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1 Introduction

This paper continues investigations of stationarity and regularity properties of col-
lections of sets in normed spaces started in [19]. See [19] for motivations as well
as comparisons of different approaches.

Starting with the pioneering work by Dubovitskii and Milyutin [10] it is quite
natural when dealing with optimality conditions to reformulate optimality in the
original optimization problem as a (some kind of) extremal behaviour of a certain
collection of sets. An easy example is a problem of unconditional minimization of
a real-valued functionϕ : X →R. If x◦ ∈X one can consider the setsΩ1 = epiϕ =
{(x,µ) ∈ X×R : ϕ(x) ≤ µ} (the epigraph ofϕ) andΩ2 = X×{µ : µ ≤ ϕ(x◦)}
(the lower halfspace). The local optimality ofx◦ is then equivalent to the condition
Ω1∩ int Ω2∩ (x◦+ρB) = /0 for someρ > 0.

The concept ofextremalityfor a collection of sets was first defined in [21].
This definition was extended tostationarity in [14–16], where two definitions of
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2 Alexander Ya. Kruger

stationarity (one of them was at first called “extended extremality”) were intro-
duced. The relation between extremality and stationarity for collections of sets is
similar to that between optimality and stationarity for optimization problems.

Regularitycan be considered as the property opposite to stationarity (see [19]).
Regularity properties of collections of sets play an important role in different
fields of optimization and approximation:constraint qualifications, error bounds,
convergence analysis, etc. (see [3,7,26] for numerous examples). They are also
closely related to similar properties of multifunctions and can be used in analysis,
in particular, in nonsmooth calculus.

Following [16,18], extremality-stationarity-regularity properties are defined in
the paper with the help of some constants providing quantitative estimates of the
corresponding properties. A similar approach (for different properties) is under-
taken in the recent paper [2].

Examining and comparing different regularity concepts for collections of sets
has attracted recently considerable attention in the literature (see [2–5,7,19,26,
27]), although according to [2] some traces of such considerations can be found
in the 1940 paper by M. Krein.

The strong regularity concept investigated in the current paper is closely re-
lated to themetric regularityproperty (sometimes referred to aspseudo regularity)
of multifunctions. Different characterizations of strong regularity of collections of
sets are presented as well as some relations to other properties. The main emphasis
in the current paper is on primal space conditions.

The definitions of the constants, the relations between them and the corre-
sponding stationary and regularity concepts developed in the current paper are
very similar to those for nonsmooth functions and multifunctions (see [18–20]).
Actually these are different applications of the same variational approach.

In the convex case there exists another set of definitions of regularity properties
(based onlinear regularity [3]) with numerous interesting equivalences and other
relations (see [3,7,26]). Linear regularity is defined as a global property. However,
local versions of this property can also be of interest. Note that (local) linear regu-
larity is in general weaker than the strong regularity property considered here (see
the example at the end of subsection 3.3). Thus, two sets of regularity conditions
exist in parallel with many similarities between them.

The paper is organized as follows. The definitions of extremality, stationarity
and regularity for the collection of sets are introduced in Section 2. Some pri-
mal space constants characterizing the mutual arrangement of sets in space are
used in the definitions. Section 3 contains a summary of different characterizations
(both primal and dual) of strong regularity with relations to other properties:met-
ric inequality, error bounds, weak sharp minima, Jameson’s property (G), strong
additive regularity. Some more constants for quantitative characterization of the
corresponding properties are introduced. The final Section 4 is devoted to consid-
ering examples of strongly regular collections of sets. It contains a list of sufficient
conditions for a collection of sets to be strongly regular.

Mainly standard notations are used throughout the paper. A closed unit ball
in a normed space is denoted byB. If Ω is a set then intΩ , bdΩ and clΩ are
respectively its interior, the boundary and the closure. When considering product
spaces we will always assume that they are equipped with the maximum-type
norm:‖(x1,x2)‖= max(‖x1‖ ,‖x2‖).
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2 Extremality, stationarity and regularity

Let us consider a collection of setsΩ1, Ω2, . . . , Ωn (n > 1) in a normed spaceX
with x◦ ∈ ∩n

i=1Ωi .
The following constant can be used for characterizing the mutual arrangement

of the setsΩ1, Ω2, . . . ,Ωn nearx◦ ([18,19]):

θρ [Ω1, . . . ,Ωn](x◦) = sup{r ≥ 0 :( n⋂
i=1

(Ωi −ai)
)⋂

(x◦+ρB) 6= /0, ∀ai ∈ rB}. (1)

It shows how far the sets can be “pushed apart” while still intersecting in a neigh-
borhood ofx◦. Evidentlyθρ [Ω1, . . . ,Ωn](x◦) is nonnegative (and can be equal to
+∞) and nondecreasing as a function ofρ. Moreover,

lim
ρ→+0

θρ [Ω1, . . . ,Ωn](x◦) = 0

unlessx◦ ∈ int ∩n
i=1 Ωi ([19], Proposition 3).

A slightly more general form of (1) can be of interest:

θρ [Ω1, . . . ,Ωn](ω1, . . . ,ωn) = sup{r ≥ 0 :( n⋂
i=1

(Ωi −ωi −ai)
)⋂

(ρB) 6= /0, ∀ai ∈ rB}. (2)

This constant corresponds to the case when instead of the common point
x◦ ∈ ∩n

i=1Ωi each of the setsΩi is considered near its own pointωi ∈ Ωi ,
i = 1,2, . . . ,n. The sets do not need to be intersecting. It is equivalent to consider-
ing the collection of translated setsΩ1−ω1, Ω2−ω2, . . . ,Ωn−ωn near 0:

θρ [Ω1, . . . ,Ωn](ω1, . . . ,ωn) = θρ [Ω1−ω1, . . . ,Ωn−ωn](0).

If ω1 = ω2 = . . . = ωn = x◦ then, of course,

θρ [Ω1, . . . ,Ωn](ω1, . . . ,ωn) = θρ [Ω1, . . . ,Ωn](x◦).

When investigating stationarity-regularity properties it is important to know
how fastθρ [Ω1, . . . ,Ωn](x◦) andθρ [Ω1, . . . ,Ωn](ω1, . . . ,ωn) approach 0 in com-
parison withρ. This can be characterized by the following “linearized” constants:

θ [Ω1, . . . ,Ωn](x◦) = liminf
ρ→+0

θρ [Ω1, . . . ,Ωn](x◦)
ρ

. (3)

θ [Ω1, . . . ,Ωn](ω1, . . . ,ωn) = liminf
ρ→+0

θρ [Ω1, . . . ,Ωn](ω1, . . . ,ωn)
ρ

. (4)

The last step in the process of defining the collection of constants characteriz-
ing local properties of the collection of setsΩ1, Ω2, . . . ,Ωn nearx◦ is to consider
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the limit in the right-hand side of (4) when the pointsω1, ω2, . . . ,ωn are not fixed,
but approachx◦. We arrive at the next constant:

θ̂ [Ω1, . . . ,Ωn](x◦) = liminf
ωi

Ωi→x◦
ρ→+0

θρ [Ω1, . . . ,Ωn](ω1, . . . ,ωn)
ρ

(5)

The notationω
Ω→ x in (5) means thatω → x with ω ∈ Ω .

Proposition 1 The following inequality holds true:

θ̂ [Ω1, . . . ,Ωn](x◦)≤ liminf
ωi

Ωi→x◦
θ [Ω1, . . . ,Ωn](ω1, . . . ,ωn). (6)

Proof Denote for brevity

ψρ(ω1, . . . ,ωn) =
θρ [Ω1, . . . ,Ωn](ω1, . . . ,ωn)

ρ
.

By the definition of the lower limit one can write

θ̂ [Ω1, . . . ,Ωn](x◦) = lim
δ→+0

inf
ωi∈Ωi∩(x◦+δB)

0<ρ≤δ

ψρ(ω1, . . . ,ωn) =

lim
δ→+0

inf
ωi∈Ωi∩(x◦+δB)

inf
0<ρ≤δ

ψρ(ω1, . . . ,ωn). (7)

The legality of the replacement of the “double” infimum in the above formula
by two separate ones is quite obvious. For anyωi ∈ Ωi , i = 1,2, . . . ,n, and any
0 < δ ′ ≤ δ one has

inf
0<ρ≤δ

ψρ(ω1, . . . ,ωn)≤ inf
0<ρ≤δ ′

ψρ(ω1, . . . ,ωn).

Consequently,

inf
0<ρ≤δ

ψρ(ω1, . . . ,ωn)≤ lim
δ ′→0

inf
0<ρ≤δ ′

ψρ(ω1, . . . ,ωn) =

liminf
ρ→+0

ψρ(ω1, . . . ,ωn) = θ [Ω1, . . . ,Ωn](ω1, . . . ,ωn). (8)

(6) follows from (7) and (8). ut

Remark 1The above proof is valid for the “combined” lower limit of any function
of several variables.

Inequality (6) can be strict.

Example 1Consider two sets inR2: Ω1 =
{
(x,y) ∈ R2 : ϕ(x)≤ y

}
and Ω2 ={

(x,y) ∈ R2 : y≤ 0
}

, where the functionϕ : R → R is defined in the following
way: ϕ(x) = x if x ≤ 0, ϕ(x) = x− 1/n if 1/n < x ≤ 1/(n− 1), n = 2,3, . . .,
ϕ(x) = x−1/2 if x > 1/2.

Take ω1 = (x1,y1) ∈ Ω1 and ω2 = (x2,y2) ∈ Ω2. If ϕ(x1) < y1 or y2 < 0
thenθρ [Ω1,Ω2](ω1,ω2) ≥ y1−ϕ(x1)− y2 > 0 for anyρ > 0 and consequently
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θ [Ω1,Ω2](ω1,ω2) = ∞. If ϕ(x1) = y1 and y2 = 0 thenθ [Ω1,Ω2](ω1,ω2) = 1.
Thus,θ [Ω1,Ω2](ω1,ω2)≥ 1 for anyω1 ∈ Ω1 andω2 ∈ Ω2.

On the other hand, takexn = 1/n+ 1/n2, yn = 1/n2, ρn = 1/n. Thenω1n =
(xn,yn) ∈ Ω1, n = 1,2, . . ., ω2 = 0∈ Ω2 andθρn[Ω1,Ω2](ω1n,ω2) ≤ 1/n2. Obvi-
ously,ω1n→ 0,θρn[Ω1,Ω2](ω1n,ω2)/ρn→ 0 and consequentlŷθ [Ω1,Ω2](0) = 0.

The constants (3)–(5) are in a sense derivative-like objects. (3) and (4) can be
considered as analogs of the usual derivative, while (5) has some properties of the
strict derivative: it accumulates information about local properties of the sets not
only at a given point but also at all nearby points.

All the constants (1)–(5) are nonnegative. When investigating extremality-sta-
tionarity-regularity properties of the collection of sets one needs to check whether
the corresponding constant is zero or strictly positive.

Evidently

0≤ θ̂ [Ω1, . . . ,Ωn](x◦)≤ θ [Ω1, . . . ,Ωn](x◦)≤+∞.

Definition 1 The collection of setsΩ1, Ω2, . . . ,Ωn is

(i) extremal atx◦ if θρ [Ω1, . . . ,Ωn](x◦) = 0 for all ρ > 0.
(ii) locally extremal atx◦ if θρ [Ω1, . . . ,Ωn](x◦) = 0 for someρ > 0.

(iii) stationary atx◦ if θ [Ω1, . . . ,Ωn](x◦) = 0.
(iv) weakly stationary atx◦ if θ̂ [Ω1, . . . ,Ωn](x◦) = 0.
(v) regular atx◦ if θ [Ω1, . . . ,Ωn](x◦) > 0.

(vi) strongly regular atx◦ if θ̂ [Ω1, . . . ,Ωn](x◦) > 0.

The extremality of the collection of sets was introduced (in a different way)
in [21], where dual necessary conditions in the form of thegeneralized Euler
equationwere formulated. This result currently known as theextremal principle
has been applied to investigating different optimization problems (see [22,23]).
Stationarity and regularity properties were considered in [19]. The first version of
the weak stationarity was defined (under a different name) in [14] (see also [16,
17]).

The weak stationarity appears to be a natural extension of the extremality prop-
erty in the sense that the dual necessary conditions remain valid for it (inAsplund
spaces) and become also sufficient (theextended extremal principle[14,18]).

The (strong) regularity of the collection of sets is a natural counterpart of the
(weak) stationarity property and can be used e.g. when formulatingconstraint
qualificationsin mathematical programming. The strong regularity is closely re-
lated to themetric regularityof multifunctions [11,12]. This will be the main
object of investigation in the current paper.

3 Characterizations of strong regularity

This section contains the summary of different characterizations of strong regu-
larity based on [19].
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3.1 Equivalent definition of strong regularity

The next proposition is an immediate consequence of (5).

Proposition 2 The collection of setsΩ1, Ω2, . . . , Ωn is strongly regular at x◦ if
and only if the following condition holds:

(a) There exists anα > 0 and aδ > 0 such that( n⋂
i=1

(Ωi −ωi −ai)
)⋂

(ρB) 6= /0 (9)

for all ρ ∈ (0,δ ], ωi ∈ Ωi ∩ (x◦+δB), ai ∈ αρB, i = 1,2, . . . ,n.

θ̂ [Ω1, . . . ,Ωn](x◦) equals to the exact upper bound of all suchα.

Corollary 1 The collection of setsΩ1, Ω2, . . . , Ωn is strongly regular at x◦ pro-
vided that x◦ ∈ int ∩n

i=1 Ωi . In this caseθ̂ [Ω1, . . . ,Ωn](x◦) = +∞.

Corollary 1 implies that only the casex◦ ∈ bd∩n
i=1 Ωi is of interest from the

point of view of investigating the strong regularity property of collections of sets.
It is not difficult to show ([19], Proposition 8) that̂θ [Ω1, . . . ,Ωn](x◦) ≤ 1 in this
case.

3.2 Casen = 2

If ω1 ∈ Ω1, ω2 ∈ Ω2 the next constant can be used instead of (2):

θ
′
ρ [Ω1,Ω2](ω1,ω2) = sup{r ≥ 0 :

rB ⊂ ((Ω1−ω1)∩ (ρB))− ((Ω2−ω2)∩ (ρB))}. (10)

Similar to (4), (5) the following two constants are defined based on (10):

θ
′[Ω1,Ω2](ω1,ω2) = liminf

ρ→+0

θ ′
ρ [Ω1,Ω2](ω1,ω2)

ρ
, (11)

θ̂
′[Ω1,Ω2](x◦) = liminf

ω1
Ω1→ x◦, ω2

Ω2→ x◦
ρ→+0

θ ′
ρ [Ω1,Ω2](ω1,ω2)

ρ
. (12)

The next proposition follows from [19], Proposition 18, and definitions (10)–
(12).

Proposition 3 The following assertions are equivalent:

(i) The collection of setsΩ1, Ω2 is strongly regular at x◦.
(ii) θ̂ ′[Ω1,Ω2](x◦) > 0.

(iii) There exists anα > 0 and aδ > 0 such that

αρB⊂ ((Ω1−ω1)∩ (ρB))− ((Ω2−ω2)∩ (ρB))

for all ρ ∈ (0,δ ], ω1 ∈ Ω1∩ (x◦+δB), ω2 ∈ Ω2∩ (x◦+δB).
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The general casen≥ 2 can be easily reduced to considering a collection of
two sets.

Proposition 4 The collection of setsΩ1, Ω2, . . . , Ωn is strongly regular at
x◦ if and only if the collection of two sets̃Ω1 = Ω1 ×Ω2 × . . .×Ωn, Ω̃2 =
{(x,x, . . . ,x) : x∈ X} in Xn is strongly regular at̃x◦ = (x◦,x◦, . . . ,x◦) ∈ Ω̃1∩ Ω̃2.

3.3 Strong metric inequality

Strong regularity of the collection of sets can be determined by comparing some
point-to-set distances.

Let d(·, ·) be the distance function inX associated with the norm. We will keep
the same notation for point-to-set distances. Thus,d(x,Ω) = infω∈Ω ‖x−ω‖ is the
distance from a pointx to a setΩ andd(x, /0) = ∞. The following constant can be
used for characterizing the regularity property of the collection of setsΩ1, Ω2,
. . . , Ωn:

ϑ̂ [Ω1, . . . ,Ωn](x◦) = limsup
x→x◦
xi→0

(
d(x,

n⋂
i=1

(Ωi −xi))
/

max
1≤i≤n

d(x+xi ,Ωi)

)
◦

. (13)

The “extended” division operation(·/·)◦ is used in (13) to simplify the defini-
tion. It legalizes division by zero. The rules are as follows:

1) (α/β )◦ = α/β , if β 6= 0;
2) (α/0)◦ = +∞, if α > 0;
3) (α/0)◦ =−∞, if α < 0;
4) (0/0)◦ = 0.

The fourth rule is the most important one here. In the casex◦ ∈ int ∩n
i=1 Ωi it

automatically leads tôϑ [Ω1, . . . ,Ωn](x◦) = 0. Otherwise the points where the nu-
merator and the denominator are both zero in the right-hand side of (13) can be
ignored when calculating the limit.

Theorem 1 ([19])

(i) ϑ̂ [Ω1, . . . ,Ωn](x◦) = 1/θ̂ [Ω1, . . . ,Ωn](x◦).
(ii) The collection of setsΩ1, Ω2, . . . , Ωn is strongly regular at x◦ if and only if

there exists aβ > 0 and aδ > 0 such that the strong metric inequality holds:

d(x,
n⋂

i=1

(Ωi −xi))≤ β max
1≤i≤n

d(x+xi ,Ωi) (14)

for all x ∈ x◦+δB, xi ∈ δB, i = 1,2, . . . ,n.
ϑ̂ [Ω1, . . . ,Ωn](x◦) equals to the exact lower bound of all suchβ .

The condition formulated in Proposition 1 implies themetric inequality[11,
27]

d(x,
n⋂

i=1

Ωi)≤ β max
1≤i≤n

d(x,Ωi), ∀x∈ x◦+δB. (15)
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If (15) is valid for all δ > 0 then the collection of sets is said to beboundedly
linear regular [3], or simply linear regular [3,26] if (15) holds withδ = ∞. Both
properties are important when investigating convex optimization problems. One
can consider some other regularity properties of collections of sets with interest-
ing relations to linear regularity (see [26]). Note that due to Proposition 1 these
properties are in a sense weaker than the strong regularity concept considered here.

(14) is certainly stronger than (15) even in the convex case. Take for instance
Ω1 = Ω2 =

{
(x,y) ∈ R2 : y = 0

}
. Then (15) holds true (withβ = 1, δ = ∞) while

(14) does not.

3.4 Error bounds

The regularity concepts discussed above are related toerror boundsin mathemat-
ical programming (see [3,26]).

Let f = ( f1, f2, . . . , fn), where fi : X → R̄, i = 1,2, . . . ,n. For eachi define
Sfi = {x∈ X : fi(x)≤ 0}, andSf = ∩n

i=1Sfi . Let us start with the local version of
the (slightly modified) corresponding definition from [26].

Definition 2 f has an error bound atx◦ ∈ Sf if there exists aβ > 0 and aδ > 0
such that

d(x,Sf )≤ β max
i=1,...,n

[ fi(x)]+ (16)

for all x∈ x◦+δB.

The notation[α]+ = max(α,0) is used in (16).
We will need a stronger version of Definition 2.

Definition 3 f has astrong error boundat x◦ ∈ Sf if there exists aβ > 0 and a
δ > 0 such that

d(x,
n⋂

i=1

(Sfi −xi))≤ β max
i=1,...,n

[ fi(x+xi)]+ (17)

for all x∈ x◦+δB, xi ∈ δB, i = 1,2, . . . ,n.

For the collection of setsΩ1, Ω2, . . . ,Ωn one can define

fi(x) = d(x,Ωi), i = 1,2, . . . ,n. (18)

ThenΩi = Sfi , ∩n
i=1Ωi = Sf and (15) takes the form (16), while (14) takes the

form (17). Thus, the (strong) metric inequality is equivalent tof = ( f1, f2, . . . , fn)
with the components defined by (18) having a (strong) error bound.

Part (ii) of Proposition 1 implies the following statement.

Proposition 5 The collection of setsΩ1, Ω2, . . . , Ωn is strongly regular at x◦ if
and only if f= ( f1, f2, . . . , fn) (with the components defined by (18)) has a strong
error bound at x◦.

ϑ̂ [Ω1, . . . ,Ωn](x◦) equals to the exact lower bound of allβ from Definition 3.
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3.5 Weak sharp minima

Similar to error bounds a close optimization theory concept ofweak sharp minima
(see [6–8,29]) can be related to the regularity of collections of sets.

Let f : X → R̄, x◦ ∈X. DefineSf (x◦) = {x∈ X : f (x)≤ f (x◦)}. We will again
start with the local version of the (slightly modified) corresponding definition from
[6]. Note that it differs also from the definition of thelocal weak sharp minimaas
it is formulated in [6].

Definition 4 f has a weak sharp minima atx◦ if there exists aγ > 0 and aδ > 0
such that

f (x◦)+ γd(x,Sf (x◦))≤ f (x) (19)

for all x∈ x◦+δB.

It follows immediately from (19) thatf (x) = f (x◦) for anyx∈ Sf (x◦)∩ (x◦+
δB) in contrast to the definition of the local weak sharp minima in [6] where the
setSf (x◦) must be the set of global minima off .

Let f be of the maximum type:

f (x) = max
1≤i≤n

fi(x). (20)

If each of the functionsfi is defined by (18) andx◦ ∈ ∩n
i=1Ωi then f (x◦) = 0 and

Sf (x◦) =
n⋂

i=1

Ωi .

It is easy to check that in this case (19) takes the form (15) withβ = γ−1. Thus,
weak sharp minima forf defined by (20), (18) is equivalent to the metric inequal-
ity for the collection of setsΩ1, Ω2, . . . ,Ωn.

To establish the relation with the strong metric inequality and consequently
with the strong regularity property of collections of sets considered in the current
paper we need a stronger property than the one given by Definition 4. This prop-
erty is formulated in the next definition for functions of the maximum type (20).
First denote

f̃ (x;x1, . . . ,xn) = max
1≤i≤n

fi(x+xi),

S̃f (x◦;x1, . . . ,xn) =
{

x∈ X : f̃ (x;x1, . . . ,xn)≤ f (x◦)
}

.

Evidently

S̃f (x◦;x1, . . . ,xn) =
n⋂

i=1

{x∈ X : fi(x+xi)≤ f (x◦)} .

Definition 5 A function f given by (20) has arelaxed sharp minimaatx◦ if there
exists aγ > 0 and aδ > 0 such that

f (x◦)+ γd(x, S̃f (x◦;x1, . . . ,xn))≤ f̃ (x;x1, . . . ,xn) (21)

for all x∈ x◦+δB, xi ∈ δB, i = 1,2, . . . ,n.
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In the case the functionsfi are defined by (18) andx◦ ∈ ∩n
i=1Ωi one has

S̃f (x◦;x1, . . . ,xn) =
n⋂

i=1

(Ωi −xi)

and (21) takes the form (14) withβ = γ−1. Thus, relaxed sharp minima forf
defined by (20), (18) appears equivalent to the strong metric inequality for the
collection of setsΩ1, Ω2, . . . ,Ωn and the following analog of Proposition 5 holds.

Proposition 6 The collection of setsΩ1, Ω2, . . . , Ωn is strongly regular at x◦ if
and only if f defined by (20), (18) has a relaxed sharp minima at x◦.

θ̂ [Ω1, . . . ,Ωn](x◦) equals to the exact upper bound of allγ from Definition 5.

3.6 Multifunction criterion

Another way of characterizing the regularity property of the collection of sets is
through considering the corresponding property for some multifunction.

If F : X ⇒Y is a multifunction between normed spacesX andY with the graph
gphF = {(x,y) ∈ X×Y : y∈ F(x)} and(x◦,y◦) ∈ gphF one can introduce for it
some analogs of (1), (3), (5) (see [15,16,18]):

θρ [F ](x◦,y◦) = sup{r ≥ 0 : y◦+ rB ⊂ F(x◦+ρB)}, (22)

θ [F ](x◦,y◦) = liminf
ρ→+0

θρ [F ](x◦,y◦)
ρ

, (23)

θ̂ [F ](x◦,y◦) = liminf
(x,y)

gphF
→ (x◦,y◦)

ρ→+0

θρ [F ](x,y)
ρ

(24)

and define the corresponding properties.

Definition 6 F is

(i) extremalat (x◦,y◦) if θρ [F ](x◦,y◦) = 0 for all ρ > 0.
(ii) locally extremalat (x◦,y◦) if θρ [F ](x◦,y◦) = 0 for someρ > 0.

(iii) stationaryat (x◦,y◦) if θ [F ](x◦,y◦) = 0.
(iv) weakly stationaryat (x◦,y◦) if θ̂ [F ](x◦,y◦) = 0.
(v) regular at (x◦,y◦) if θ [F ](x◦,y◦) > 0.

(vi) strongly regularat (x◦,y◦) if θ̂ [F ](x◦,y◦) > 0.

The multifunction strong regularity condition can be reformulated as follows.

Proposition 7 F is strongly regular at(x◦,y◦) ∈ gphF if and only if there exists
an α > 0 and aδ > 0 such that

y+αρB⊂ F(x+ρB)

for all ρ ∈ (0,δ ], (x,y) ∈ gphF ∩ ((x◦,y◦)+δB).
θ̂ [F ](x◦,y◦) equals to the exact upper bound of all suchα.
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(22) can be interpreted as the “inner” distance ofy◦ in F(x◦+ρB) (the distance
from y◦ to the complement ofF(x◦+ρB)). Taken with the negative sign it forms
a part of the extended point-to-set “distance” function used e.g. in [12].

The regularity condition in Proposition 7 characterizes thecovering property
[9] (or linear openness) of F near(x◦,y◦). In the convex case this property was
considered earlier by S. Robinson [30] when deriving the generalization of Banach
open mapping theorem (see [11]). In general it is equivalent (see e.g. [25,31]) to
themetric (or pseudo) regularity property [11,12] (and to theAubin property[1,
31] of the inverse mapping). The metric regularity property can be considered as
a kind of error bound condition for a multifunction (compare with Definition 3.3,
part (b) from [26]).

All the extremality-stationarity-regularity concepts for multifunctions and for
collections of sets are closely related. In particular, the following assertion holds,
where as previouslyΩ1, Ω2, . . . ,Ωn are subsets ofX andx◦ ∈ ∩n

i=1Ωi .

Proposition 8 Define F: X ⇒ Xn : F(x) = (Ω1−x)× (Ω2−x)× . . .× (Ωn−x),
x∈ X. Then

(i) θ̂ [Ω1, . . .Ωn](x◦) = θ̂ [F ](0,x◦, . . . ,x◦).
(ii) The collection of setsΩ1, Ω2, . . . ,Ωn is strongly regular at x◦ if and only if F

is strongly regular at(0,x◦, . . . ,x◦).

The proof of the first assertion of Proposition 8 in [19] (Theorem 3) was in-
complete. For this reason the full proof is presented below.

Proof Due to the definition ofF conditionsωi ∈Ωi , i = 1,2, . . . ,n, are equivalent
to the inclusion(ω1, . . . ,ωn) ∈ F(0), and condition

rB(ω1, . . . ,ωn)⊂ F(ρB)

means that for anyai ∈ rB, i = 1,2, . . . ,n, there exists anx∈ ρB such thatωi +ai ∈
Ωi −x, i = 1,2, . . . ,n. This is equivalent to (9). Due to the definitions (2), (4), (5),
(22)–(24) this implies the conditions

θρ [Ω1, . . .Ωn](ω1, . . . ,ωn) = θρ [F ](0,ω1, . . . ,ωn),
θ [Ω1, . . .Ωn](ω1, . . . ,ωn) = θ [F ](0,ω1, . . . ,ωn),

θ̂ [Ω1, . . .Ωn](x◦)≥ θ̂ [F ](0,x◦, . . . ,x◦).

The last condition is presented here as an inequality because when calculating
the right-hand side of it one has to consider all sequences(x,y1, . . . ,yn) from
gphF converging to(0,x◦, . . . ,x◦) (see (24)), not only those withx = 0. How-
ever, the opposite inequality follows immediately if to notice that the inclusion
(x,y1, . . . ,yn) ∈ gphF can be rewritten as(0,x + y1, . . . ,x + yn) ∈ gphF . This
proves the first assertion. The second one follows due to Definitions 1 and 6.ut

Another relation between regularity properties of multifunctions and collec-
tions of sets is given by the next statement from [19] (see Theorem 2 and Corol-
lary 2.1).

Proposition 9 Let F : X ⇒ Y and(x◦,y◦) ∈ gphF. DefineΩ1 = gph(F), Ω2 =
X×{y◦}. Then
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(i) θ̂ [Ω1,Ω2](x◦,y◦)≤ min(θ̂ [F ](x◦,y◦)/2,1)≤ 2θ̂ [Ω1,Ω2](x◦,y◦).
(ii) F is strongly regular at(x◦,y◦) if and only if{Ω1,Ω2} is strongly regular at

(x◦,y◦).

3.7 Dual properties

In this subsection the setsΩ1,Ω2, . . . ,Ωn are assumed closed.
The dual stationarity/regularity properties are formulated in terms ofFréchet

normal cones. Recall that the Fŕechet normal cone to a setΩ at a pointx◦ ∈ Ω is
defined as

N(x◦|Ω) =

{
x∗ ∈ X∗ : limsup

x
Ω→x◦

〈x∗,x−x◦〉
‖x−x◦‖

≤ 0

}
. (25)

HereX∗ is the space (topologically) dual toX, 〈·, ·〉 is the bilinear form defining

duality betweenX andX∗ andx
Ω→ x◦ means thatx→ x◦ while x∈ Ω .

Using (25) it is possible to define one more constant for the collection of sets
Ω1, Ω2, . . . ,Ωn:

η [Ω1, . . . ,Ωn](x◦) = lim
δ→+0

inf

{(∥∥∥∥∥ n

∑
i=1

x∗i

∥∥∥∥∥/
n

∑
i=1

‖x∗i ‖
)

∞

:

x∗i ∈ N(xi |Ωi), xi ∈ Ωi ∩ (x◦+δB), i = 1, . . . ,n

}
. (26)

Another “extended” division operation(·, ·)∞ is used here. It differs from the(·, ·)◦
operation used in (13), in the fourth rule definition:

4) (0/0)∞ = ∞.
This allows one to exclude the casex∗1 = x∗2 = · · · = x∗n = 0 when calculat-
ing (26). If this is the only case (x◦ ∈ int ∩n

i=1 Ωi) one automatically gets
η [Ω1, . . . ,Ωn](x◦) = ∞.

Evidently constant (26) is nonnegative. It can be used for defining (dual) sta-
tionarity/regularity properties.

Definition 7 The collection of setsΩ1, Ω2, . . . ,Ωn is

(i) η-stationaryatx◦ if η [Ω1, . . . ,Ωn](x◦) = 0;
(ii) η-regular atx◦ if η [Ω1, . . . ,Ωn](x◦) > 0.

The next proposition gives equivalent characterization ofη-stationarity and
η-regularity in terms of normal elements. It follows directly from (26).

Proposition 10 The collection of setsΩ1, Ω2, . . . ,Ωn is

(i) η-stationaryat x◦ if and only if for anyδ > 0 there exist xi ∈ Ωi ∩ (x◦ + δB),
x∗i ∈ N(xi |Ωi), i = 1, . . . ,n, such that∥∥∥∥∥ n

∑
i=1

x∗i

∥∥∥∥∥< δ

n

∑
i=1

‖x∗i ‖= 1; (27)
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(ii) η-regularat x◦ if and only if there exists aγ > 0 and aδ > 0 such that∥∥∥∥∥ n

∑
i=1

x∗i

∥∥∥∥∥≥ γ

n

∑
i=1

‖x∗i ‖ (28)

for all x∗i ∈ N(xi |Ωi), xi ∈ Ωi ∩ (x◦+δB), i = 1, . . . ,n.
η [Ω1, . . . ,Ωn](x◦) equals to the exact upper bound of all suchγ.

Note that (27) constitutes the “fuzzy” nonconvex separation property for the
collection of sets: the collection of dual space elementsx∗i , i = 1, . . . ,n, separates
the sets “up toδ ”. In view of Proposition 10η-stationarity can be referred to as
normal separability.

The next theorem gives the relations between (26) and (5).

Theorem 2 ([18])

(i) θ̂ [Ω1, . . . ,Ωn](x◦)≤ η [Ω1, . . . ,Ωn](x◦).
(ii) If X is Asplund andθ̂ [Ω1, . . . ,Ωn](x◦) < 1 then

η [Ω1, . . . ,Ωn](x◦)≤
θ̂ [Ω1, . . . ,Ωn](x◦)

1− θ̂ [Ω1, . . . ,Ωn](x◦)
. (29)

It follows from the first part of Theorem 2 that strong regularity of a collection
of sets implies itsη-regularity, while the second part asserts equivalence of the
two types of regularity in theAsplundspace environment.

Corollary 2 Let X be Asplund. The collection of setsΩ1, Ω2, . . . ,Ωn is strongly
regular at x◦ if and only if it isη-regular at x◦.

The last statement can, of course, be reformulated as equivalence of the two
types of stationarity (Extended extremal principle[17]). Taking into account the
extremal characterizations of Asplund spaces in [24] one can conclude that as-
plundity of the space is not only sufficient but also necessary for the Extended
extremal principle to be valid (see [17]). This gives another proof of the well
known fact that, being a rather rich subclass of general Banach spaces (see [28]),
Asplund spaces provide the appropriate framework for using Fréchet normals and
subdifferentials.

Definition (26) can be simplified if one makes use of thestrict δ -normal cone
[13,17] (δ ≥ 0) to a closed setΩ atx◦ ∈ Ω :

N̂δ (x◦|Ω) =
⋃

x∈Ω∩(x◦+δB)

N(x|Ω). (30)

Note that this cone can be nonconvex.
Using (30) one can rewrite (26) as

η [Ω1, . . . ,Ωn](x◦) = lim
δ→+0

inf

{(∥∥∥∥∥ n

∑
i=1

x∗i

∥∥∥∥∥/
n

∑
i=1

‖x∗i ‖
)

∞

:

x∗i ∈ N̂δ (x◦|Ωi), i = 1, . . . ,n,

}
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and assertion (ii) in Proposition 10 can be replaced by the following (equivalent)
one.

(ii ′) There exists aγ > 0 and aδ > 0 such that (28) holds for allx∗i ∈ Nδ (x◦|Ωi),
i = 1, . . . ,n.

In its turn, the last condition can be rewritten equivalently as

(SG) There exists anα > 0 and aδ > 0 such that for anyx∗ ∈ ∑n
i=1Nδ (x◦|Ωi) the

next inequality holds:

sup

{
n

∑
i=1

‖x∗i ‖ : x∗i ∈ Nδ (x◦|Ωi), i = 1, . . . ,n,
n

∑
i=1

x∗i = x∗
}
≤ α ‖x∗‖ .

It implies another regularity condition:

(G) There exists anα > 0 and aδ > 0 such that for anyx∗ ∈ ∑n
i=1Nδ (x◦|Ωi) the

next inequality holds:

inf

{
n

∑
i=1

‖x∗i ‖ : x∗i ∈ Nδ (x◦|Ωi), i = 1, . . . ,n,
n

∑
i=1

x∗i = x∗
}
≤ α ‖x∗‖ .

The reverse implication (G)⇒ (SG) does not hold in general even for convex
sets: consider the example at the end of subsection 3.3.

Note that condition (G) is actuallyJameson’s property (G)(see [3,26]) for
the collection of strictδ -normal cones. If to adopt this terminology, condition
(SG) can be addressed to as thestrong property (G). Thus, strong regularity of the
collection of sets is equivalent to the strong property (G).

It is easy to see that (SG) implies alsostrong additive regularity[7] of the
collection of strictδ -normal cones.

4 Examples

This section is devoted to considering examples of strongly regular collections of
sets which can be important for applications.

4.1 Strengthening condition (a)

The main idea developed in this subsection is to provide meaningful sufficient
conditions for the condition (a) of Proposition 2 to be satisfied. The simplest con-
dition of this kind is given by Corollary 1.

It follows from Proposition 2 that for the collection of setsΩ1, Ω2, . . . ,Ωn to
be strongly regular atx◦, the intersection of the setsΩi −ωi must be sufficiently
rich for all ωi ∈ Ωi nearx◦, i = 1,2, . . . ,n.

Proposition 11 Consider the following conditions for the collection of setsΩ1,
Ω2, . . . ,Ωn near x◦:
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(b) There exists anα > 0 and a δ > 0 such that for anyωi ∈ Ωi ∩ (x◦+δB),
i = 1,2, . . . ,n, ρ ∈ (0,δ ], and any a∈ αρB one can find an x∈ ρB such that

x+αρB⊂
n−1⋂
i=1

(Ωi −ωi), x+a∈ Ωn−ωn. (31)

(c) There exists anα > 0 and a δ > 0 such that for anyωi ∈ Ωi ∩ (x◦+δB),
i = 1,2, . . . ,n, and any a∈ αB there exists a c∈ X with ‖c‖= 1 such that for
anyρ ∈ (0,δ ] one can find a t∈ (0,1] such that

ρ(tc+αB)⊂
n−1⋂
i=1

(Ωi −ωi), ρ(tc+a) ∈ Ωn−ωn. (32)

(d) There exists anα > 0 and a δ > 0 such that for anyωi ∈ Ωi ∩ (x◦+δB),
i = 1,2, . . . ,n, and any a∈ αB there exists a c∈ X with‖c‖= 1 such that

cone(c+αB)∩δB⊂
n−1⋂
i=1

(Ωi −ωi), cone{c+a}∩ (δB)⊂ Ωn−ωn. (33)

(e) There exists anα > 0, a δ > 0 and a cone C such that for anyωi ∈ Ωi ∩ (x◦+
δB), i = 1,2, . . . ,n, one hasωi +C⊂Ωi , i = 1,2, . . . ,n−1, and for any a∈αB
there exists a c∈ X with‖c‖= 1 such that

c+αB⊂C, cone{c+a} ⊂ Ωn−ωn.

The following assertions hold true:

(i) (e)⇒ (d)⇒ (c)⇒ (b)⇒ (a).
(ii) If any of the conditions (b), (c), (d), (e) is satisfied then

– θ̂ [Ω1, . . . ,Ωn](x◦)≥ α;
– the collection of setsΩ1, Ω2, . . . ,Ωn is strongly regular at x◦.

The notation coneΩ appeared in (d) denotes the cone spanned onΩ :

coneΩ = {tω : t ≥ 0, ω ∈ Ω} .

Proof (i). (b) ⇒ (a). Take arbitraryai ∈ αρB, i = 1,2, . . . ,n. It follows from (b)
thatx+ai ∈ Ωi −ωi , i = 1,2, . . . ,n, for somex∈ ρB and consequently

x∈
n⋂

i=1

(Ωi −ωi −ai).

Sincex ∈ ρB the last inclusion implies (9). The assertion follows from Proposi-
tion 2.

(c)⇒ (b). Letα > 0 and aδ > 0 satisfying (c) be given and take anyρ ∈ (0,δ ],
ωi ∈ Ωi ∩ (x◦+δB), i = 1,2, . . . ,n, and anya ∈ αρB. Denoteb = a/ρ. Then
b∈ αB and it follows from (c) that there exists ac∈X with ‖c‖= 1 and at ∈ (0,1]
such that (32) holds true (withb instead ofa). Denotex = tρc. Thenx∈ ρB and
(31) holds true.
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(d)⇒ (c). Letα > 0 and aδ > 0 satisfying (d) be given. Takeα ′ = min(α,1),
δ ′ = δ/2. Then for anyc∈X, ρ ∈ [0,δ ] one evidently hasρ(c+α ′B)⊂ cone(c+
αB), and the conditionx∈ ρ(c+α ′B) implies‖x‖ ≤ δ ′(1+α ′)≤ δ . Thus

ρ(c+α
′B)⊂ cone(c+αB)∩ (δB). (34)

If ωi ∈ Ωi ∩ (x◦+δ ′B), i = 1,2, . . . ,n, anda∈ α ′B then (33) holds true for some
c∈ X with ‖c‖= 1. These conditions together with (34) imply (c) witht = 1.

(e)⇒ (d). This implication follows from the inclusions

c+αB⊂C⊂
n−1⋂
i=1

(Ωi −ωi).

(ii). Since in all the cases considered aboveα satisfies (a), the second assertion
is an immediate corollary of the first one due to Proposition 2. ut

Condition (b) certainly implies the traditional for the convex case regularity
condition

n−1⋂
i=1

intΩi

⋂
Ωn 6= /0.

Actually it is the necessity to cover the convex case that led to treating one of the
sets separately in all the conditions in Proposition 11. Note that not all the sets
need to have nonempty interiors. Of course, conditions (b)–(c) can be replaced by
the stronger ones with all the sets treated similarly:

(b′) There exists anα > 0 and aδ > 0 such that for anyωi ∈ Ωi ∩ (x◦+δB),
i = 1,2, . . . ,n, ρ ∈ (0,δ ], one can find anx∈ ρB such that

x+αρB⊂
n⋂

i=1

(Ωi −ωi).

(c′) There exists anα > 0 and aδ > 0 such that for anyωi ∈ Ωi ∩ (x◦+δB),
i = 1,2, . . . ,n, there exists ac ∈ X with ‖c‖ = 1 such that for anyρ ∈ (0,δ ]
one can find at ∈ (0,1] such that

ρ(tc+αB)⊂
n⋂

i=1

(Ωi −ωi).

(d′) There exists anα > 0 and aδ > 0 such that for anyωi ∈ Ωi ∩ (x◦+δB),
i = 1,2, . . . ,n, there exists ac∈ X with ‖c‖= 1 such that

cone(c+αB)∩ (δB)⊂
n⋂

i=1

(Ωi −ωi).

(e′) There exists anα > 0, a δ > 0 and a coneC such thatc + αB ⊂ C for
somec∈ X with ‖c‖ = 1, and ωi + C ⊂ Ωi for any ωi ∈ Ωi ∩ (x◦+δB),
i = 1,2, . . . ,n.
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Condition (b′) basically states that∩n
i=1(Ωi −ωi) contains a sequence of balls

xk + rkB, k = 1,2, . . ., such thatxk → 0 andrk ≥ α ‖xk‖ for someα > 0. Condition
(c′) strengthens (b′) further by assuming that all the ball centers lie on the same
ray. Condition (d′) actually corresponds to fixingt = 1 in (c′).

If to considerC in (e′) as acone of nonpositive elementsin X then (e′) means
that all the setsΩi , i = 1,2, . . . ,n, are locallydownward(see [32]) with respect
to C nearx◦. C is not assumed to be convex and in general does not define any
pre-order inX. However, one can always takeC = cone(c+αB).

It is well known that collections of downward sets are strongly regular at any
common point. The metric inequality (15) holds true for them as an equality with
β = 1 (see [32]).

Condition (d′) can also be viewed as a local version of the downward property
with the cone cone(c+ αB) considered locally and depending on the choice of
ωi ∈ Ωi ∩ (x◦+δB), i = 1,2, . . . ,n.

4.2 Functional conditions

In this subsection we consider the case when the sets are defined in terms of some
(set-valued) functions. More specifically, let

Ωi = {x∈ X : Fi(x)∩Ci 6= /0} , i = 1,2, . . . ,n, (35)

whereFi is a set-valued mapping (multifunction) fromX into a normed spaceYi
andCi is a nonempty subset inYi . We still assumeΩi to be closed, as is the case,
for example, whenCi is closed andFi is a continuous function.

Proposition 2 in this case takes the following form.

Proposition 12 The collection of sets (35) is strongly regular at x◦ if and only if
there exists anα > 0 and aδ > 0 such that for anyρ ∈ (0,δ ], xi ∈ x◦+δB with
Fi(xi)∩Ci 6= /0, i = 1,2, . . . ,n, and any ai ∈ αρB one can find an x∈ ρB such that
Fi(x+xi +ai)∩Ci 6= /0, i = 1,2, . . . ,n.

If to consider (35) as a constrained system then Proposition 12 gives a kind of
constraint qualification. It takes a more familiar form if one imposes additional
assumptions on the parameters.

Let Yi = R, Fi be a continuous (single-valued) function and letCi = R−,
i = 1,2, . . . ,m (m≤ n), Ci = {0}, i = m+ 1, . . . ,n. Then (35) takes the form of
a system of inequalities and equalities:

Ωi = {x∈ X : Fi(x)≤ 0} , i = 1,2, . . . ,m, (36)

Ωi = {x∈ X : Fi(x) = 0} , i = m+1, . . . ,n. (37)

Denote byI the set ofactiveconstraints:I = {i ∈ {1,2, . . . ,m} : Fi(x◦) = 0}.
Proposition 12 can be rewritten as follows:

Proposition 13 The collection of sets (36), (37) is strongly regular at x◦ if and
only if there exists anα > 0 and aδ > 0 such that for anyρ ∈ (0,δ ], xi ∈ x◦+δB
with

Fi(xi)≤ 0, i ∈ I ,

Fi(xi) = 0, i = m+1, . . . ,n,



18 Alexander Ya. Kruger

and any ai ∈ αρB one can find an x∈ ρB such that

Fi(x+xi +ai)≤ 0, i ∈ I ,

Fi(x+xi +ai) = 0, i = m+1, . . . ,n.

Proposition 13 contains traditional primal space constraint qualifications for
nonlinear programming problems. This can be illustrated by the next Proposition
covering the convex case with inequality type constraints. The differentiable case
with equality type constraints will be considered elsewhere.

Proposition 14 Let Fi : X → R, i = 1,2, . . . ,m, be convex. The collection of sets
(36) is strongly regular at x◦ provided that the Slater condition is satisfied:

(S) There exists a z∈ X such that Fi(z) < 0, i ∈ I.

Proof Let us show that the Slater condition implies the conditions formulated in
Proposition 13 for the case when only inequality-type constraints are present. If
(S) is valid then due to the continuity ofFi : X → R, i ∈ I , one can find aδ > 0
such thatFi(u) ≤ 0 for all u ∈ z+ 2δB and all i ∈ I . Take arbitraryρ ∈ (0,δ ],
xi ∈ x◦+δB with Fi(xi)≤ 0, ai ∈ δρB and considerx = ρ(z−x◦). Then

Fi(x+xi +ai) = Fi(ρ(z+xi −x◦+ai/ρ)+(1−ρ)xi)≤ ρFi(z+xi −x◦+ai/ρ)

due to convexity ofFi . Obviously,‖xi −x◦+ai/ρ‖ ≤ 2δ and consequentlyFi(x+
xi +ai)≤ 0. Thus, the conditions of Proposition 13 are satisfied (withα = δ ). ut

Some additional properties of sets of type (35) can be established in the case
when they are defined with the help of strongly regular multifunctions. The next
proposition follows directly from Proposition 7.

Proposition 15 Let
Ω = {x∈ X : F(x)∩C 6= /0} , (38)

where F: X ⇒ Y is strongly regular at(x◦,y◦) ∈ gphF with y◦ ∈C. Then there
exists anα > 0 and a δ > 0 such that for anyρ ∈ (0,δ ], x ∈ Ω ∩ (x◦ + δB),
y∈ F(x)∩ (y◦+δB), v∈ y+αρB there exists a u∈ F−1(v)∩ (x+ρB).

Whenv is limited toC Proposition 15 gives some regularity conditions for the
setΩ : it guarantees thatΩ is sufficiently rich nearx◦. On the other hand, when
v 6∈C it gives someerror bounds. Examples of conditions of these types are given
by the next proposition which is actually a corollary of Proposition 15.

Proposition 16 Let Ω be defined by (38), where F= (F1,F2, . . . ,Fn) : X → Rn,
C = Rm×0n−m, y◦ = F(x◦) ∈C, and let F be strongly regular at(x◦,y◦). Then
there exists anα > 0 and aδ > 0 such that for anyρ ∈ (0,δ ], x∈ x◦ + δB with
F(x) ∈C∩ (y◦+δB) one can find

(i) a u1 ∈ x+ρB such that

Fi(u1)≤ Fi(x)−αρ, i = 1,2, . . . ,m,

Fi(u1) = 0, i = m+1, . . . ,n,
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(ii) a u2 ∈ x+ρB such that

Fi(u2)≥ Fi(x)+αρ, i = 1,2, . . . ,m,

|Fi(u2)| ≥ αρ, i = m+1, . . . ,n.

Certainly it can make sense to consider a weakened version of Proposition 16 if
to assume strong regularity not of the “whole” ofF , but of the mapping consisting
only of those components which correspond to equalities and active inequalities.
The necessary changes in the conclusion part of the statement are obvious.
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