ABOUT ONE METHOD FOR ESTIMATING THE ROOTS OF TRANSCENDENTAL EQUATIONS

A.A. Gimaltdinova ${ }^{1}$ § , E.P. Anosova ${ }^{2}$, O.V. Potanina ${ }^{3}$
${ }^{1,2,3}$ Ufa State Petroleum Technological University
Kosmonavtov Str., 1, Ufa, 450062, RUSSIA

Abstract

Were considered transcendental equations with trigonometric and hyperbolic functions. Were obtained two-sided estimates for all their roots.

AMS Subject Classification: 65H99
Key Words: trigonometric and hyperbolic functions, transcendental equations

1. Introduction

Transcendental equations often arise when solving spectral problems for differential equations, for example, [1]. In the paper [2] were studied equation

$$
\begin{equation*}
\cos \mu \sinh \mu+\sin \mu \cosh \mu=0 \tag{1}
\end{equation*}
$$

(or $\tan \mu=-\tanh \mu$) and others. For positive roots of equation (1) were obtained formula $\mu_{k}=-\pi / 4+\pi k+\varepsilon_{k}$, where $\varepsilon_{k}>0, \lim _{k \rightarrow \infty} \varepsilon_{k}=0$.

In this paper we consider a more general equations than equation (1), and we obtain more accurate two-sided estimates for their roots.

Received: February 5, 2018
Revised: August 10, 2018
Published: August 13, 2018
${ }^{\S}$ Correspondence author
(C) 2018 Academic Publications, Ltd. url: www.acadpubl.eu

2. Transcendental equations

Consider equation

$$
\begin{equation*}
\tan (a z)=-\tanh (b z), \quad a, b>0 \tag{2}
\end{equation*}
$$

Theorem 1. The equation (2) has a countable set of roots which consists of zero, real numbers

$$
z_{k}^{(1),(2)}= \pm\left(-\frac{\pi}{4 a}+\frac{\pi}{a} k+\varepsilon_{k}\right), \frac{1}{4 a} e^{\pi / 2(1-b / a)} e^{-2 \pi k}<\varepsilon_{k}<\frac{\pi}{2 a} e^{\pi / 2} e^{-2 \pi k}
$$

and purely imaginary numbers

$$
z_{k}^{(3),(4)}= \pm i\left(-\frac{\pi}{4 b}+\frac{\pi}{b} k+\varepsilon_{k}^{\prime}\right), \frac{1}{4 b} e^{\pi / 2(1-a / b)} e^{-2 \pi k}<\varepsilon_{k}^{\prime}<\frac{\pi}{2 b} e^{\pi / 2} e^{-2 \pi k}
$$

where $k=1,2, \ldots$.
Proof. Obviously $z=0$ is a root of (2). Let $z=x+i y, z \neq 0$.
Case 1. Let $y=0$ then

$$
\begin{equation*}
\tan (a x)=-\tanh (b x) \tag{3}
\end{equation*}
$$

We see from the graphics of functions $f_{1}(x)=\tan (a x)$ and $f_{2}(x)=-\tanh (b x)$ that equation (3) has a single root x_{k} in each interval $(-\pi /(2 a)+\pi k / a, \pi k / a)$ and

$$
x_{k}=-\frac{\pi}{4 a}+\frac{\pi}{a} k+\varepsilon_{k}
$$

where $\varepsilon_{k}>0, \varepsilon_{k+1}<\varepsilon_{k}, \varepsilon_{1}<\pi /(4 a), k=1,2, \ldots$.
Then for the values x_{k} we have

$$
\begin{gathered}
1+\tan \left(a x_{k}\right)=1-\tanh \left(b x_{k}\right) \\
\tan \frac{\pi}{4}+\tan \left(-\frac{\pi}{4}+\pi k+a \varepsilon_{k}\right)=1-\tanh \left(s+b \varepsilon_{k}\right)
\end{gathered}
$$

where $s=-\pi / 4+\pi k$. Then

$$
\begin{aligned}
& \tan \frac{\pi}{4}-\tan \left(\frac{\pi}{4}-a \varepsilon_{k}\right)=1-\frac{\tanh s+\tanh \left(b \varepsilon_{k}\right)}{1+\tanh s \cdot \tanh \left(b \varepsilon_{k}\right)} \\
& \frac{\sin \left(a \varepsilon_{k}\right)}{\cos \pi / 4 \cos \left(\pi / 4-a \varepsilon_{k}\right)}=\frac{(1-\tanh s)\left(1-\tanh \left(b \varepsilon_{k}\right)\right)}{1+\tanh s \cdot \tanh \left(b \varepsilon_{k}\right)}
\end{aligned}
$$

The left side of the equation is bounded from below and from above. On the one hand we have

$$
\frac{\sin \left(a \varepsilon_{k}\right)}{\cos \pi / 4 \cos \left(\pi / 4-a \varepsilon_{k}\right)}>\frac{\frac{2 \sqrt{2}}{\pi} a \varepsilon_{k}}{\frac{\sqrt{2}}{2} \cdot 1}=\frac{4 a \varepsilon_{k}}{\pi}, \text { if } 0<\varepsilon_{k}<\pi /(4 a)
$$

Then

$$
\begin{gather*}
\varepsilon_{k}<\frac{\pi}{4 a} \frac{(1-\tanh s)\left(1-\tanh \left(b \varepsilon_{k}\right)\right)}{1+\tanh s \cdot \tanh \left(b \varepsilon_{k}\right)}<\frac{\pi}{4 a} \frac{2 e^{-2 s} \cdot 1}{1}< \\
<\frac{\pi}{2 a} e^{-2 s}=\frac{\pi}{2 a} e^{\pi / 2-2 \pi k} \tag{4}
\end{gather*}
$$

On the other hand we have

$$
\frac{\sin \left(a \varepsilon_{k}\right)}{\cos \pi / 4 \cos \left(\pi / 4-a \varepsilon_{k}\right)}<\frac{a \varepsilon_{k}}{\left(\frac{\sqrt{2}}{2}\right)^{2}}=2 a \varepsilon_{k}
$$

Then

$$
\begin{align*}
\varepsilon_{k}> & \frac{1}{2 a} \frac{(1-\tanh s)\left(1-\tanh \left(b \varepsilon_{k}\right)\right)}{1+\tanh s \cdot \tanh \left(b \varepsilon_{k}\right)}>\frac{1}{2 a} \frac{e^{-2 s} e^{-2 b \varepsilon_{k}}}{2}> \\
> & \frac{1}{4 a} e^{\pi / 2-2 \pi k-b \pi /(2 a)}=\frac{1}{4 a} e^{\pi / 2(1-b / a)} e^{-2 \pi k} \tag{5}
\end{align*}
$$

In obtaining estimates (4) and (5) were used obvious inequality $e^{-2 x}<$ $1-\tanh x<2 e^{-2 x}, x>0$.

So

$$
x_{k}=-\frac{\pi}{4 a}+\frac{\pi}{a} k+\varepsilon_{k},
$$

where $1 /(4 a) e^{\pi / 2(1-b / a)} e^{-2 \pi k}<\varepsilon_{k}<\pi /(2 a) e^{\pi / 2} e^{-2 \pi k}$.
Case 2. If $x=0$ then $\tan ($ aiy $)=-\tanh ($ biy $)$ or $\tanh (a y)=-\tan (b y)$. In this case we obtain

$$
y_{k}=-\frac{\pi}{4 b}+\frac{\pi}{b} k+\varepsilon_{k}^{\prime}
$$

where $1 /(8 b) e^{\pi / 2} e^{-2 \pi k}<\varepsilon_{k}^{\prime}<\pi /(2 b) e^{\pi / 2} e^{-2 \pi k}, k=1,2, \ldots$.
Case 3. It can be shown that equation (2) has no other complex roots $x=x+i y$ except those found in Case 2. It is proved similarly [2].

Next, consider equation

$$
\begin{equation*}
\cos (a z) \cosh (b z)=1, \quad a, b>0 \tag{6}
\end{equation*}
$$

In his book [3], Rayleigh found 6 positive roots of the simpler equation $\cos m \cosh m=1$ and obtained an approximate formula for large values $m_{k} \approx$ $\pi k+\pi / 2$.

Theorem 2. The equation (6) has a countable set of roots which consists of zero, real numbers $\pm z_{k}$ and purely imaginary numbers $\pm i z_{k}$, where

$$
z_{k}=\frac{\pi}{2 a}+\frac{\pi}{a} k+(-1)^{k-1} \varepsilon_{k}
$$

where

$$
\begin{gathered}
\frac{1}{a} e^{-b \pi / 2 a} e^{-2 b \pi n / a}<\varepsilon_{2 n}<\frac{\pi}{a \sqrt{2}} e^{-b \pi / 4 a} e^{-2 b \pi n / a} \\
\frac{1}{a} e^{-3 b \pi / 4 a} e^{-b \pi(2 n-1) / a}<\varepsilon_{2 n-1}<\frac{\pi}{a \sqrt{2}} e^{-b \pi / 2 a} e^{-b \pi(2 n-1) / a}
\end{gathered}
$$ $n=1,2, \ldots$.

Proof. Obviously $z=0$ is a root of (6). Let $z=x+i y, z \neq 0$.
Case 1. Let $y=0$ then

$$
\begin{equation*}
\cos (a x) \cosh (b x)=1 \tag{7}
\end{equation*}
$$

We see from the graphics of functions $f_{1}(x)=\cos (a x)$ and $f_{2}(x)=1 / \cosh (b x)$ that equation (7) has next roots:

$$
x_{k}=\frac{\pi}{2 a}+\frac{\pi}{a} k+(-1)^{k} \varepsilon_{k}
$$

where $\varepsilon_{k}>0, \varepsilon_{k+1}<\varepsilon_{k}, \varepsilon_{1}<\pi /(4 a), k=1,2, \ldots$.
Then we substitute the values x_{k} into (7):

$$
\begin{gathered}
\cos \left(\frac{\pi}{2}+\pi k+(-1)^{k-1} a \varepsilon_{k}\right)=\frac{1}{\cosh \left(\frac{b \pi}{2 a}+\frac{b \pi k}{a}+(-1)^{k-1} b \varepsilon_{k}\right)} \\
\sin \left(a \varepsilon_{k}\right)=\frac{1}{\cosh \left(s+(-1)^{k-1} b \varepsilon_{k}\right)}, \quad s=\frac{b \pi}{2 a}+\frac{b \pi k}{a}
\end{gathered}
$$

i) If $k=2 n$ (even number) then

$$
\sin \left(a \varepsilon_{2 n}\right)=\frac{1}{\cosh \left(s-b \varepsilon_{2 n}\right)}
$$

On the one hand we have

$$
\sin \left(a \varepsilon_{2 n}\right)>\frac{2 a \sqrt{2}}{\pi} \varepsilon_{2 n}, \quad \text { because } \quad \varepsilon_{k}<\frac{\pi}{4 a} \text { for all } k
$$

Then

$$
\varepsilon_{2 n}<\frac{\pi}{2 a \sqrt{2}} \frac{1}{\cosh \left(s-b \varepsilon_{2 n}\right)}<\frac{\pi}{2 a \sqrt{2}} \frac{1}{\cosh (s-b \pi / 4 a)}<
$$

$$
<\frac{\pi}{a \sqrt{2} e^{s-b \pi / 4 a}}=\frac{\pi}{a \sqrt{2}} e^{-b \pi / 4 a} e^{-2 b \pi n / a}
$$

On the other hand we have $\sin \left(a \varepsilon_{2 n}\right)<a \varepsilon_{2 n}$. Then

$$
\varepsilon_{2 n}>\frac{1}{a} \frac{1}{\cosh \left(s-b \varepsilon_{2 n}\right)}>\frac{1}{a \cosh s}=\frac{1}{a} e^{-b \pi / 2 a} e^{-2 b \pi n / a} .
$$

And we obtain the estimate

$$
\frac{1}{a} e^{-b \pi / 2 a} e^{-2 b \pi n / a}<\varepsilon_{2 n}<\frac{\pi}{a \sqrt{2}} e^{-b \pi / 4 a} e^{-2 b \pi n / a}
$$

ii) If $k=2 n-1$ (odd number) then

$$
\sin \left(a \varepsilon_{2 n-1}\right)=\frac{1}{\cosh \left(s+b \varepsilon_{2 n-1}\right)}
$$

On the one hand we have

$$
\sin \left(a \varepsilon_{2 n-1}\right)>\frac{2 a \sqrt{2}}{\pi} \varepsilon_{2 n-1} .
$$

Then

$$
\varepsilon_{2 n-1}<\frac{\pi}{2 a \sqrt{2}} \frac{1}{\cosh \left(s+b \varepsilon_{2 n-1}\right)}<\frac{\pi}{2 a \sqrt{2}} \frac{1}{\cosh s}=\frac{\pi}{a \sqrt{2}} e^{-b \pi / 2 a} e^{-b \pi(2 n-1) / a} .
$$

On the other hand we have $\sin \left(a \varepsilon_{2 n-1}\right)<a \varepsilon_{2 n-1}$. Then

$$
\varepsilon_{2 n}>\frac{1}{a} \frac{1}{\cosh \left(s+b \varepsilon_{2 n-1}\right)}>\frac{1}{a \cosh (s+b \pi / 4 a)}=\frac{1}{a} e^{-3 b \pi / 4 a} e^{-b \pi(2 n-1) / a} .
$$

And we obtain the inequality

$$
\frac{1}{a} e^{-3 b \pi / 4 a} e^{-b \pi(2 n-1) / a}<\varepsilon_{2 n-1}<\frac{\pi}{a \sqrt{2}} e^{-b \pi / 2 a} e^{-b \pi(2 n-1) / a} .
$$

Case 2. If $x=0$ then $\cos (i a y) \cosh (i b y)=1$ or $\cos (a y) \cosh (b y)=1$ and we have case 1.

Case 3. Now we prove that equation (6) doesn't have other complex roots. Let $z=x+i y, x \neq 0, y \neq 0$. From (6) we have

$$
\left\{\begin{array}{l}
\cos (a x) \cos (b y) \cosh (a y) \cosh (b x)+\sin (a x) \sin (b y) \sinh (a y) \sinh (b x)=1, \tag{8}\\
\sin (a x) \cos (b y) \sinh (a y) \cosh (b x)-\cos (a x) \sin (b y) \cosh (a y) \sinh (b x)=0
\end{array}\right.
$$

or

$$
\left\{\begin{array}{l}
\cos (a x-b y) \cosh (a y+b x)+\cos (a x+b y) \cosh (a y-b x)=2 \\
\sin (a x+b y) \sinh (a y-b x)+\sin (a x-b y) \sinh (a y+b x)=0
\end{array}\right.
$$

If we indicate $a x-b y=n, a y+b x=m, a x+b y=p, a y-b x=t$ then

$$
\left\{\begin{array}{l}
\cos n \cosh m+\cos p \cosh t=2 \\
\sin p \sinh t+\sin n \sinh m=0
\end{array}\right.
$$

From last system we receive $(\cosh t-\cos p)^{2}=(\cos n-\cosh m)^{2}$. Further $\cosh t-\cos p=\cos n-\cosh m$ or $\cosh t-\cos p=\cosh m-\cos n$. In the first case we have $\cosh t+\cosh m=\cos p+\cos n$ and $\cosh t+\cosh m \geq 2$, $\cos p+\cos n \leq 2$ ie $\cosh t=\cosh m=\cos p=\cos n=1$ then $x=y=0$.

In the second case we have $\cosh t-\cosh m=\cos p-\cos n$ ie $\sinh (t+m) / 2 \cdot \sinh (t-m) / 2=\sin (n+p) / 2 \cdot \sin (n-p) / 2$.

Then

$$
\begin{equation*}
\sinh (a y) \sinh (b x)=\sin (a x) \sin (b y) \tag{9}
\end{equation*}
$$

We can verify that the values $x=\pi n / a$ are not solutions of the system (8) for any y. Therefore, we can obtain the equivalent equation from (9):

$$
\begin{equation*}
\frac{a \sinh (b x)}{b \sin (a x)}=\frac{a \sin (b y)}{b \sinh (a y)} \tag{10}
\end{equation*}
$$

It can be proved that for function $f(x)=\frac{a \sinh (b x)}{b \sin (a x)}$ with $x \neq \pi n / a$ we have $|f(x)|>1$, but for function $g(y)=\frac{a \sin (b y)}{b \sinh (a y)}$ with $y \neq 0$ we have $|g(y)|<1$. So equation (10) doesn't have roots.

3. Corollary

As we see from these equations this method of estimating of roots can be applied to equations with trigonometric and hyperbolic functions.

References

[1] A. A. Gimaltdinova, K.V. Kurman, The boundary-value problem for Lavrent'ev-Bitsadze equation with two internal lines of change of a type, Russian Mathematics, 60, No 3 (2016), 18-31. doi: 10.3103/S1066369X16030038
[2] A. Gimaltdinova, Some Transcendental Equations with Trigonometric and Hyperbolic Functions, Lobachevskii Journal of Mathematics, 39, No 2 (2018), 209-212. doi: 10.1134/S1995080218020130
[3] J.W.S. Rayleigh, The Theory of Sound, Macmillan, New York (1894).

