International Journal of Pure and Applied Mathematics

Volume 120 No. 1 2018, 59-65

ISSN: 1311-8080 (printed version); ISSN: 1314-3395 (on-line version) url: http://www.ijpam.eu doi: 10.12732/ijpam.v120i1.5

ABOUT ONE METHOD FOR ESTIMATING THE ROOTS OF TRANSCENDENTAL EQUATIONS

A.A. Gimaltdinova^{1 §}, E.P. Anosova², O.V. Potanina³

^{1,2,3}Ufa State Petroleum Technological University Kosmonavtov Str., 1, Ufa, 450062, RUSSIA

Abstract: Were considered transcendental equations with trigonometric and hyperbolic functions. Were obtained two-sided estimates for all their roots.

AMS Subject Classification: 65H99

Key Words: trigonometric and hyperbolic functions, transcendental equations

1. Introduction

Transcendental equations often arise when solving spectral problems for differential equations, for example, [1]. In the paper [2] were studied equation

$$\cos\mu\sinh\mu + \sin\mu\cosh\mu = 0 \tag{1}$$

(or $\tan \mu = -\tanh \mu$) and others. For positive roots of equation (1) were obtained formula $\mu_k = -\pi/4 + \pi k + \varepsilon_k$, where $\varepsilon_k > 0$, $\lim_{k \to \infty} \varepsilon_k = 0$.

In this paper we consider a more general equations than equation (1), and we obtain more accurate two-sided estimates for their roots.

Received:	February 5, 2018
Revised:	August 10, 2018
Published:	August 13, 2018

© 2018 Academic Publications, Ltd. url: www.acadpubl.eu

[§]Correspondence author

2. Transcendental equations

Consider equation

$$\tan(az) = -\tanh(bz), \ a, b > 0.$$
⁽²⁾

Theorem 1. The equation (2) has a countable set of roots which consists of zero, real numbers

$$z_k^{(1),(2)} = \pm \left(-\frac{\pi}{4a} + \frac{\pi}{a}k + \varepsilon_k \right), \quad \frac{1}{4a} e^{\pi/2(1-b/a)} e^{-2\pi k} < \varepsilon_k < \frac{\pi}{2a} e^{\pi/2} e^{-2\pi k}$$

and purely imaginary numbers

$$z_k^{(3),(4)} = \pm i \left(-\frac{\pi}{4b} + \frac{\pi}{b}k + \varepsilon_k' \right), \quad \frac{1}{4b} e^{\pi/2(1-a/b)} e^{-2\pi k} < \varepsilon_k' < \frac{\pi}{2b} e^{\pi/2} e^{-2\pi k},$$

where k = 1, 2, ...

Proof. Obviously z = 0 is a root of (2). Let z = x + iy, $z \neq 0$. Case 1. Let y = 0 then

$$\tan(ax) = -\tanh(bx). \tag{3}$$

We see from the graphics of functions $f_1(x) = \tan(ax)$ and $f_2(x) = -\tanh(bx)$ that equation (3) has a single root x_k in each interval $\left(-\pi/(2a) + \pi k/a, \pi k/a\right)$ and

$$x_k = -\frac{\pi}{4a} + \frac{\pi}{a}k + \varepsilon_k,$$

where $\varepsilon_k > 0$, $\varepsilon_{k+1} < \varepsilon_k$, $\varepsilon_1 < \pi/(4a)$, k = 1, 2, ...

Then for the values x_k we have

$$1 + \tan(ax_k) = 1 - \tanh(bx_k),$$
$$\tan\frac{\pi}{4} + \tan\left(-\frac{\pi}{4} + \pi k + a\varepsilon_k\right) = 1 - \tanh(s + b\varepsilon_k),$$

where $s = -\pi/4 + \pi k$. Then

$$\tan\frac{\pi}{4} - \tan\left(\frac{\pi}{4} - a\varepsilon_k\right) = 1 - \frac{\tanh s + \tanh(b\varepsilon_k)}{1 + \tanh s \cdot \tanh(b\varepsilon_k)},$$
$$\frac{\sin(a\varepsilon_k)}{\cos\pi/4\,\cos(\pi/4 - a\varepsilon_k)} = \frac{(1 - \tanh s)(1 - \tanh(b\varepsilon_k))}{1 + \tanh s \cdot \tanh(b\varepsilon_k)}$$

The left side of the equation is bounded from below and from above. On the one hand we have

$$\frac{\sin(a\varepsilon_k)}{\cos\pi/4\,\cos(\pi/4 - a\varepsilon_k)} > \frac{\frac{2\sqrt{2}}{\pi}a\varepsilon_k}{\frac{\sqrt{2}}{2}\cdot 1} = \frac{4a\varepsilon_k}{\pi}, \text{ if } 0 < \varepsilon_k < \pi/(4a).$$

Then

$$\varepsilon_k < \frac{\pi}{4a} \frac{(1 - \tanh s)(1 - \tanh(b\varepsilon_k))}{1 + \tanh s \cdot \tanh(b\varepsilon_k)} < \frac{\pi}{4a} \frac{2e^{-2s} \cdot 1}{1} < \frac{\pi}{2a} e^{-2s} = \frac{\pi}{2a} e^{\pi/2 - 2\pi k}.$$
(4)

On the other hand we have

$$\frac{\sin(a\varepsilon_k)}{\cos\pi/4\,\cos(\pi/4 - a\varepsilon_k)} < \frac{a\varepsilon_k}{\left(\frac{\sqrt{2}}{2}\right)^2} = 2a\varepsilon_k$$

Then

$$\varepsilon_{k} > \frac{1}{2a} \frac{(1 - \tanh s)(1 - \tanh(b\varepsilon_{k}))}{1 + \tanh s \cdot \tanh(b\varepsilon_{k})} > \frac{1}{2a} \frac{e^{-2s}e^{-2b\varepsilon_{k}}}{2} > \\ > \frac{1}{4a} e^{\pi/2 - 2\pi k - b\pi/(2a)} = \frac{1}{4a} e^{\pi/2(1 - b/a)} e^{-2\pi k}.$$
(5)

In obtaining estimates (4) and (5) were used obvious inequality $e^{-2x} < 1 - \tanh x < 2e^{-2x}$, x > 0.

 So

$$x_k = -\frac{\pi}{4a} + \frac{\pi}{a}k + \varepsilon_k,$$

where $1/(4a)e^{\pi/2(1-b/a)}e^{-2\pi k} < \varepsilon_k < \pi/(2a)e^{\pi/2}e^{-2\pi k}$.

Case 2. If x = 0 then $\tan(aiy) = -\tanh(biy)$ or $\tanh(ay) = -\tan(by)$. In this case we obtain

$$y_k = -\frac{\pi}{4b} + \frac{\pi}{b}k + \varepsilon'_k$$

where $1/(8b)e^{\pi/2}e^{-2\pi k} < \varepsilon_k' < \pi/(2b)e^{\pi/2}e^{-2\pi k}, \ k = 1, 2, \dots$

Case 3. It can be shown that equation (2) has no other complex roots x = x + iy except those found in Case 2. It is proved similarly [2].

Next, consider equation

$$\cos(az)\cosh(bz) = 1, \ a, b > 0. \tag{6}$$

In his book [3], Rayleigh found 6 positive roots of the simpler equation $\cos m \cosh m = 1$ and obtained an approximate formula for large values $m_k \approx \pi k + \pi/2$.

Theorem 2. The equation (6) has a countable set of roots which consists of zero, real numbers $\pm z_k$ and purely imaginary numbers $\pm i z_k$, where

$$z_k = \frac{\pi}{2a} + \frac{\pi}{a}k + (-1)^{k-1}\varepsilon_k,$$

where

$$\frac{1}{a}e^{-b\pi/2a}e^{-2b\pi n/a} < \varepsilon_{2n} < \frac{\pi}{a\sqrt{2}}e^{-b\pi/4a}e^{-2b\pi n/a},$$
$$\frac{1}{a}e^{-3b\pi/4a}e^{-b\pi(2n-1)/a} < \varepsilon_{2n-1} < \frac{\pi}{a\sqrt{2}}e^{-b\pi/2a}e^{-b\pi(2n-1)/a},$$

 $n = 1, 2, \ldots$

Proof. Obviously z = 0 is a root of (6). Let z = x + iy, $z \neq 0$. Case 1. Let y = 0 then

$$\cos(ax)\cosh(bx) = 1.$$
(7)

We see from the graphics of functions $f_1(x) = \cos(ax)$ and $f_2(x) = 1/\cosh(bx)$ that equation (7) has next roots:

$$x_k = \frac{\pi}{2a} + \frac{\pi}{a}k + (-1)^k \varepsilon_k,$$

where $\varepsilon_k > 0$, $\varepsilon_{k+1} < \varepsilon_k$, $\varepsilon_1 < \pi/(4a)$, k = 1, 2, ...

Then we substitute the values x_k into (7):

$$\cos\left(\frac{\pi}{2} + \pi k + (-1)^{k-1} a\varepsilon_k\right) = \frac{1}{\cosh\left(\frac{b\pi}{2a} + \frac{b\pi k}{a} + (-1)^{k-1} b\varepsilon_k\right)},$$
$$\sin(a\varepsilon_k) = \frac{1}{\cosh(s + (-1)^{k-1} b\varepsilon_k)}, \quad s = \frac{b\pi}{2a} + \frac{b\pi k}{a}.$$

i) If k = 2n (even number) then

$$\sin(a\varepsilon_{2n}) = \frac{1}{\cosh(s - b\varepsilon_{2n})}$$

On the one hand we have

$$\sin(a\varepsilon_{2n}) > \frac{2a\sqrt{2}}{\pi}\varepsilon_{2n}$$
, because $\varepsilon_k < \frac{\pi}{4a}$ for all k .

Then

$$\varepsilon_{2n} < \frac{\pi}{2a\sqrt{2}} \frac{1}{\cosh(s - b\varepsilon_{2n})} < \frac{\pi}{2a\sqrt{2}} \frac{1}{\cosh(s - b\pi/4a)} < \frac{\pi}{2a\sqrt{2}} \frac{1}{6} \frac{$$

$$< \frac{\pi}{a\sqrt{2}e^{s-b\pi/4a}} = \frac{\pi}{a\sqrt{2}}e^{-b\pi/4a}e^{-2b\pi n/a}$$

On the other hand we have $\sin(a\varepsilon_{2n}) < a\varepsilon_{2n}$. Then

$$\varepsilon_{2n} > \frac{1}{a} \frac{1}{\cosh(s - b\varepsilon_{2n})} > \frac{1}{a\cosh s} = \frac{1}{a} e^{-b\pi/2a} e^{-2b\pi n/a}$$

And we obtain the estimate

$$\frac{1}{a}e^{-b\pi/2a}e^{-2b\pi n/a} < \varepsilon_{2n} < \frac{\pi}{a\sqrt{2}}e^{-b\pi/4a}e^{-2b\pi n/a}.$$

ii) If k = 2n - 1 (odd number) then

$$\sin(a\varepsilon_{2n-1}) = \frac{1}{\cosh(s+b\varepsilon_{2n-1})}$$

On the one hand we have

$$\sin(a\varepsilon_{2n-1}) > \frac{2a\sqrt{2}}{\pi}\varepsilon_{2n-1}.$$

Then

$$\varepsilon_{2n-1} < \frac{\pi}{2a\sqrt{2}} \frac{1}{\cosh(s+b\varepsilon_{2n-1})} < \frac{\pi}{2a\sqrt{2}} \frac{1}{\cosh s} = \frac{\pi}{a\sqrt{2}} e^{-b\pi/2a} e^{-b\pi(2n-1)/a}.$$

On the other hand we have $\sin(a\varepsilon_{2n-1}) < a\varepsilon_{2n-1}$. Then

$$\varepsilon_{2n} > \frac{1}{a} \frac{1}{\cosh(s + b\varepsilon_{2n-1})} > \frac{1}{a\cosh(s + b\pi/4a)} = \frac{1}{a} e^{-3b\pi/4a} e^{-b\pi(2n-1)/a}.$$

And we obtain the inequality

$$\frac{1}{a}e^{-3b\pi/4a}e^{-b\pi(2n-1)/a} < \varepsilon_{2n-1} < \frac{\pi}{a\sqrt{2}}e^{-b\pi/2a}e^{-b\pi(2n-1)/a}.$$

Case 2. If x = 0 then $\cos(iay) \cosh(iby) = 1$ or $\cos(ay) \cosh(by) = 1$ and we have case 1.

Case 3. Now we prove that equation (6) doesn't have other complex roots. Let z = x + iy, $x \neq 0$, $y \neq 0$. From (6) we have

$$\begin{cases} \cos(ax)\cos(by)\cosh(ay)\cosh(bx) + \sin(ax)\sin(by)\sinh(ay)\sinh(bx) = 1, \\ \sin(ax)\cos(by)\sinh(ay)\cosh(bx) - \cos(ax)\sin(by)\cosh(ay)\sinh(bx) = 0 \end{cases}$$
(8)

or

$$\begin{cases} \cos(ax - by)\cosh(ay + bx) + \cos(ax + by)\cosh(ay - bx) = 2,\\ \sin(ax + by)\sinh(ay - bx) + \sin(ax - by)\sinh(ay + bx) = 0. \end{cases}$$

If we indicate ax - by = n, ay + bx = m, ax + by = p, ay - bx = t then

 $\begin{cases} \cos n \cosh m + \cos p \cosh t = 2, \\ \sin p \sinh t + \sin n \sinh m = 0. \end{cases}$

From last system we receive $(\cosh t - \cos p)^2 = (\cos n - \cosh m)^2$. Further $\cosh t - \cos p = \cos n - \cosh m$ or $\cosh t - \cos p = \cosh m - \cos n$. In the first case we have $\cosh t + \cosh m = \cos p + \cos n$ and $\cosh t + \cosh m \ge 2$, $\cos p + \cos n \le 2$ ie $\cosh t = \cosh m = \cos p = \cos n = 1$ then x = y = 0.

In the second case we have $\cosh t - \cosh m = \cos p - \cos n$ ie

 $\sinh(t+m)/2 \cdot \sinh(t-m)/2 = \sin(n+p)/2 \cdot \sin(n-p)/2.$

Then

$$\sinh(ay)\sinh(bx) = \sin(ax)\sin(by). \tag{9}$$

We can verify that the values $x = \pi n/a$ are not solutions of the system (8) for any y. Therefore, we can obtain the equivalent equation from (9):

$$\frac{a\sinh(bx)}{b\sin(ax)} = \frac{a\sin(by)}{b\sinh(ay)}.$$
(10)

It can be proved that for function $f(x) = \frac{a \sinh(bx)}{b \sin(ax)}$ with $x \neq \pi n/a$ we have |f(x)| > 1, but for function $g(y) = \frac{a \sin(by)}{b \sinh(ay)}$ with $y \neq 0$ we have |g(y)| < 1. So equation (10) doesn't have roots.

3. Corollary

As we see from these equations this method of estimating of roots can be applied to equations with trigonometric and hyperbolic functions.

64

References

- A. A. Gimaltdinova, K.V. Kurman, The boundary-value problem for Lavrent'ev-Bitsadze equation with two internal lines of change of a type, *Russian Mathematics*, 60, No 3 (2016), 18-31. doi: 10.3103/S1066369X16030038
- [2] A. Gimaltdinova, Some Transcendental Equations with Trigonometric and Hyperbolic Functions, *Lobachevskii Journal of Mathematics*, **39**, No 2 (2018), 209-212. doi: 10.1134/S1995080218020130
- [3] J.W.S. Rayleigh, The Theory of Sound, Macmillan, New York (1894).