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1 Introduction

This paper continues investigations of stationarity and regularity properties of col-
lections of sets in normed spaces started in [19]. See [19] for motivations as well
as comparisons of different approaches.

Starting with the pioneering work by Dubovitskii and Milyutin [10] it is quite
natural when dealing with optimality conditions to reformulate optimality in the
original optimization problem as a (some kind of) extremal behaviour of a certain
collection of sets. An easy example is a problem of unconditional minimization of
areal-valued functiop : X — R. If X° € X one can consider the se®s = epip =
{(x.t) € X x R: @(x) < u} (the epigraph ofp) and Qs = X x {1 : it < (x*)}

(the lower halfspace). The local optimalityxsfis then equivalent to the condition
0Q1Nint QN (x° + pB) = 0 for somep > 0.

The concept obxtremalityfor a collection of sets was first defined in [21].

This definition was extended &iationarityin [14—16], where two definitions of
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stationarity (one of them was at first calledxtended extremality were intro-
duced. The relation between extremality and stationarity for collections of sets is
similar to that between optimality and stationarity for optimization problems.

Regularitycan be considered as the property opposite to stationarity (see [19]).
Regularity properties of collections of sets play an important role in different
fields of optimization and approximatiooonstraint qualificationserror bounds
convergence analysigtc. (see [3,7,26] for numerous examples). They are also
closely related to similar properties of multifunctions and can be used in analysis,
in particular, in nonsmooth calculus.

Following [16, 18], extremality-stationarity-regularity properties are defined in
the paper with the help of some constants providing quantitative estimates of the
corresponding properties. A similar approach (for different properties) is under-
taken in the recent paper [2].

Examining and comparing different regularity concepts for collections of sets
has attracted recently considerable attention in the literature (see [2-5,7,19, 26,
27]), although according to [2] some traces of such considerations can be found
in the 1940 paper by M. Krein.

The strong regularity concept investigated in the current paper is closely re-
lated to thanetric regularityproperty (sometimes referred toaseudo regularity
of multifunctions. Different characterizations of strong regularity of collections of
sets are presented as well as some relations to other properties. The main emphasis
in the current paper is on primal space conditions.

The definitions of the constants, the relations between them and the corre-
sponding stationary and regularity concepts developed in the current paper are
very similar to those for nonsmooth functions and multifunctions (see [18-20]).
Actually these are different applications of the same variational approach.

In the convex case there exists another set of definitions of regularity properties
(based odinear regularity [3]) with numerous interesting equivalences and other
relations (see [3,7,26]). Linear regularity is defined as a global property. However,
local versions of this property can also be of interest. Note that (local) linear regu-
larity is in general weaker than the strong regularity property considered here (see
the example at the end of subsection 3.3). Thus, two sets of regularity conditions
exist in parallel with many similarities between them.

The paper is organized as follows. The definitions of extremality, stationarity
and regularity for the collection of sets are introduced in Section 2. Some pri-
mal space constants characterizing the mutual arrangement of sets in space are
used in the definitions. Section 3 contains a summary of different characterizations
(both primal and dual) of strong regularity with relations to other propenties:
ric inequality, error bounds weak sharp minimalameson’s property (G¥trong
additive regularity Some more constants for quantitative characterization of the
corresponding properties are introduced. The final Section 4 is devoted to consid-
ering examples of strongly regular collections of sets. It contains a list of sufficient
conditions for a collection of sets to be strongly regular.

Mainly standard notations are used throughout the paper. A closed unit ball
in a normed space is denoted ByIf Q is a set then in®2, bdQ2 and clQ are
respectively its interior, the boundary and the closure. When considering product
spaces we will always assume that they are equipped with the maximum-type
norm: [ (x1, X2)[| = max([[xa |l , |Xz])-



About Regularity of Collections of Sets 3

2 Extremality, stationarity and regularity

Let us consider a collection of se, Q,, ..., 2, (N> 1) in a normed spack¥
with x> € N1 Q.

The following constant can be used for characterizing the mutual arrangement
of the set2;, Qy, ..., 02, nearx® ([18,19]):

0p[R21,...,2n](X°) =sup{r >0:
n

(ﬂ(gi —a)) N0¢ +pB) #0, Vay € 1B} (1)

i=1

It shows how far the sets can be “pushed apart” while still intersecting in a neigh-
borhood ofx°. Evidently 6,[Q1,...,2,](x°) is nonnegative (and can be equal to
+00) and nondecreasing as a functiorpofMoreover,

lim 6,[Q1,...,2,](x°)=0
p—t0 P[ Ly--es n]( )
unlessx € int N, Q; ([19], Proposition 3).

A slightly more general form of (1) can be of interest:

0p[Q1,...,Qn)(@1,...,00) =sup{r >0:
n

(ﬂ(gi e —a)) N(pB) #0, Va; € 1B}. (2)

i=1

This constant corresponds to the case when instead of the common point
x> €N ,9; each of the setd; is considered near its own poimty € Q;,

i=1,2,...,n. The sets do not need to be intersecting. It is equivalent to consider-
ing the collection of translated se®y — w1, 22 — @y, ..., 2, — @, near O:

0p[R21,...,2n)(@1,...,00) = 6, [21 — @1,...,2n— wn](0).
If w1 =0w,=...= w, =X then, of course,
0p[R21,...,2n](@1,...,00) = 6p[Q21,...,2n](X).
When investigating stationarity-regularity properties it is important to know

how fast6, [Q1,...,Qn](X°) and6,[Q1,...,L2n](®@1,...,wn) approach 0 in com-
parison withp. This can be characterized by the following “linearized” constants:

8y, 20 ()
0[Q1,...,20](X°) = I;Jnglpg ’ : 3)
0,(021,....0
0[01,.... On(@n, .., n) — liminf PolBL - nl(@ )
p—+0 p

The last step in the process of defining the collection of constants characteriz-
ing local properties of the collection of seBg, Q, ..., 2, nearx° is to consider
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the limit in the right-hand side of (4) when the poinis, s, ..., ®, are not fixed,
but approachkx°. We arrive at the next constant:

A 6,[Q21,...,0
B0, .., n)(¢) = limint P2 nl(@n..Bn) (5)
Q, p
@ —X
p—+0
The notationw < xin (5) means thatr — x with 0 € Q.
Proposition 1 The following inequality holds true:
6[Q1,...,2:](x°) < liminf 6]Q1,...,Q2n](w1, ..., o). (6)
(Di~i>X°
Proof Denote for brevity
6,(Q1,...,25(w1,...,0n0
Wp(wl7-~~7wn): P[ 1 n]( 1 )
p
By the definition of the lower limit one can write
0[Q1,...,2n(X°) = 5|Ln10 mie.(lilﬁr(]IOJrBB) Yo (01,...,0n0) =
0<p<é
lim inf inf wy(w1,...,on). (7)

0—40 weQin(x°+6B) 0<p<d

The legality of the replacement of the “double” infimum in the above formula
by two separate ones is quite obvious. For apye Q;, i = 1,2,...,n, and any
0< &' < donehas

inf ,...,0n) < inf w1,...,0n).
0<p§6‘llp( 1 n)_0<p§5,‘lfp( 1 on)

Consequently,
inf a,...,0n) < lim inf w1,... =
o<pg6%( b n)_suo O<p§§’wp( Lo n)
I’ijrni_pgwp<wla"'awn):G{Qla"'agn](a)la"'awn>' (8)

(6) follows from (7) and (8). ad

Remark 1The above proof is valid for the “combined” lower limit of any function
of several variables.

Inequality (6) can be strict.

Example 1Consider two sets ilR?: Q; = {(x,y) € R?: ¢(x) <y} and Q, =
{(x,y) € R?:y < 0}, where the functionp : R — R is defined in the following
way: o(x) =xif Xx<0, o(x) =x—1/nif1/n<x<1/(n—1),n=23,...,
o(x)=x—1/2if x> 1/2.

Take 01 = (X1,y1) € Q1 and @y = (X2,¥2) € Q. If o(X1) <y1 Ory>, <0
then 6, [Q1, Qo] (w1, w2) > y1 — @(X1) —y2 > 0 for anyp > 0 and consequently
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0[Q1, Q2] (w1, @) = oo. If ¢(x1) =y1 andy, = 0 then8[Q1, Qo] (w1, wp) = 1.
Thus,0[Q1, Q;)(w1,w2) > 1 foranyw; € Q1 andw, € Q5.

On the other hand, take, = 1/n+1/n?, y, = 1/n?, p, = 1/n. Thenwy, =
(Xn,Yn) € Q1,N=1,2,..., @ = 0 € Q and 6, [Q1, 2;](w1n, @) < 1/n?. Obvi-
ously,win — 0, 8, [21, Q5] (@1n, ) /pn — 0 and consequent[ 21, 2,](0) = 0.

The constants (3)—(5) are in a sense derivative-like objects. (3) and (4) can be
considered as analogs of the usual derivative, while (5) has some properties of the
strict derivative it accumulates information about local properties of the sets not
only at a given point but also at all nearby points.

All the constants (1)—(5) are nonnegative. When investigating extremality-sta-
tionarity-regularity properties of the collection of sets one needs to check whether
the corresponding constant is zero or strictly positive.

Evidently

0<8[Q1,...,20(x°) < 0[Qs,...,20)(xX°) < +.

Definition 1 The collection of set$2q, 2, ..., Qs

(i) extremal ax® if 6,[Q21,...,Q2n](x°) =0forallp > 0.
(ii) locally extremal atx® if 6,[Q1,...,Q25](x*) = 0 for somep > 0.
(iii) stationary abc if 0], ..., Q2n](x°) = 0.
(iv) weakly stationary ax°® if 6[Q1,...,Q,](x°) =0.
(v) regular atx® if 6[Q1,...,02,](x°) > 0.
(vi) strongly regular ak°® if é[.Ql,...,Qn](xO) > 0.

The extremality of the collection of sets was introduced (in a different way)
in [21], where dual necessary conditions in the form of ¢femeralized Euler
equationwere formulated. This result currently known as theéremal principle
has been applied to investigating different optimization problems (see [22,23]).
Stationarity and regularity properties were considered in [19]. The first version of
the weak stationarity was defined (under a different name) in [14] (see also [16,
17)).

The weak stationarity appears to be a natural extension of the extremality prop-
erty in the sense that the dual necessary conditions remain valid forisgilund
spaces) and become also sufficient @gltended extremal princip[@4, 18]).

The (strong) regularity of the collection of sets is a natural counterpart of the
(weak) stationarity property and can be used e.g. when formulatingtraint
qualificationsin mathematical programming. The strong regularity is closely re-
lated to themetric regularity of multifunctions [11,12]. This will be the main
object of investigation in the current paper.

3 Characterizations of strong regularity

This section contains the summary of different characterizations of strong regu-
larity based on [19].
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3.1 Equivalent definition of strong regularity

The next proposition is an immediate consequence of (5).

Proposition 2 The collection of set®;, £, ..., 2, is strongly regular at X if
and only if the following condition holds:

(a) There exists arx > 0 and ad > 0 such that

n

(N@-a-a))NeB) #0 ©)
i=1
forall p € (0,8], o € 2iN(X’+6B), g € apB,i=1,2,...,n.

0[Q1,...,92,)(X°) equals to the exact upper bound of all suzh

Corollary 1 The collection of set®1, Q, ..., 2, is strongly regular at X pro-
vided that X € int N, ©Q;. In this casef [y, ..., Qp](X°) = +oo.

Corollary 1 implies that only the casé € bdN ; ©; is of interest from the
point of view of investigating the strong regularity property of collections of sets.
It is not difficult to show ([19], Proposition 8) th&#[Qy,...,2n](x°) < 1 in this
case.

3.2 Casen=2
If o1 € Q1, @ € Q5 the next constant can be used instead of (2):

6, [Q1,2;]( w1, wp) = sup{r >0:
B C ((Q1—@1)N(pB)) — (22— w2)N(pB))}. (10)
Similar to (4), (5) the following two constants are defined based on (10):

9/ [Ql,Qz](wl, (02)

0'[Q1,0 = liminf -2 11
[Q1, Qo) (w1, w2) iminf 5 ; (11)
R 60,21, 2] (w1,
0101, Q2)() = liminf pl£22,€22] (@1, @) (12)
Q. Q. p
0 —=X°, wy X
p—+0

The next proposition follows from [19], Proposition 18, and definitions (10)—
(12).

Proposition 3 The following assertions are equivalent:

(i) The collection of set®1, £, is strongly regular at X.
(i) 0'[21,9Q2](x°) > 0.
(iii) There exists arx > 0and ad > 0 such that

apB C (21— w1)N(pB)) — (22— w2) N (pB))
forall p € (0,0], w1 € Q1N (X°+6B), w2 € QoN (X° + 8B).
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The general case > 2 can be easily reduced to considering a collection of
two sets.

Proposition 4 The collection of set€2;, Q», ..., Q, is strongly regular at
x° if and only if the collection of two set®; = Q21 x Qo x ... x Q, 2, =
{(%,%,...,X) 1 xe& X} in X"is strongly regular ak® = (x°,x°,...,X°) € 21N Q.

3.3 Strong metric inequality

Strong regularity of the collection of sets can be determined by comparing some
point-to-set distances.

Letd(-,-) be the distance function i associated with the norm. We will keep
the same notation for point-to-set distances. TH(8,Q) = infycn [|[X— @] is the
distance from a point to a set@ andd(x,0) = . The following constant can be
used for characterizing the regularity property of the collection of &gtsQ,,

e, Qn:

X=X 1<i<n
X —0

n
B[ Q1,..., Q20 (X°) = Iimsup(d(x, (2 —xi))/m_axd(x+xi,.(2i)> . (13)
i=1 o

The “extended” division operatiofi/-), is used in (13) to simplify the defini-
tion. It legalizes division by zero. The rules are as follows:

1) (a/B)o = /B, if B #0;

2) (0/0)o = +o0, if @ > 0;

3) (0/0)o = —o0, if @ < O;

4) (0/0), = 0.
The fourth rule is the most important one here. In the odse int N, Q; it
automatically leads t&[Q;,. .., 2,](x°) = 0. Otherwise the points where the nu-
merator and the denominator are both zero in the right-hand side of (13) can be
ignored when calculating the limit.

Theorem 1 ([19])

(i) B[Q1,...,20)(¢) =1/6[Q1,...,2,)(x°).
(i) The collection of set®21, 2, ..., 2, is strongly regular at X if and only if
there exists 8 > 0 and ad > 0 such that the strong metric inequality holds:

d(x [](€2i —x)) < B maxd(x+x, ) (14)

1D-

forallxex*+6B,x €06B,i=12,...,n.
B[Q1,...,0Qn](X°) equals to the exact lower bound of all sygh

The condition formulated in Proposition 1 implies timetric inequality[11,
27]

n

d(x, () Q) < B maxd(x,€;), ¥xexX +6B. (15)

h <i<
-1 1<i<n
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If (15) is valid for all 8 > 0 then the collection of sets is said to beundedly

linear regular[3], or simply linear regular[3,26] if (15) holds withd = . Both

properties are important when investigating convex optimization problems. One

can consider some other regularity properties of collections of sets with interest-

ing relations to linear regularity (see [26]). Note that due to Proposition 1 these

properties are in a sense weaker than the strong regularity concept considered here.
(14) is certainly stronger than (15) even in the convex case. Take for instance

Q1 =0, ={(x,y) € R?:y=0}. Then (15) holds true (wit} = 1, § = ) while

(14) does not.

3.4 Error bounds

The regularity concepts discussed above are relateddo boundsin mathemat-
ical programming (see [3,26]). _

Let f = (fy,fs,..., fn), wherefi : X - R, i=12,...,n. For eachi define
S, = {xe X: fi(x) <0}, andS; =N ;Sy,. Let us start with the local version of
the (slightly modified) corresponding definition from [26].

Definition 2 f has an error bound at € S if there exists g3 > 0 and ad > 0
such that

d(x,Sr) < B_max [fi(x)]+ (16)
for all x e x° + 6B.

The notatiora].. = max a,0) is used in (16).
We will need a stronger version of Definition 2.

Definition 3 f has astrong error boundat x° € S if there exists 8 > 0 and a
6 > 0 such that

DL

dx ()(Sy— %)) < B, max [f (x-+x)]; (17)

R e B n

forallxe x*+6B,x € 6B,i=1,2,...,n.
For the collection of set®4, Q5, ..., 2, one can define
fixX) =d(x,€),i=1,2,...,n. (18)

ThenQ; = S, N2 = S¢ and (15) takes the form (16), while (14) takes the
form (17). Thus, the (strong) metric inequality is equivalent te (1, fa,..., fn)
with the components defined by (18) having a (strong) error bound.

Part (ii) of Proposition 1 implies the following statement.

Proposition 5 The collection of set®1, Qo, ..., Q, is strongly regular at X if
and only if f= (fq, f2,..., fn) (with the components defined by (18)) has a strong
error bound at X.

B[Q1,...,02n|(x°) equals to the exact lower bound of #lifrom Definition 3.
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3.5 Weak sharp minima

Similar to error bounds a close optimization theory concepterk sharp minima
(see [6-8,29]) can be related to the regularity of collections of sets.

Letf: X — R, x° € X. DefineS; (x°) = {x € X : f(x) < f(x°)}. We will again
start with the local version of the (slightly modified) corresponding definition from
[6]. Note that it differs also from the definition of thecal weak sharp minimas
it is formulated in [6].

Definition 4 f has a weak sharp minima xtif there exists gy > 0 and aé > 0
such that

f(X7) +yd(%,S¢ (X)) < f(X) 19)
forall x e x° + 6B.

It follows immediately from (19) thaf (x) = f(x°) for anyx € S;(x°) N (x° +
0B) in contrast to the definition of the local weak sharp minima in [6] where the
setSt (x°) must be the set of global minima 6f
Let f be of the maximum type:
f(x) = max fi(x). (20)

1<i<n

If each of the functiond; is defined by (18) an& € N ;Q; thenf(x°) =0 and
Si(x°) = ﬂ Q.

It is easy to check that in this case (19) takes the form (15) @itay—*. Thus,
weak sharp minima fof defined by (20), (18) is equivalent to the metric inequal-
ity for the collection of set®24, Q», ..., Qn.

To establish the relation with the strong metric inequality and consequently
with the strong regularity property of collections of sets considered in the current
paper we need a stronger property than the one given by Definition 4. This prop-
erty is formulated in the next definition for functions of the maximum type (20).
First denote

FO6X,- %) = max fi(x+xi),

St X, %) = {xE X (X0, ..., %) < F(X) .
Evidently

S ¢ X1, .. Xn) = (n]{xex Cfilx4x) < f(x)}.
i=1

Definition 5 A function f given by (20) has alaxed sharp minimatx° if there
exists ay > 0 and ad > 0 such that

£0OC) +7d(x, S (X1, .-, %)) < F(X X1, ..., Xn) (21)
forallxex+6B,x € 6B,i=1,2,...,n.
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In the case the functionf are defined by (18) and € N ;Q; one has

SHX; X1, .-+, %n)

I
=
IS
|
=

and (21) takes the form (14) with = y. Thus, relaxed sharp minima fdr
defined by (20), (18) appears equivalent to the strong metric inequality for the
collection of setx24, Q, ..., 2, and the following analog of Proposition 5 holds.

Proposition 6 The collection of set®1, Qo, ..., Q, is strongly regular at X if
and only if f defined by (20), (18) has a relaxed sharp minim& at x

0[Q1,...,025)(x°) equals to the exact upper bound of glirom Definition 5.

3.6 Multifunction criterion

Another way of characterizing the regularity property of the collection of sets is
through considering the corresponding property for some multifunction.

If F: X =Y isamultifunction between normed spadeandY with the graph
gphF = {(x,y) e X xY: ye F(x)} and(x°,y°) € gphF one can introduce for it
some analogs of (1), (3), (5) (see [15,16,18]):

0o [F](X°,y’) =sup{r >0:y"+rB C F(x’+pB)}, (22)

OIF|0y") ~ timing 200, 23)

6[F](x°,y°) = liminf 5lFIxy) (24)
<x>y>g:{<é°,y°>

and define the corresponding properties.

Definition 6 F is

(i) extremalat(x°,y°) if 6,[F](x°,y°) =0forallp > 0.
(i) locally extremalat (x°,y°) if 6,[F](x°,y*) = 0 for somep > 0.
(iii) stationaryat (x°,y°) if 8[F](x°,y°) =0.
(iv) weakly stationanat (x°,y°) if é[F}(x",y") =0.
(v) regularat(x°,y°) if 8[F](x°,y°) > 0.
(vi) strongly regularat (x°,y°) if 6[F](x°,y") > 0.

The multifunction strong regularity condition can be reformulated as follows.

Proposition 7 F is strongly regular atx°,y°) € gphF if and only if there exists
ana > 0and ad > 0 such that

y+ opB C F(x+ pB)

forall p € (0,68], (x,y) € gphF N ((x°,y°) + B).
0[F](x°,y°) equals to the exact upper bound of all suzh



About Regularity of Collections of Sets 11

(22) can be interpreted as the “inner” distancg‘dh F (x° + pB) (the distance
from y° to the complement df (x° 4+ pB)). Taken with the negative sign it forms
a part of the extended point-to-set “distance” function used e.qg. in [12].

The regularity condition in Proposition 7 characterizesdbeering property
[9] (or linear opennegsof F near(x°,y°). In the convex case this property was
considered earlier by S. Robinson [30] when deriving the generalization of Banach
open mapping theorem (see [11]). In general it is equivalent (see e.g. [25,31]) to
the metric (or pseudd regularity property [11,12] (and to thAubin property[1,
31] of the inverse mapping). The metric regularity property can be considered as
a kind of error bound condition for a multifunction (compare with Definition 3.3,
part (b) from [26]).

All the extremality-stationarity-regularity concepts for multifunctions and for
collections of sets are closely related. In particular, the following assertion holds,
where as previouslf21, Qy, ..., Q2n are subsets of andx® € N, ;.

Proposition 8 Define F: X = X": F(X) = (21 —X) x (22 —X) X ... X (2 —X),
xe X. Then

(i) 6[Q1,...24)(x) = O[F](0,%°,...,X°).
(i) The collection of set2q, Q, ..., 2, is strongly regular at Xif and only if F
is strongly regular a0, x°,...,x°).

The proof of the first assertion of Proposition 8 in [19] (Theorem 3) was in-
complete. For this reason the full proof is presented below.

Proof Due to the definition oF conditionsw; € ;,i =1,2,...,n, are equivalent
to the inclusion @y, ..., my) € F(0), and condition

rB(wi,...,on) C F(pB)

means that for ang € rB,i=1,2,...,n, there exists ar € pB such thatw;, + g €
Qi —xi1=1212,...,n. Thisis equivalent to (9). Due to the definitions (2), (4), (5),
(22)—(24) this implies the conditions

0p[Q21,...Q2n|(01,...,0n) = 6,[F](0, @1,...,0n),
0[Q1,...Qn(m1,...,0n) = 0[F](0,1,...,wmn),
6[Q1,...20](X°) > B[F](0,X°,...,%°).

The last condition is presented here as an inequality because when calculating
the right-hand side of it one has to consider all sequeriggs,...,yn) from

gphF converging to(0,x°,...,x°) (see (24)), not only those witk= 0. How-

ever, the opposite inequality follows immediately if to notice that the inclusion
(X,¥1,...,Yn) € gphF can be rewritten a$0,Xx+ yi,...,X+ Yn) € gphF. This
proves the first assertion. The second one follows due to Definitions 1 andi6.

Another relation between regularity properties of multifunctions and collec-
tions of sets is given by the next statement from [19] (see Theorem 2 and Corol-
lary 2.1).

Proposition 9 Let F: X =Y and(x°,y°) € gphF. DefineQ; = gph(F), Q, =
X x{y°}. Then
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() 6121, Q2](¢,y) <min(B[F](x,y°)/2,1) < 26[Q1, 2] (€, ¥").
(i) F is strongly regular at(x°,y°) if and only if {Q21, 25} is strongly regular at
,y°)

3.7 Dual properties

In this subsection the se€%;, Q5. ..., Q, are assumed closed.

The dual stationarity/regularity properties are formulated in ternfgethet
normal conesRecall that the Fechet normal cone to a sét at a pointx® € Q is
defined as

[} =]

HereX* is the space (topologically) dual ¥, (-,-) is the bilinear form defining

duality betweerX andX* andx £ yo means thax — x° while x € Q.
Using (25) it is possible to define one more constant for the collection of sets
01, 2o, ...,

N(X°|Q) = {x* eX": IimsupM < 0}. (25)

Q
X—=X°

n[Q1,...,2n(X°) = lim inf{ (

5—+0

3 X /_anH) :
X e N(x|€i), x € 2N (X +8B), izl,...,n}. (26)

Another “extended” division operatidn, - )., is used here. It differs from the, -),
operation used in (13), in the fourth rule definition:

4) (0/0)c, = 00.
This allows one to exclude the casg = x; = --- = x;; = 0 when calculat-
ing (26). If this is the only casex{ € int N ; £;) one automatically gets
N[Q1,...,2n)(X°) = co.

Evidently constant (26) is nonnegative. It can be used for defining (dual) sta-
tionarity/regularity properties.

Definition 7 The collection of set$2;, 5, ..., Q, is

(i) n-stationaryatx® if n[Qy,..., Q2] (x°) = 0;
(i) n-regularatx® if n[Qq,...,2n](x°) > 0.

The next proposition gives equivalent characterizatiom eftationarity and
n-regularity in terms of normal elements. It follows directly from (26).

Proposition 10 The collection of set®;, Q», ..., Qs

(i) n-stationaryat x° if and only if for anyd > 0 there exist xe ;N (x° + 6B),
x e N(xi|€),i=1,...,n, such that

n

25

n

<8y Ixl=1 (27)
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(i) n-regularat x° if and only if there exists ¢ > 0 and aé > 0 such that

n
*
2
i=

forall xf € N(x|Qi), x € QN (x°+8B), i=1,...,n.
n[Q1,...,2n)(x°) equals to the exact upper bound of all sych

273 %] (28)

Note that (27) constitutes the “fuzzy” nonconvex separation property for the
collection of sets: the collection of dual space elemehts=1,...,n, separates
the sets “up tad”. In view of Proposition 10n-stationarity can be referred to as
normal separability

The next theorem gives the relations between (26) and (5).

Theorem 2 ([18])
() B[Q1,...,20)(¢) <N[Q1,...,2](x°).
(i) If X is Asplund andg[21,...,2,](x°) < 1then

i 9[[217...,Qn](xo)
M- Bl0C) < =00 0 Toe)

It follows from the first part of Theorem 2 that strong regularity of a collection
of sets implies its-regularity, while the second part asserts equivalence of the
two types of regularity in thé&splundspace environment.

(29)

Corollary 2 Let X be Asplund. The collection of s&?g, Qo, ..., Q, is strongly
regular at X if and only if it isn-regular at X.

The last statement can, of course, be reformulated as equivalence of the two
types of stationarityExtended extremal principlg.7]). Taking into account the
extremal characterizations of Asplund spaces in [24] one can conclude that as-
plundity of the space is not only sufficient but also necessary for the Extended
extremal principle to be valid (see [17]). This gives another proof of the well
known fact that, being a rather rich subclass of general Banach spaces (see [28]),
Asplund spaces provide the appropriate framewaork for usigghat normals and
subdifferentials.

Definition (26) can be simplified if one makes use of #ltéct 6-normal cone
[13,17] (6 > 0) to a closed seR atx° € Q:

Ns(x°l2)= | N(xQ). (30)
XeQN(x°46B)

Note that this cone can be nonconvex.
Using (30) one can rewrite (26) as

n
X

Nn[Q,...,2n)(X°) = lim inf{ (

/inyﬂ)m:

X e Ns(x°|€), i = 1,...,n,}
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and assertion (i) in Proposition 10 can be replaced by the following (equivalent)
one.

(i") There eX|sts g > 0 and ad > 0 such that (28) holds for af* € Ns(x°|€;),
i=1,.

In its turn, the last condition can be rewritten equivalently as

(SG) There exists ao > 0 and ad > 0 such that for anx* € S ; Ns(x°|€2) the
next inequality holds:

SUP{ZlHX 1% € N5 (X°[€2), lei =X }< o[|x°].

It implies another regularity condition:

(G) There exists am > 0 and ad > 0 such that for anx* € 3 ; Ns(x°|;) the
next inequality holds:

n n
inf{Z|xi*|| DX eNg(X°€i),i=1,...,n, in* _x*} <alx.
i= i=

The reverse implication (G (SG) does not hold in general even for convex
sets: consider the example at the end of subsection 3.3.

Note that condition (G) is actuallyjameson’s property (Glsee [3,26]) for
the collection of strictd-normal cones. If to adopt this terminology, condition
(SG) can be addressed to as sfveng property (G)Thus, strong regularity of the
collection of sets is equivalent to the strong property (G).

It is easy to see that (SG) implies alstrong additive regularity{7] of the
collection of stricts-normal cones.

4 Examples

This section is devoted to considering examples of strongly regular collections of
sets which can be important for applications.

4.1 Strengthening condition (a)

The main idea developed in this subsection is to provide meaningful sufficient
conditions for the condition (a) of Proposition 2 to be satisfied. The simplest con-
dition of this kind is given by Corollary 1.

It follows from Proposition 2 that for the collection of seg, Qo, ..., Q, to
be strongly regular at°, the intersection of the sef®; — w; must be sufficiently
rich forall @ € ; nearx°,i=1,2,...,n

Proposition 11 Consider the following conditions for the collection of s&g
Q,...,0,near X:
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(b) There exists am > 0 and aé > 0 such that for anyw; € Q;N(X° + 6B),
i=12,...,np €(0,0],and any a apB one can find an ¥ pB such that

n-1
X+apBC [()(2i—o), X+a€cQn—n. (31)
i=1

(c) There exists am > 0 and aé > 0 such that for anyw € ;N (x°+6B),
i=12...,n and any & aB there exists a € X with ||c|| = 1 such that for
anyp € (0,6] one can find a £ (0, 1] such that

n-1
ptc+aB) C [)(Q — o), pltc+a) € Qn—n. (32)
i=1

(d) There exists am > 0 and aé > 0 such that for anyw; € ;N (X° + 6B),
i=12...,n, and any & aB there exists a € X with ||c|| = 1 such that

n—-1
cone(c+aB)NSBC ()(2i— ), cone{c+a}Nn(6B) C Qn—wn. (33)
i=1

(e) There exists an >0, ad > 0and a cone C such that for army € Q; N (X° +
0B),i=1,2,....,n,onehasy +CC ;,i=12,...,n—1, and forany &€ aB
there exists a € X with ||c|| = 1 such that

c+aBCC, cone{c+a} C Q,— wn.

The following assertions hold true:

(i) (€)= (d)= (c)= (b) = (a).
(i) If any of the conditions (b), (c), (d), (e) is satisfied then
- 0[Q1,...,25(X°) > «;
— the collection of set®1, Qo, ..., Qy is strongly regular at X.

The notation con® appeared in (d) denotes the cone spanne@pn
coneR ={tw:t>0, o Q}.

Proof (i). (b) = (a). Take arbitrary € apB, i =1,2,...,n. It follows from (b)
thatx+a € Qi —w;,i =1,2,...,n, for somex € pB and consequently

xe((Q—o—a).
i—1

Sincex € pB the last inclusion implies (9). The assertion follows from Proposi-
tion 2.

(c)= (b). Leta > 0 and & > 0 satisfying (c) be given and take apye (0, 6],
w € 2N(Xx°+6B), i =12,...,n and anya € apB. Denoteb = a/p. Then
b € oB and it follows from (c) that there existscae X with ||c|| =1 and & < (0, 1]
such that (32) holds true (withinstead ofa). Denotex =tpc. Thenx € pB and
(31) holds true.



16 Alexander Ya. Kruger

(d) = (c). Leta > 0 and ad > 0 satisfying (d) be given. Take’ = min(c, 1),
6’ =68/2. Thenforany e X, p € [0, 8] one evidently hap(c+ o'B) C cone(c+
oB), and the conditiox € p(c+ o’B) implies||x|| < 8’(1+ a’) < 6. Thus

p(c+o'B) C cong(c+aB)N(SB). (34)

If € QN(x°+6B),i=12...,n, anda e a'Bthen (33) holds true for some
c € X with ||c|| = 1. These conditions together with (34) imply (c) withk- 1.
(e) = (d). This implication follows from the inclusions

n-1
c+aBcCcC () (2 —w).
i—1

(ii). Since in all the cases considered abovsatisfies (a), the second assertion
is an immediate corollary of the first one due to Proposition 2. ad

Condition (b) certainly implies the traditional for the convex case regularity
condition

n-1
(] int€i()2n # 0.
i=1

Actually it is the necessity to cover the convex case that led to treating one of the
sets separately in all the conditions in Proposition 11. Note that not all the sets
need to have nonempty interiors. Of course, conditions (b)—(c) can be replaced by
the stronger ones with all the sets treated similarly:

(b') There exists anx > 0 and ad > 0 such that for anyw, € Q;N (X° + 6B),
i=12,...,n p €(0,6], one can find am € pB such that

n
X+ apBC [)(Q — ).
i—1

() There exists arx > 0 and aé > 0 such that for anyw € Q; N (x° + 8B),
i=1,2...,n, there exists & € X with ||c|| = 1 such that for any € (0, 9]
one can find & € (0, 1] such that

p(tc+aB) C ﬁ(Qi — ).
i=1

(d) There exists arx > 0 and ad > 0 such that for anyw € Qi N (x° + 6B),
i=12,...,n, there exists & € X with ||c|| = 1 such that

cone(c+ aB)N(6B) C ﬁ(Qi — ).
i=1

(¢) There exists arx > 0, ad > 0 and a coneC such thatc+ B c C for
somece X with |lc|| =1, andw +C C @; for any @ € QN (X°+6B),
i=1,2...,n
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Condition (B) basically states that , (2; — a) contains a sequence of balls
Xk+rkB, k=1,2,..., such thatkq — 0 andry > « ||x|| for somea > 0. Condition
(c) strengthens (b further by assuming that all the ball centers lie on the same
ray. Condition (¢) actually corresponds to fixing= 1 in (c).

If to considerC in (¢) as acone of nonpositive elemeritsX then (é) means
that all the setg;, i = 1,2,...,n, are locallydownward(see [32]) with respect
to C nearx°. C is not assumed to be convex and in general does not define any
pre-order inX. However, one can always take= cong(c+ aB).

It is well known that collections of downward sets are strongly regular at any
common point. The metric inequality (15) holds true for them as an equality with
B =1 (see [32]).

Condition (d) can also be viewed as a local version of the downward property
with the cone cong + aB) considered locally and depending on the choice of
W € 2N(X°+6B),i=12,...,n

4.2 Functional conditions

In this subsection we consider the case when the sets are defined in terms of some
(set-valued) functions. More specifically, let

Qi ={xeX: FRX)NC #0},i=12,....n, (35)

whereF; is a set-valued mapping (multifunction) frokinto a normed spacé
andC; is a nonempty subset . We still assume?; to be closed, as is the case,
for example, whelg; is closed andF is a continuous function.

Proposition 2 in this case takes the following form.

Proposition 12 The collection of sets (35) is strongly regular &tikand only if
there exists amx > 0 and ad > 0 such that for any € (0, 6], % € X° + 8B with
F(x)NGC #0,i=1,2,...,n,and any ac apB one can find an ¥ pB such that
Fi(x+x+a)NGi#0,i=12...,n.

If to consider (35) as a constrained system then Proposition 12 gives a kind of
constraint qualification It takes a more familiar form if one imposes additional
assumptions on the parameters.

LetY; = R, F be a continuous (single-valued) function and Get= R _,
i=212,....m(m<n),C ={0},i=m+1,....n Then (35) takes the form of
a system of inequalities and equalities:

Qi ={xeX: R(x)<0},i=12....m (36)
Qi ={xeX: F(x)=0},i=m+1,....n (37)

Denote byl the set ofactiveconstraintsi = {i € {1,2,...,m} : F(x°) =0}.

Proposition 12 can be rewritten as follows:
Proposition 13 The collection of sets (36), (37) is strongly regular atifxand
only if there exists am > 0 and ad > 0 such that for any € (0,8], % € X’ + 6B
with
F,(Xi) <0,iel,
Fi(X|) :O, I :m+la"'an7
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and any a< apB one can find an ¥ pB such that

F(x+x+a)<0,icl,
F(x+x+a&)=0,i=m+1,....n

Proposition 13 contains traditional primal space constraint qualifications for
nonlinear programming problems. This can be illustrated by the next Proposition
covering the convex case with inequality type constraints. The differentiable case
with equality type constraints will be considered elsewhere.

Proposition 14 Let f: X — R, i=1,2,...,m, be convex. The collection of sets
(36) is strongly regular at Xprovided that the Slater condition is satisfied:

(S) There exists ag X such that Kz) <0,i € l.

Proof Let us show that the Slater condition implies the conditions formulated in
Proposition 13 for the case when only inequality-type constraints are present. If
(S) is valid then due to the continuity 6f: X — R, i € |, one can find & > 0

such thatR(u) < 0 for all u € z+ 26B and alli € |. Take arbitraryp € (0, 6],

X € X°+ 6B with F(x) <0,a € §pB and considex = p(z—x°). Then

F(x+X+a)=F(p(z+x—X +a/p)+(1-p)x) < pFi(z+x —X"+a/p)

due to convexity of5. Obviously,||x; —x° +a;/p|| < 28 and consequentll (X+
X +@;) < 0. Thus, the conditions of Proposition 13 are satisfied (with §). O

Some additional properties of sets of type (35) can be established in the case
when they are defined with the help of strongly regular multifunctions. The next
proposition follows directly from Proposition 7.

Proposition 15 Let
Q={xeX: F(x)NC # 0}, (38)

where F: X =Y is strongly regular atx°,y°) € gphF with y* € C. Then there
exists ana > 0 and aé > 0 such that for anyp € (0,6], x€ QN (x° + 6B),
yeF(X)N(y°+8B), ve y+ apB there exists a & F~1(v) N (x+ pB).

Whenv is limited toC Proposition 15 gives some regularity conditions for the
setQ: it guarantees tha® is sufficiently rich neax°. On the other hand, when
v ¢ C it gives someerror bounds Examples of conditions of these types are given
by the next proposition which is actually a corollary of Proposition 15.

Proposition 16 Let 2 be defined by (38), where £ (F1,F,...,F,) : X — R",
C=R"x0n_m, ¥° =F(x°) € C, and let F be strongly regular &x°,y°). Then
there exists amx > 0 and ad > 0 such that for any € (0, 3], X € X° + B with
F(x) € Cn(y° + 6B) one can find

(i) au; € x+pB such that

Fi(u) <KX —oap,i=12....m
Fi(u)=0i=m+1...,n,
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(i) auy € x+ pB such that

Fi(UZ) > I:i(x)+ap7 i:1727"‘7m7
IF(u)| > ap, i=m+1,....n

Certainly it can make sense to consider a weakened version of Proposition 16 if
to assume strong regularity not of the “whole"Fofbut of the mapping consisting
only of those components which correspond to equalities and active inequalities.
The necessary changes in the conclusion part of the statement are obvious.
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