. The length of the shop is about several hundreds of meters.
There is an high level of electromagnetic interference in the shop caused by the operation
of welding equipment, which practically eliminates the use of wireless communication and
data transfer is carried out manually: an operator with a tablet comes close to the crane
and takes data via WiFi.

Designs 2022, 6, 25 18 of 24

This system, in turn, is a part of a machine-building enterprise with a high level of
automation that implements the Industry 4.0 concept. Currently, the process of transition to
IIoT is at an early stage. Up to date Data Acquisition System (DAS) from crane complexes
is the only one element of the flexible production system of an automated assembly and
welding site.

Designs 2022, 6, x FOR PEER REVIEW 18 of 25

In particular, it is possible to essentially simplify the used models. This applies to both the
top-level automaton model and the multi-level SF model.

The described approach was used by the authors to build a number of real systems,
including the production system for an automated assembly and welding site [69], a sys-
tem for monitoring the state of cable television networks [50,51]. Currently, the authors
are working on creating an educational content management system for one of the uni-
versities designed to support dynamic educational trajectories.

Use case 1. Industrial internet applications [69]. This example illustrates the possi-
bility of using the proposed approach to build systems belonging to the industrial internet
applications class [5–7], which use mobile components at the lower levels.

The structure of the complex. The production system is intended for use as part of a
production complex, which is an element of a flexible production system of an automated
assembly and welding site. The generalized structure of the production system is shown
in Figure 11. The enterprise includes several sites, each site includes several workshops.

From 20 to 100 cranes with bridge structure and with semi-gantry structure work in
each of the workshops (Wsh). The cranes work automatically and move around the shop
at a speed of about 3 m per second. The length of the shop is about several hundreds of
meters. There is an high level of electromagnetic interference in the shop caused by the
operation of welding equipment, which practically eliminates the use of wireless
communication and data transfer is carried out manually: an operator with a tablet comes
close to the crane and takes data via WiFi.

Figure 11. General production complex structure.

This system, in turn, is a part of a machine-building enterprise with a high level of
automation that implements the Industry 4.0 concept. Currently, the process of transition
to IIoT is at an early stage. Up to date Data Acquisition System (DAS) from crane com-
plexes is the only one element of the flexible production system of an automated assembly
and welding site.

The structure of the previously existing DAS. The previously existing DAS is a distrib-
uted system, which includes equipment installed on cranes, a data collection subsystem,
a hardware and software complex of the crane operator, shop servers and a central server.

In addition to sensors and actuators, controllers and a local database are installed
directly on the cranes. The data acquisition process is divided into two stages: data collec-
tion from sensors, which is carried out on the crane, and data transfer from the crane to
the shop server. Data are collected from the sensors on the crane in real time. For data

Figure 11. General production complex structure.

The structure of the previously existing DAS. The previously existing DAS is a distributed
system, which includes equipment installed on cranes, a data collection subsystem, a
hardware and software complex of the crane operator, shop servers and a central server.

In addition to sensors and actuators, controllers and a local database are installed
directly on the cranes. The data acquisition process is divided into two stages: data
collection from sensors, which is carried out on the crane, and data transfer from the crane
to the shop server. Data are collected from the sensors on the crane in real time. For data
collection, industrial controllers installed on the crane are used, providing control of the
crane, as well as being a buffer for data collected from sensors.

The crane also hosts the build-in single-board Odroid computers. To transfer data from
the local database to the Odroid, an Ethernet communication channel with a bandwidth of
100 Mbit/s is used. This channel also transmits commands to the control mechanisms of
the crane. The channel provides high-quality communication but has a limited bandwidth.
An overload of the channel can lead to the loss of control commands and cause failures in
the operation of the crane. Data are collected by a single-board computer.

The list of data to be collected was previously fixed.
Data transfer from the Odroid database to the shop server can be carried out via a WiFi

communication channel. Data collection by the operator involves the use of the operator’s
tablet. The software installed on the tablet allows receive data by the radio channel and
cache it on the tablet. The range of the radio channel does not exceed 20 m, which requires
the operator to be in the immediate vicinity of the crane.

Problems to be solved In the process of operation, the following main problems were
identified: (i) unacceptably long delays in the operator receiving data on the state of crane
equipment due to manual data movement between the crane and the shop server, (ii) the
DAS is configured for specific equipment and a fixed set of collected data, (iii) one of the
goals of upgrading the equipment management system was the transition to Industry 4.0
technology and it was desired to provide information about the state of equipment in the

Designs 2022, 6, 25 19 of 24

form of a knowledge graph, which should become part of the corporate knowledge graph,
(iv) the enterprise owners have a goal to reduce essentially the TCO.

Usage of the proposed DDT approach. The analysis of the listed problems has shown
that the main bottleneck of the system is the communication channel between the cranes
and the shop server, where for data transmission a tablet is used. Delays in this case reach
10–15 min. The problem is compounded by the fact that the amount of data transferred
from one tap per shift is about 1 TB. The second most important problem is that the set of
data collected is fixed. The owners want to expand it, but they are not ready to submit an
expanded list of needed data,

To solve these problems, it was decided to use DDT approach and realize it on fog
platform. The functions of fog nodes are performed by controllers that are deployed in
repair zones. When the crane is in the immediate vicinity to the repair area, it transmits
data to the fog level. In addition, cranes can exchange data using cluster algorithms. The
server located in the repair zone is connected to the shop server using an Ethernet cable.
There are several repair zones in the workshop. This solution made it possible to reduce
the delays in transmitting information from the crane to the operator from minutes to
several seconds. In addition, it was possible to significantly reduce the TCO due to due to
the rejection of tablets usage. DDTs are used to collect information about the state of the
equipment. At the initial stage, equipment management is not implemented, but such a
possibility is laid down. In order to do this, it is assumed to use the DDT of the OMS.

In the developed system, DDT use three-level model. At the lower level, relatively
simple models are used, such as digital sensor models and contexts. They are presented in
a form of flat files and their functionality is close to traditional static DT. At the middle level
(the level of repair zone servers), SFM are used, implemented in an object-oriented form.
This solution was chosen because of limited performance of repair zone servers. High-level
models that work with knowledge graphs are hosted on shop servers.

Proposed approach usage allowed solve several problems: (i) the use of DT at the
lower level allowed halve the volume of data exchange between cranes and servers of the
repair zone, (ii) the use of medium-level models made it possible to provide flexibility
in the management of crane equipment, in particular, effectively realize procedures of
BP progresses monitoring; at this level, context-sensitive policy mechanisms are used
to support different crane modes of operation; (iii) the use of top-level models makes it
possible to implement the integration of the crane equipment control system with other
subsystems of the corporate information system by means of using the corporate knowledge
graph [30].

This example shows the possibility of a step-by-step transition from a traditional
production system to Internet of Production Systems built on the IIoT platform using a DDT.

Use case 2. Cable TV network monitoring system. The task of monitoring the cable
television networks state was to collect information about the status of a distributed cable
TV network that includes hundreds of thousands of subscribers who use different types
of equipment including outdated equipment. The critical parameter for the monitoring
system is the subscriber equipment recovery time.

Almost all failures were associated with a malfunction of the terminal equipment
located on the user’s side. Previously, quite often the service specialist had to go to the
subscriber to repair the equipment. In this case, the break in broadcasting was up to several
hours. To solve this problem, DDT (resource models) were deployed on the regional servers.
The models were automatically kept up to date. BP models were practically not used in this
case. Contextual models were placed in the terminal equipment controllers, which were
used to interpret policies considering the specifics of the controller type. The knowledge
graph is used as an OMS model.

Using this solution made it possible to reduce the average recovery time from hours
to several minutes, since most of the malfunctions were detected and eliminated on the
models. In addition, TCO decrease was achieved by reducing the number of service
personnel. A more detailed description of this solution can be found in [70,71]. This

Designs 2022, 6, 25 20 of 24

task can be attributed to the class of tasks for determining the technical condition of a
distributed SwIS.

In order to evaluate the speed of executing SPARQL queries depending on the size
of the static and dynamic models in the form of the knowledge graph, the Meta phactory
platform [72] was used. The parameters of the models that were analyzed and test results
are presented in Tables 3 and 4.

Table 3. System modeling results NoN = 100,000.

Number of Events Treq, s Trdf, s

10,000 1 s 21 s

100,000 7 s 198 s

1,000,000 1 min, 29 s 2542 s

Table 4. System modeling results NoN = 1000,000.

Number of Events Treq Trdf

100,000 2 s 95.5 s

1,000,000 14 s 283 s

10,000,000 2 min, 1 s 2712 s

From the results of experiments, one can see that knowledge graphs can be used for
monitoring a telecommunication network if the knowledge graph has a size of 1 million
nodes in the static network model and covers 10 million dynamic events.

Use case 3. Socio-cyber-physical system. Educational content management system.
The task of education trajectories individualization for specialists working in the field of
educational technologies is a well-known problem. Essential efforts and funds are spent
on its solution, however, the successes achieved in this direction should be considered as
limited [73,74].

The purpose of this development was to create systems to support individual trajecto-
ries formation in the frames of master’s level programs in the IT domain.

The main entities that have DDT are a student, a tutor, a curriculum, and a course.
In addition, the model of the subject domain, the models of consumers of educational
resources, the model of the department (department, faculty) and the model of the uni-
versity are used. The student’s model can be represented by the following elements: a
system of goals that reflect his interests and competence state, which can be described in
terms of the knowledge graph [30]. Interests (goals) can also be described in terms of a
knowledge graph. Information about the individual goals of the student, his capabilities
and competencies are stored in contexts.

The domain model can be described in the form of a domain ontology [65].
The consumer can be either the organization in which the student plans to work, or an

educational program of the next level.
The requirements model can be built based on the corporate knowledge graph [30],

taking into account the role of a potential employee.
The department model includes competence models that provide available modules

and rules for their use.
When working at this project, the proposed approach was modified. First of all,

the SFMs, or rather their content, were changed. In this case, the educational process
is described using the workflow graph, and competencies and tutors are conceded as
resources. The use of policies and contexts allows achieve flexibility in the formation of
the trajectory.

The given examples reflect our experience of using the proposed approach for solving
different types of problems in various subject domains. First of all, we wanted to show that
models can be generated on the base of the proposed meta-model.

Designs 2022, 6, 25 21 of 24

Example 1 (production system) illustrates the possibility of using the proposed ap-
proach to solve data acquisition problems. The use of suggested approach made it possible
to reduce the delays in the receipt of data and made it possible to build a fragment of the
corporate knowledge graph.

Example 2 (cable TV network) shows that one can use suggested approach for building
dynamic structural models of the systems the use of which allows quickly remotely solve
the problem of fault detection.

The main benefit is the total cost of ownership (TCO) reducing and increasing the
availability of provided telecommunication services, because earlier a support specialist
had to go to the client.

Example 3 (automatic curriculum construction). This is the task of a business process
automatic building. This example illustrates the possibility of using the proposed approach
not only for cyber-physical, but also socio-cybernetic systems. Previously, this problem was
solved manually by experts.

Our R&D experience shows that the proposed approach can be used to solve problems
related to the construction of both structural and functional models, in particular, for
solving such classical problems as fault detection, data acquisition and business processes
building. In particular, it was shown that it is possible to use this approach not only in
relation to cyber-physical, but also for other types of systems such as educational systems
which can be conceded as socio-cybernetic systems.

7. Conclusions

The proposed DDT approach was developed during the implementation of real
projects in different subject domains. The DDT approach is, on the one hand, can be con-
ceded as evaluation of the classical DT approach, and, on the other hand, it can be used to
solve problems related to data acquisition in large-scale distributed intelligent systems that
include elements of different physical nature, such as CPS and socio-cybernetic systems.

The idea of DDT includes three key points: (i) the models of the OMS and its elements
are considered as first-class architectural elements, while DT are considered as classes, DS
are considered as instances of classes; (ii) the model automatically tracks changes occurring
in the OMS; (iii) the result of data acquisition is a model, which can be built in terms
of knowledge.

Different models are used for different subject domains and different data acquisition
tasks. The article considers an SFM as a discrete states and discrete time models, which
can be used as a meta-model describing the multilevel structure and dynamic behavior of
the OMS.

The article proposes a DTS reference architecture, which includes two elements: a
reference structure and a DDT reference model.

There are two main restrictions on the class of models being created: (i) currently,
we are able to build structural and functional models of systems in terms of discrete time
and discrete states (automata models), the construction of analog models is the subject of
further research; (ii) the information contained in the logs should be sufficient to describe
all links and business processes running in the system.

Design experience has shown that this approach is advisable to use in the case when
there is a high level of variability in the structure and behavior of the observed system.
Otherwise, it turns out to be cheaper to track the relevance of models manually.

Currently, work on the further development of the DDT approach is being carried
out in three directions: (i) creating libraries of model patterns; (ii) expanding the scope of
the DDT approach, in particular, for its application for the analysis of social networks; (iii)
using models developed at the design stage during the operation and modernization of
DDTS in accordance with the ideas of DevOps.

As one of the main goals of our future investigations we see the usage of the suggested
approach for solving the problem of continuous model transformations as it is the key
problem of digital threads approach realization. This question is not considered in this

Designs 2022, 6, 25 22 of 24

article. However, while building our meta model, we laid down the possibility of building
special case models for different LC stages, in particular, from SysML and UML models.

Author Contributions: Conceptualization, A.I.V.; methodology, A.I.V. and N.A.Z.; software, N.A.Z.
and S.A.; validation, N.A.Z. and S.A.; formal analysis, N.A.Z. and F.A.; investigation, S.A., N.A.Z.
and F.A.; resources, A.I.V. and N.A.Z.; data curation, S.A. and N.A.Z.; writing—original draft
preparation, A.I.V. and N.A.Z.; writing—review and editing, A.I.V., S.A. and N.A.Z.; visualization,
S.A.; supervision, N.A.Z.; project administration, A.I.V. and Y.A.S.; funding acquisition, Y.A.S. All
authors have read and agreed to the published version of the manuscript.

Funding: This work was supported by the Ministry of Science and Higher Education of the Russian
Feder-ation by the Agreement No. 075-15-2020-933 dated 13.11.2020 on the provision of a grant in
the form of subsidies from the federal budget for the implementation of state support for the estab-
lishment and development of the world-class scientific center Pavlov center Integrative physi-ology
for medicine, high-tech healthcare, and stress-resilience technologies.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: *e data are gathered from crane complexes, which are an element of a
flexible production system of an automated assembly and welding site. Provided data files contain
volume of data in GB produced by each of the cranes. *e data used to support the findings of this
study have been deposited in the repository (https://zenodo.org/record/5109526#.YPfeXXUzY5k,
accessed on 31 January 2022).

Acknowledgments: This work was supported by the Ministry of Science and Higher Education
of the Russian Federation by the Agreement No. 075-15-2020-933 dated 13 November 2020 on the
provision of a grant in the form of subsidies from the federal budget for the implementation of state
support for the establishment and development of the world-class scientific center Pavlov center
Integrative physiology for medicine, high-tech healthcare, and stress-resilience technologies.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Mahmood, Z. Guide to Ambient Intelligence in the IoT Environment Principles, Technologies and Application; Springer International

Publishing AG: Cham, Switzerland, 2019; 289p.
2. Korzun, D.; Balandina, E.; Kashevnik, A.; Balandin, S.; Viola, F. Ambient Intelligence Services in IoT Environments: Emerging Research

and Opportunities; IGI-Global: New York, NY, USA, 2019; 199p. [CrossRef]
3. Marques, G.; Pitarma, R.; Garcia, N.M.; Pombo, N. Internet of Things Architectures, Technologies, Applications, Challenges, and

Future Directions for Enhanced Living Environments and Healthcare Systems: A Review. Electronics 2019, 8, 1081. [CrossRef]
4. Miraz, M.H.; Ali, M.; Excell, P.S.; Picking, R. Excell and Richard Picking. Internet of Nano-Things, Things and Everything: Future

Growth Trends. Future Internet 2018, 10, 68. [CrossRef]
5. Patnaik, S. New Paradigm of Industry 4.0 Internet of Things, Big Data & Cyber Physical Systems; Springer Nature: Cham, Switzerland,

2020; p. 187. [CrossRef]
6. Bader, S.R.; Maleshkova, M.; Lohmann, S. Structuring Reference Architectures for the Industrial Internet of Things. Future Internet

2019, 11, 151. [CrossRef]
7. Gilchrist, A. Industry 4.0: The Industrial Internet of Things; Apress: Nonthaburi, Thailand, 2016; 147p. [CrossRef]
8. Hwang, K.; Fox, G.; Dongarra, J. Distributed and Cloud Computing. From Parallel Processing to the Internet of Things; Morgan

Kaufmann: Waltham, MA, USA, 2012; 648p.
9. Badidi, E.; Mahrez, Z.; Sabir, E. Fog Computing for Smart Cities’ Big Data Management and Analytics: A Review. Future Internet

2020, 12, 190. [CrossRef]
10. Open Fog Reference Architecture for Fog Computing. Available online: https://iiconsortium.org/pdf/OpenFog_Reference_

Architecture_2_09_17.pdf (accessed on 7 September 2020).
11. Wu, Y.; Hu, F.; Min, G.; Zomaya, A.Y. Big Data and Computational Intelligence in Networking; Taylor & Francis Group, LLC:

Boca Raton, FL, USA, 2018; 530p.
12. Kryvinska, N.; Greguš, M. Data-Centric Business and Applications Springer International Publishing Lecture Notes on Data Engineering

and Communications Technologies; Springer International Publishing AG: Cham, Switzerland, 2019; 334p.
13. Poniszewska-Marańda, A.; Kryvinska, N.; Jarząbek, S.; Madeyski, L. Data-Centric Business and Applications: Towards Software

Development Lecture Notes On Data Engineering And Communications Technologies; Springer International Publishing AG: Cham,
Switzerland, 2020; Volume 40, 270p.

https://zenodo.org/record/5109526#.YPfeXXUzY5k
http://doi.org/10.4018/978-1-5225-8973-0
http://doi.org/10.3390/electronics8101081
http://doi.org/10.3390/fi10080068
http://doi.org/10.1007/978-3-030-25778-1
http://doi.org/10.3390/fi11070151
http://doi.org/10.1007/978-1-4842-2047-4
http://doi.org/10.3390/fi12110190
https://iiconsortium.org/pdf/OpenFog_Reference_Architecture_2_09_17.pdf
https://iiconsortium.org/pdf/OpenFog_Reference_Architecture_2_09_17.pdf

Designs 2022, 6, 25 23 of 24

14. Lattanze Anthony, J. Architecting Software Intensive Systems. Practitioner’s Guide; Taylor & Francis Group, LLC: Boca Raton, FL,
USA, 2009; 453p.

15. Ford, N.; Parsons, R.; Kua, P. Building Evolutionary Architectures; O’Reilly Media: Sebastopol, CA, USA, 2017; 272p.
16. Stachowiak, H. Allgemeine Modelltheorie; Springer: Berlin/Heidelberg, Germany, 1973.
17. Weilkiens, T.; Lamm, J.; Roth, S.; Walker, M. Model-Based System Architecture; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2016;

375p.
18. Gašević, D.; Djurić, D.; Devedžić, V. Model Driven Architecture and Ontology Development; Springer-Verlag: Berlin, Heidelberg, 2006.
19. Krief, M. Learning DevOps; Packt Publishing Birmingham: Mumbai, India, 2019; 472p.
20. Babar, M.A.; Brown, A.W.; Mistrík, I. Agile Software Architecture Aligning Agile Processes and Software Architectures; Morgan

Kaufmann: Burlington, MA, USA, 2014; 292p.
21. Bloomberg, J. The Agile Architecture Revolution: How Cloud Computing, REST-Based SOA, and Mobile Computing Are Changing

Enterprise IT; Wiley & Sons, Inc.: Hoboken, NJ, USA, 2013; 278p.
22. Armendia, M.; Ghassempouri, M.; Ozturk, E.; Peysson, F. (Eds.) Twin-Control. A Digital Twin Approach to Improve Machine Tools

Lifecycle; Springer AG: Cham, Switzerland, 2019; 296p.
23. Tao, F.; Liu, A.; Hu, T.; Nee, A.Y.C. Digital Twin Driven Smart Design; Elsevier Inc.: London, UK, 2019; 340p.
24. Cretu, L.G.; Dumitriu, F. Model-Driven Engineering of Information Systems: Principles, Techniques, and Practice; CRC Press: Boca Raton,

FL, USA, 2015; 362p.
25. Miell, I.; Aidan Hobson, A. Docker in Practice Second Edition 2019; Manning Publications Co.: Shelter Island, NY, USA, 2019; 434p.
26. Li, X.F. Advanced Design and Implementation of Virtual Machines; Taylor & Francis Group, LLC: Boca Raton, FL, USA, 2017; 440p.
27. ITIL—IT Service Management. Available online: https://www.axelos.com/best-practice-solutions/itil (accessed on 10 October 2021).
28. Uthayan Elangovan. Product Lifecycle Management (PLM): A Digital Journey Using Industrial Internet of Things (IIoT); CRC Press:

Boca Raton, FL, USA, 2020; 123p.
29. Boyes, H.; Hallaq, B.; Cunningham, J.; Watson, T. The industrial internet of things (IIoT): An analysis framework. Comput. Ind.

2018, 101, 1–12. [CrossRef]
30. Blumauer, A.; Nagy, H. The Knowledge Graphs Cookbook; Recipes that work Semantic Web Company: Vienna, Austria, 2020; 346p.
31. Grieves, M. Digital Twin: Manufacturing Excellence through Virtual Factory Replication. 2014. Available online:

https://web.archive.org/web/20170517031855/http://innovate.fit.edu/plm/documents/doc_mgr/912/1411.0_Digital_
Twin_White_Paper_Dr_Grieves.pdf (accessed on 11 October 2021).

32. Gelernter, D. Mirror Worlds: Or the Day Software Puts the Universe in a Shoebox—How It Will Happen and What It Will Mean; Oxford
University Press: New York, NY, USA, 1991; 237p.

33. Digital Twin. Available online: https://en.wikipedia.org/wiki/Digital_twin#cite_note-11 (accessed on 10 October 2021).
34. Grieves, M.; Vickers, J. Digital Twin: Mitigating Unpredictable, Undesirable Emergent Behavior in Complex Systems, in Trans-Disciplinary

Perspectives on System Complexity; Kahlen, F.-J., Flumerfelt, S., Alves, A., Eds.; Springer: Cham, Switzerland, 2016; pp. 85–114.
35. van der Valk, H.; Hunker, J.; Rabe, M.; Otto, B. Digital Twins in Simulative Applications: A Taxonomy. 2020. Available online:

https://www.researchgate.net/publication/341235159_A_Taxonomy_of_Digital_Twins/ (accessed on 15 October 2021).
36. Global Digital Twins Market Report 2021–2026—Over 95% of Vendors Recognize the Need for IIoT APIs and Platform Integration

with Digital Twinning Functionality. Available online: https://finance.yahoo.com/news/global-digital-twins-market-report-08
2800157.html (accessed on 15 October 2021).

37. ISO/IEC JTC 1/SC 41/WG 6 (Digital Twin). Available online: https://www.iec.ch/ords/f?p=103:14:708632010937904::::FSP_
ORG_ID:27186 (accessed on 15 October 2021).

38. Lawrence, S. Gould. What Are Digital Twins and Digital Threads? Available online: https://www.gardnerweb.com/articles/
what-are-digital-twins-and-digital-threads (accessed on 15 October 2021).

39. Shaw, M.; Garlan, D. Software Architecture: Perspectives on an Emerging Discipline; Prentice-Hall Inc.: Hoboken, NJ, USA, 1996; 242p.
40. Chen, L.; Xie, X.; Lu, Q.; Parlikad, A.K.; Pitt, M.; Yang, J. Gemini Principles-Based Digital Twin Maturity Model for Asset

Management. Sustainability 2021, 13, 8224. [CrossRef]
41. Nath, S.V.; van Schalkwyk, P. Building Industrial Digital Twins; Packt Publishing: Birmingham, UK, 2021.
42. Chaudhary, G.; Khari, M.; Elhoseny, M. (Eds.) Digital Twin Technology; Taylor & Francis Group, LLC: Boca Raton, FL, USA, 2022.
43. Krügera, S.; Borsato, M. MDeveloping Knowledge on Digital Manufacturing to Digital Twin: A Bibliometric and Systemic

Analysis. Available online: http://www.sciencedirect.com/ (accessed on 18 October 2021).
44. Gopalakrishnan, A. Chapter 2: Digital Twin as an Architectural Pattern. Available online: https://www.researchgate.net/

publication/352245336 (accessed on 18 October 2021).
45. Mesarović, M.D.; Macko, D.; Takahara, Y. Theory of Hierarchical, Multilevel, Systems; Acadenic Press: London, UK, 1970.
46. Moiseev, N.N. Element of the Optimal Systems Theory; M.: Nauka: Moscow, Russian, 1974.
47. Klir, G.J.; Elias, D. Architecture of Systems Problem Solving; Springer: Berlin/Heidelberg, Germany, 2003.
48. Tianxing, M.; Osipov, V.; Vodyaho, A.I.; Lebedev, S.; Zhukova, N. Distributed Technical Object Model Synthesis Based on

Monitoring Data. Int. J. Knowl. Syst. Sci. 2019, 10, 27–43. [CrossRef]
49. Osipov, V.; Stankova, E.; Vodyaho, A.; Lushnov, M.; Shichkina, Y.; Zhukova, N. Automatic Synthesis of Multilevel Automata

Models of Biological Objects. In Proceedings of the International Conference on Computational Science and Its Applications
(ICCSA 2019), Saint Petersburg, Russia, July 1–4 2019; pp. 441–456.

https://www.axelos.com/best-practice-solutions/itil
http://doi.org/10.1016/j.compind.2018.04.015
https://web.archive.org/web/20170517031855/http://innovate.fit.edu/plm/documents/doc_mgr/912/1411.0_Digital_Twin_White_Paper_Dr_Grieves.pdf
https://web.archive.org/web/20170517031855/http://innovate.fit.edu/plm/documents/doc_mgr/912/1411.0_Digital_Twin_White_Paper_Dr_Grieves.pdf
https://en.wikipedia.org/wiki/Digital_twin#cite_note-11
https://www.researchgate.net/publication/341235159_A_Taxonomy_of_Digital_Twins/
https://finance.yahoo.com/news/global-digital-twins-market-report-082800157.html
https://finance.yahoo.com/news/global-digital-twins-market-report-082800157.html
https://www.iec.ch/ords/f?p=103:14:708632010937904::::FSP_ORG_ID:27186
https://www.iec.ch/ords/f?p=103:14:708632010937904::::FSP_ORG_ID:27186
https://www.gardnerweb.com/articles/what-are-digital-twins-and-digital-threads
https://www.gardnerweb.com/articles/what-are-digital-twins-and-digital-threads
http://doi.org/10.3390/su13158224
http://www.sciencedirect.com/
https://www.researchgate.net/publication/352245336
https://www.researchgate.net/publication/352245336
http://doi.org/10.4018/IJKSS.2019070103

Designs 2022, 6, 25 24 of 24

50. Osipov, V.; Vodyaho, A.; Zhukova, N. About One Approach to Multilevel Behavioral Program Synthesis for Television Devices.
Int. J. Comput. Commun. 2017, 11, 17–25.

51. Osipov, V.Y.; Vodyaho, A.I.; Zhukova, N.A.; Glebovsky, P.A. Multilevel Automatic Synthesis of Behavioral Programs for Smart
Devices. In Proceedings of the 2017 International Conference on Control, Artificial Intelligence, Robotics & Optimization
(ICCAIRO 2017), Prague, Czech Republic, 20–22 May 2017; pp. 335–340.

52. Van der Aalst, W. Process Mining Data Science in Action, 2nd ed.; Springer: Berlin/Heidelberg, Germany, 2016; 468p.
53. Bibel, W.; Korn, D.; Kreitz, C.; Kurucz, F.; Otten, J.; Schmitt, S.; Stolpmann, G. A Multi-level Approach to Program Synthesis. In

Logic Program Synthesis and Transformation. LOPSTR 1997; Springer: Berlin/Heidelberg, Germany, 1997; pp. 1–27.
54. Fowler, M. Domain-Specific Languages; Addison-Wesley: Upper-Saddle River, NJ, USA, 2014; 583p.
55. DuCharme, B. Learning SPARQL Querying and Updating with SPARQL 1.1; O’Reilly Media: Sebastopol, CA, USA, 2013; 386p.
56. Capilla, R.; Bosch, J.; Kyo-Chul, K. (Eds.) Systems and Software Variability Management; Springer: Berlin/Heidelberg, Germany,

2013; 317p.
57. Kouhoué, A.W.; Bonavero, Y.; Bouétou, T.B.; Huchard, M. Exploring Variability of Visual Accessibility Options in Operating

Systems. Future Internet 2021, 13, 230. [CrossRef]
58. Russell, N.; van der Aalst, W.; Hofstede, A. Workflow Patterns; MIT Press: Cambridge, MA, USA, 2016; 335p.
59. Dumas, M.; La Rosa, M.; Mendling, J.; Reijers, H. Fundamentals of Business Process Management, 2nd ed.; Springer: Berlin, Germany,

2018; 527p.
60. Mauro, D.; Schmidt, K. Essential SNMP, 2nd ed.; O’Reilly Media, Inc.: Newton, MA, USA, 2005; 426p.
61. Stopford, B. Designing Event-Driven Systems Concepts and Patterns for Streaming Services with Apache Kafka; O’Reilly Media, Inc.:

Sebastopol, CA, USA, 2018; 151p.
62. Narkhede, N.; Shapira, G.; Palino, T. Kafka the Definitive Guide; O’Reilly Media, Inc.: Sebastopol, CA, USA, 2017; 273p.
63. XES Schema Definition. Available online: http://www.xes-standard.org/ (accessed on 22 October 2021).
64. Godse, J. Ruby Data Processing Using Map, Reduce, and Select; Springer: New York, NY, USA, 2018; 98p. [CrossRef]
65. Orozco, J. Applied Ontology Engineering in Cloud Services, Networks and Management Systems; Springer: New York, NY, USA, 2012;

190p.
66. Helmer, S.; Poulovassilis, A.; Xhafa, F. Reasoning in Event-Based Distributed Systems; Springer: Berlin/Heidelberg, Germany, 2011;

309p.
67. Whitman, M.; Mattord, H. Principles of Information Security, 6th ed.; Cengage Learning: Boston, MA, USA; 728p.
68. Hardjono, T.; Pentland, A. Open Algorithms for Identity Federation. In Advances in Information and Communication Networks. FICC

2018. Advances in Intelligent Systems and Computing; Arai, K., Kapoor, S., Bhatia, R., Eds.; Springer: Cham, Switzerland, 2019;
Volume 887. [CrossRef]

69. Vodyaho, A.; Osipov, V.; Zhukova, N.; Chernokulsky, V. Data Collection Technology for Ambient Intelligence Systems in Internet
of Things. Electronics 2020, 9, 1846. [CrossRef]

70. Kulikov, I.; Wohlgenannt, G.; Shichkina, Y.; Zhukova, N. An Analytical Computing Infrastructure for Monitoring Dynamic
Networks Based on Knowledge Graphs. In Computational Science and Its Applications—ICCSA 2020. Lecture Notes in Computer
Science; Springer: Cham, Switzerland, 2020; Volume 12254. [CrossRef]

71. Krinkin, K.; Vodyaho, A.; Kulikov, I.; Zhukova, N. Models of Telecommunications Network Monitoring Based on Knowledge
Graphs. In Proceedings of the 9th Mediterranean Conference on Embedded Computing (MECO), Budva, Montenegro, 8–11 June
2020; pp. 1–7. [CrossRef]

72. Haase, P.; Herzig, D.M.; Kozlov, A.; Nikolov, A.; Trame, J. Metaphactory: A platform for knowledge graph management. Semant.
Web 2019, 10, 1109–1125. [CrossRef]

73. Mouromtsev, D.; d’Aquin, M. (Eds.) Open Data for Education; Springer International Publishing AG: Cham, Switzerland, 2016;
190p.

74. Ramírez-Montoya, M.S.; Loaiza-Aguirre, M.I.; Zúñiga-Ojeda, A.; Portuguez-Castro, M. Characterization of the Teaching Profile
within the Framework of Education 4.0. Future Internet 2021, 13, 91. [CrossRef]

http://doi.org/10.3390/fi13090230
http://www.xes-standard.org/
http://doi.org/10.1007/978-1-4842-3474-7
http://doi.org/10.1007/978-3-030-03405-4_3
http://doi.org/10.3390/electronics9111846
http://doi.org/10.1007/978-3-030-58817-5_15
http://doi.org/10.1109/MECO49872.2020.9134148
http://doi.org/10.3233/SW-190360
http://doi.org/10.3390/fi13040091

	Introduction
	Digital Twins
	The Proposed Approach: Run Time Dynamic Digital Twins
	Automata RT DDT Representation
	Possible Approaches to the RT DDT Implementation
	Use Cases
	Conclusions
	References

