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Abstract: Were considered transcendental equations with trigonometric and hyperbolic
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1. Introduction

Transcendental equations often arise when solving spectral problems for differ-
ential equations, for example, [1]. In the paper [2] were studied equation

cosµ sinhµ+ sinµ coshµ = 0 (1)

(or tanµ = − tanhµ) and others. For positive roots of equation (1) were
obtained formula µk = −π/4 + πk + εk, where εk > 0, lim

k→∞
εk = 0.

In this paper we consider a more general equations than equation (1), and
we obtain more accurate two-sided estimates for their roots.
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2. Transcendental equations

Consider equation

tan(az) = − tanh(bz), a, b > 0. (2)

Theorem 1. The equation (2) has a countable set of roots which consists
of zero, real numbers

z
(1),(2)
k = ±

(

− π

4a
+

π

a
k + εk

)

,
1

4a
eπ/2(1−b/a)e−2πk < εk <

π

2a
eπ/2e−2πk,

and purely imaginary numbers

z
(3),(4)
k = ±i

(

− π

4b
+

π

b
k + ε′k

)

,
1

4b
eπ/2(1−a/b)e−2πk < ε′k <

π

2b
eπ/2e−2πk,

where k = 1, 2, ... .

Proof. Obviously z = 0 is a root of (2). Let z = x+ iy, z 6= 0.

Case 1. Let y = 0 then

tan(ax) = − tanh(bx). (3)

We see from the graphics of functions f1(x) = tan(ax) and f2(x) = − tanh(bx)
that equation (3) has a single root xk in each interval
(

− π/(2a) + πk/a, πk/a
)

and

xk = − π

4a
+

π

a
k + εk,

where εk > 0, εk+1 < εk, ε1 < π/(4a), k = 1, 2, ... .

Then for the values xk we have

1 + tan(axk) = 1− tanh(bxk),

tan
π

4
+ tan

(

− π

4
+ πk + aεk

)

= 1− tanh(s+ bεk),

where s = −π/4 + πk. Then

tan
π

4
− tan

(π

4
− aεk

)

= 1− tanh s+ tanh(bεk)

1 + tanh s · tanh(bεk)
,

sin(aεk)

cosπ/4 cos(π/4 − aεk)
=

(1− tanh s)(1− tanh(bεk))

1 + tanh s · tanh(bεk)
.
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The left side of the equation is bounded from below and from above. On the
one hand we have

sin(aεk)

cos π/4 cos(π/4− aεk)
>

2
√
2

π aεk
√
2
2 · 1

=
4aεk
π

, if 0 < εk < π/(4a).

Then

εk <
π

4a

(1− tanh s)(1− tanh(bεk))

1 + tanh s · tanh(bεk)
<

π

4a

2e−2s · 1
1

<

<
π

2a
e−2s =

π

2a
eπ/2−2πk. (4)

On the other hand we have

sin(aεk)

cos π/4 cos(π/4− aεk)
<

aεk
(

√
2
2

)2
= 2aεk.

Then

εk >
1

2a

(1− tanh s)(1− tanh(bεk))

1 + tanh s · tanh(bεk)
>

1

2a

e−2se−2bεk

2
>

>
1

4a
eπ/2−2πk−bπ/(2a) =

1

4a
eπ/2(1−b/a)e−2πk. (5)

In obtaining estimates (4) and (5) were used obvious inequality e−2x <
1− tanhx < 2e−2x, x > 0.

So
xk = − π

4a
+

π

a
k + εk,

where 1/(4a)eπ/2(1−b/a)e−2πk < εk < π/(2a)eπ/2e−2πk.
Case 2. If x = 0 then tan(aiy) = − tanh(biy) or tanh(ay) = − tan(by). In

this case we obtain
yk = − π

4b
+

π

b
k + ε′k,

where 1/(8b)eπ/2e−2πk < ε′k < π/(2b)eπ/2e−2πk, k = 1, 2, ... .
Case 3. It can be shown that equation (2) has no other complex roots

x = x+ iy except those found in Case 2. It is proved similarly [2].

Next, consider equation

cos(az) cosh(bz) = 1, a, b > 0. (6)

In his book [3], Rayleigh found 6 positive roots of the simpler equation
cosm coshm = 1 and obtained an approximate formula for large values mk ≈
πk + π/2.
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Theorem 2. The equation (6) has a countable set of roots which consists
of zero, real numbers ±zk and purely imaginary numbers ±izk, where

zk =
π

2a
+

π

a
k + (−1)k−1εk,

where
1

a
e−bπ/2a e−2bπn/a < ε2n <

π

a
√
2
e−bπ/4a e−2bπn/a,

1

a
e−3bπ/4a e−bπ(2n−1)/a < ε2n−1 <

π

a
√
2
e−bπ/2a e−bπ(2n−1)/a,

n = 1, 2, ... .

Proof. Obviously z = 0 is a root of (6). Let z = x+ iy, z 6= 0.
Case 1. Let y = 0 then

cos(ax) cosh(bx) = 1. (7)

We see from the graphics of functions f1(x) = cos(ax) and f2(x) = 1/ cosh(bx)
that equation (7) has next roots:

xk =
π

2a
+

π

a
k + (−1)kεk,

where εk > 0, εk+1 < εk, ε1 < π/(4a), k = 1, 2, ... .
Then we substitute the values xk into (7):

cos
(π

2
+ πk + (−1)k−1aεk

)

=
1

cosh( bπ2a + bπk
a + (−1)k−1bεk)

,

sin(aεk) =
1

cosh(s+ (−1)k−1bεk)
, s =

bπ

2a
+

bπk

a
.

i) If k = 2n (even number) then

sin(aε2n) =
1

cosh(s− bε2n)
.

On the one hand we have

sin(aε2n) >
2a

√
2

π
ε2n, because εk <

π

4a
for all k.

Then

ε2n <
π

2a
√
2

1

cosh(s− bε2n)
<

π

2a
√
2

1

cosh(s− bπ/4a)
<
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<
π

a
√
2es−bπ/4a

=
π

a
√
2
e−bπ/4ae−2bπn/a.

On the other hand we have sin(aε2n) < aε2n. Then

ε2n >
1

a

1

cosh(s− bε2n)
>

1

a cosh s
=

1

a
e−bπ/2ae−2bπn/a.

And we obtain the estimate

1

a
e−bπ/2ae−2bπn/a < ε2n <

π

a
√
2
e−bπ/4ae−2bπn/a.

ii) If k = 2n− 1 (odd number) then

sin(aε2n−1) =
1

cosh(s+ bε2n−1)
.

On the one hand we have

sin(aε2n−1) >
2a

√
2

π
ε2n−1.

Then

ε2n−1 <
π

2a
√
2

1

cosh(s+ bε2n−1)
<

π

2a
√
2

1

cosh s
=

π

a
√
2
e−bπ/2a e−bπ(2n−1)/a.

On the other hand we have sin(aε2n−1) < aε2n−1. Then

ε2n >
1

a

1

cosh(s+ bε2n−1)
>

1

a cosh(s + bπ/4a)
=

1

a
e−3bπ/4ae−bπ(2n−1)/a.

And we obtain the inequality

1

a
e−3bπ/4ae−bπ(2n−1)/a < ε2n−1 <

π

a
√
2
e−bπ/2a e−bπ(2n−1)/a.

Case 2. If x = 0 then cos(iay) cosh(iby) = 1 or cos(ay) cosh(by) = 1 and we
have case 1.

Case 3. Now we prove that equation (6) doesn’t have other complex roots.
Let z = x+ iy, x 6= 0, y 6= 0. From (6) we have

{

cos(ax) cos(by) cosh(ay) cosh(bx) + sin(ax) sin(by) sinh(ay) sinh(bx) = 1,
sin(ax) cos(by) sinh(ay) cosh(bx)− cos(ax) sin(by) cosh(ay) sinh(bx) = 0

(8)
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or
{

cos(ax− by) cosh(ay + bx) + cos(ax+ by) cosh(ay − bx) = 2,
sin(ax+ by) sinh(ay − bx) + sin(ax− by) sinh(ay + bx) = 0.

If we indicate ax− by = n, ay + bx = m, ax+ by = p, ay − bx = t then

{

cosn coshm+ cos p cosh t = 2,
sin p sinh t+ sinn sinhm = 0.

From last system we receive (cosh t − cos p)2 = (cos n − coshm)2. Further
cosh t − cos p = cosn − coshm or cosh t − cos p = coshm − cosn. In the
first case we have cosh t + coshm = cos p + cosn and cosh t + coshm ≥ 2,
cos p+ cosn ≤ 2 ie cosh t = coshm = cos p = cosn = 1 then x = y = 0.

In the second case we have cosh t− coshm = cos p− cosn ie
sinh(t+m)/2 · sinh(t−m)/2 = sin(n + p)/2 · sin(n− p)/2.

Then
sinh(ay) sinh(bx) = sin(ax) sin(by). (9)

We can verify that the values x = πn/a are not solutions of the system (8) for
any y. Therefore, we can obtain the equivalent equation from (9):

a sinh(bx)

b sin(ax)
=

a sin(by)

b sinh(ay)
. (10)

It can be proved that for function f(x) = a sinh(bx)
b sin(ax) with x 6= πn/a we have

|f(x)| > 1, but for function g(y) = a sin(by)
b sinh(ay) with y 6= 0 we have |g(y)| < 1. So

equation (10) doesn’t have roots.

3. Corollary

As we see from these equations this method of estimating of roots can be applied
to equations with trigonometric and hyperbolic functions.
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