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ABOUT STABILITY OF EQUILIBRIUM SHAPES

Marc Dambrine
1

and Michel Pierre
1

Abstract. We discuss the stability of “critical” or “equilibrium” shapes of a shape-dependent energy
functional. We analyze a problem arising when looking at the positivity of the second derivative in
order to prove that a critical shape is an optimal shape. Indeed, often when positivity -or coercivity-
holds, it does for a weaker norm than the norm for which the functional is twice differentiable and
local optimality cannot be a priori deduced. We solve this problem for a particular but significant
example. We prove “weak-coercivity” of the second derivative uniformly in a “strong” neighborhood
of the equilibrium shape.

Résumé. Nous nous intéressons à la stabilité des formes critiques ou d’“équilibre” d’une énergie
dépendant de la forme. Dans le but de montrer qu’une forme critique est une forme optimale, nous
étudions la positivité de la dérivée seconde. En effet, quand elle a lieu, la coercivité n’est vraie que
dans une norme plus faible que celle pour laquelle l’énergie est différentiable: l’optimalité locale ne
peut donc pas en être déduite a priori. Nous résolvons cette difficulté dans un cas particulier mais
néanmoins significatif. Nous établissons de la “coercivité faible” de la dérivée seconde uniformément
dans un voisinage “fort” de la forme d’équilibre.
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1. Introduction

We consider here the question of stability of equilibrium shapes which can be stated as follows. Let Ω 7→ E(Ω)
be a real valued functional defined on a family O of subsets Ω of Rn. Let Ω0 be an equilibrium shape for E(.),
that is a shape at which the first derivative of E(.) on O vanishes (we also say “critical shape”, see below for a
precise definition). By stability, we mean that E(Ω0) is a strict local extremum, say a minimum, that is

E(Ω0) < E(Ω) (1.1)

for all Ω close enough to Ω0 and in O. If E(.) represents the total energy in some shape equilibrium problem,
this definition coincides with the classical notion of stability.

One of the difficulties is to understand properly the meaning of “being close to Ω0” and therefore to choose
the right topology on O. One of the classical techniques is then to compute the second derivative of E(.) at
Ω0 and to prove that it is strictly positive. However, in many applications, one is led to a situation where
the second derivative of E(.) at Ω0 is coercive (i.e. strictly positive) for a certain norm which turns out to be
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weaker than the norm for which differentiability and Taylor formula hold. Consequently, the existence of a local
minimum does not follow, even for the stronger topology. In order to show what could happen, let us consider
an elementary example of such a situation (not taken from shape optimization). Let L2(0, 1) and H1

0 (0, 1) be
equipped with their usual norm and recall that || · ||L2 ≤ || · ||H1

0
. Consider the functional defined as

E(u) = ‖u‖2L2(0,1) − ‖u‖4H1
0(0,1).

One can check that E is twice differentiable in H1
0 and that

E′(0) ≡ 0, ∀h ∈ H1
0 (0, 1), E′′(0).(h, h) = 2‖h‖2L2(0,1).

Therefore, E′′(0) is coercive for the weaker norm L2. This yields some “weak stability”: indeed, there is a local
minimum in each direction u=0 ∈ H1

0 since, for t ∈ R, E(tu0) = t2(||u0||L2 − t2||u0||4H1
0
). However, there is no

local minimum for E, even for the strong topology, since there is no r > 0 such that

‖u‖H1
0(0,1) < r =⇒ E(u) > E(0) = 0 i.e. ‖u‖2L2(0,1) > ‖u‖4H1

0(0,1),

as one can always construct a sequence in H1
0 (0, 1) such that

‖un‖H1
0 (0,1) = r/2, ‖un‖L2(0,1) → 0 when n→ +∞.

Our goal is to precisely analyze this difficulty in a particular, but significant situation coming from shape
optimization. Here, the second derivative of E(.) will exist in a C2,α-norm around Ω0, but coercivity will only
hold with respect to the H1/2(∂Ω0)-norm. This situation is typical in shapes problems. Here we choose E(.)
to be the energy associated with the classical Dirichlet problem and the measure of the admissible domains is
supposed to be given. This model problem arises in many examples: let us for instance mention the case where
E(.) is the total energy in a problem of equilibrium shapes for liquid metals confined in a electro-magnetic
field (see e.g. [1, 12, 13, 15]) We will restrict ourself to a simple two-dimensional model for which stability was
already investigated in [3,7–9,14,19]. The critical shapes we consider are assumed to be regular. Stability of a
critical shape Ω0 will mean that E(Ω0) is a strict minimum for E(Ω) among the admissible domains Ω in some
C2,α-neighborhood of Ω0 with the same measure as Ω0.

We prove here for this problem that stability does occur when H1/2-positivity of the second derivative holds
on the tangent subspace of constraints. The main idea is to compute the second derivative not only at the
equilibrium shape Ω0 but around Ω0 in the C2,α-sense and to prove a uniform H1/2(∂Ω0)-coercivity in a C2,α-
neighborhood of Ω0. This yields at least the existence of a local minimum in the C2,α-topology. This technique,
while developed here only in a specific case, may actually be used in many other situations like for the “exterior
shaping problem” where the Dirichlet problem is set in the exterior of the shapes, or also when the functional
depends on the perimeter and for more general functional depending on the state and on the gradient of the
state (see [4]). We think that the estimate of the variation of the second derivative is by itself interesting and
might lead to other applications. Note that the above question of choice of topologies was, in particular, raised
in [7].

2. The problem and the results

Let k be a given real-valued function with compact support in R2 and belonging to the C0,α(R2) Hölder
space (α ∈ (0, 1)) and let S > meas(support(k)) be a given constant where meas(.) stands for the Lebesgue
measure. We first define the family O of admissible shapes to be the family of open bounded subsets Ω of R2

with C2,α-boundary such that

meas(Ω) = S, (2.1)
support(k) ⊂ Ω. (2.2)
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We consider the shaping function E from O into R defined by

E(Ω) = −
∫

Ω

|∇uΩ|2,

where |.| denotes here the Euclidian norm and the function uΩ is the solution of the Dirichlet problem{
−∆uΩ = k in Ω,
uΩ = 0 on ∂Ω. (2.3)

Note that E(Ω) is, up to a positive constant, the “energy” associated with the Dirichlet problem (2.3) which is

1
2

∫
Ω

|∇uΩ|2 −
∫

Ω

k uΩ = −1
2

∫
Ω

|∇uΩ|2 = −
∫

Ω

k uΩ,

the above equalities following easily from multiplying (2.3) by uΩ. Note also that (see e.g. Sect. 4), with the
above regularity assumptions

∀Ω ∈ O, uΩ ∈ C2,α(Ω).

We now consider Ω0 a critical point of E under the constraint (2.1) that is to say an open set Ω0 in O where
the derivative of E(Ω) + Λ meas(Ω) with respect to Ω vanishes for some Λ ∈ R. As we will verify later (see
Sect. 5), this means - and we will assume it throughout the paper:

|∇uΩ0 |2 = Λ on ∂Ω0. (2.4)

The constant Λ is the Lagrange multiplier corresponding to the constraint meas(Ω) = S. We will recall below
(see beginning of Sect. 3) the definition of the spaces C2,α and of their norms.

We want to find sufficient conditions for the stability of Ω0 using second derivatives of the augmented
functional J(Ω) = E(Ω) + Λ meas(Ω). Let us first recall some facts about these derivatives.

Let us denote

V(η) := {Θ ∈ C2,α (R2,R2); ‖Θ− IdR2‖2,α < η}. (2.5)

Note that, for η small enough, any Θ ∈ V(η) is a diffeomorphism. For all Θ ∈ V(η), we set J̄(Θ) := J(Θ(Ω0)).
Then the second (classical) derivative of J̄ exists and one can show (see e.g. [2, 6, 16–18, 20, 21] or also Sect. 5
here) that, since Ω0 is a critical shape, the second derivative at Θ = Id(= Identity) has a specific structure,
namely

∀ξ ∈ C2,α(R2,R2), J̄ ′′(Id)(ξ, ξ) = B(ξ · n|∂Ω0 , ξ · n|∂Ω0) (2.6)

where B is a continuous bilinear form on C1,α(∂Ω0,R), n is the unit exterior normal vector field to ∂Ω0 and
·|∂Ω0 denotes the restriction of a function to ∂Ω0. As we will see in Section 5, in the situation we consider here,
the explicit expression of B is given as follows: set m = ξ · n|∂Ω0 , then

B(m,m) = 2 Λ
∫
∂Ω0

C0(m)m+ Cm2, (2.7)

where C denotes the curvature of ∂Ω0 and C0 denotes the so-called “capacity” or “Steklov-Poincaré” operator
on ∂Ω0. We refer e.g. to [5] or to Section 5 for a precise definition and properties of this operator but we can
already mention that: ∫

∂Ω0

C0(m)m =
∫

Ω0

|∇M |2
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where M is the harmonic extension of m to Ω0. Consequently, the first part of the integral is always strictly
positive (except if M = 0 which happens only if m is constant on each boundary of the connected components
of Ω0).

A necessary condition for stability is that the second derivative of J̄ be positive on the subspace which is
tangent to the constraint, namely the subspace of functions m as above such that

∫
∂Ω0

m = 0. Obviously, it is
the case if, for instance, Ω0 is convex; then B is even coercive in the space H1/2(∂Ω0) if Λ > 0. More general
situations are described in [4, 11]. See also more comments on this at the end of this paper.

The question we address here is the converse. For this, one has to assume, as usual, that the second derivative
is strictly positive in some sense. The natural space of coercivity here is H1/2(∂Ω0). The question is then the
following: assume that there exists c > 0 such that

∀m ∈ C2,α(∂Ω0,R) with

∫
∂Ω0

m = 0, B(m,m) ≥ c ||m||2H1/2(∂Ω0). (2.8)

Then, is E(Ω0) a strict local minimum with the constraint (2.1), local at least in the C2,α-topology?
We prove here that the answer to this question is positive:

Theorem 2.1 (Existence of a local strict minimum). Assume ∂Ω0 is of class C4,α and (2.8) holds for some
c > 0. Then there exists η > 0 such that for all Θ in V(η) with meas

(
Θ(Ω0)

)
= meas(Ω0) and different from

the identity

E
(
Θ(Ω0)

)
> E(Ω0).

The main point in the proof of this result will be contained in Theorem 2.5. In order to state it, we need to
introduce a few notations and to recall some more or less known facts on small regular perturbations of Ω0

and of ∂Ω0. Since we are in dimension two, ∂Ω0 is a union of q disjoint regular Jordan curves. For simplicity,
we will write the proof when q = 1 (i.e. Ω0 is simply connected). The changes needed in the general case are
obvious (see the remark at the end of Sect. 2.2 or also [4]).

Let γ denote a function in Ck,α([0, L],R2), with k ≥ 2, whose image is ∂Ω0, that is γ([0, L]) = ∂Ω0, γ(0) = γ(L),
γ is one-to-one from [0, L) into ∂Ω0,
∀s ∈ [0, L], ||γ′(s)|| = 1.

Here the parameter s is the length parameter and L is the total length of ∂Ω0. We denote by n the unit exterior
normal derivative to ∂Ω0. The orientation is chosen so that so that n(γ(s)) = R−π/2(γ′(s)) where R−π/2 is the
rotation of angle −π/2 in R2 or also n(γ(s)) = (γ′2(s),−γ′1(s)) where γ = (γ1, γ2). We will often write simply
n(s) = n(γ(s)).

For τ > 0, we denote by Tτ the tubular neighborhood of ∂Ω0 with radius τ , that is

Tτ = {x ∈ R2; distance(x, ∂Ω0) < τ}.
Lemma 2.2 (Normal representation of small perturbations of ∂Ω0). Assume ∂Ω0 is of class C2,α. Then, there
exists τ1 > 0 such that the mapping

(s, τ) ∈ [0, L)× (−τ1, τ1)→ γ(s) + τ n(s) ∈ Tτ1

is one-to-one. Moreover, there exists η1 > 0 such that for all Θ ∈ V(η1), there exists a unique dΘ ∈
C1,α([0, L], (−τ1, τ1)) with dΘ(0) = dΘ(L) and such that s → γ(s) + dΘ(s) n(s) is one-to-one from [0, L)
into Θ(∂Ω0). If ∂Ω0 is of class C3,α, then dΘ is of class C2,α and we have

‖dΘ‖2,α ≤ C ‖Θ− Id‖2,α. (2.9)
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Here our goal is to minimize the functional E(.) on open subsets with a prescribed measure. Therefore we want
to go from Ω0 to Θ(Ω0) for any Θ ∈ V(η1) with meas(Θ(Ω0)) = meas(Ω0), by a regular path t ∈ [0, 1] 7→ Ω(t)
where meas(Ω(t)) = meas(Ω0). This can be done through normal deformations obtained from the flow of a
divergence-free vector field as stated in the next proposition.

We first need to extend the vector-field n to the tubular neighborhood Tτ1 of ∂Ω0. We do it as follows: if
x ∈ Tτ1 , there exists (s, τ) unique in [0, L) × (−τ1, τ1) such that x = γ(s) + τn(s); then we define n(x) as
n(γ(s)). Thus for all (s, τ) ∈ [0, L)× (−τ1, τ1),

n(γ(s) + τ n(s)) = n(s). (2.10)

Proposition 2.3 (Area-preserving normal deformations of Ω0). We assume ∂Ω0 is of class C4,α. There exist
η2 > 0, τ2 > 0 such that, for all Θ ∈ V(η2) with meas(Θ(Ω0)) = meas(Ω0), there exists a divergence-free vector
field XΘ ∈ C2,α(R2,R2) and mΘ ∈ C2,α(Tτ2 ,R) such that XΘ = mΘ n on Tτ2 and the flow ΦΘ of XΘ maps
∂Ω0 onto Θ(∂Ω0) at time t = 1. Moreover, we have for all t ∈ [0, 1],

‖ΦΘ(t)− IdR2‖2,α ≤ C ‖Θ− IdR2‖2,α. (2.11)

Recall that the flow ΦΘ of the vector field XΘ is the solution of{
∂tΦΘ(t, x) = XΘ(ΦΘ(t, x))
ΦΘ(0, x) = x.

Since divXΘ = 0, we have det ΦΘ(t, x) ≡ 1, so that, in particular, meas(ΦΘ(t,Ω0)) = meas(Ω0). We will use
this area-preserving path t→ ΦΘ(t,Ω0) going from Ω0 to ΦΘ(1,Ω0) = Θ(Ω0) and control the variation of E(·)
along this path by studying the second derivative with respect to t of

eΘ(t) := E(ΦΘ(t,Ω0)).

Lemma 2.4. Assume Ω0 has a C4,α-boundary. Then, for all Θ ∈ V(η2), t 7→ eΘ(t) is twice differentiable on
[0, 1].

A proof of this lemma can be found in [7] (see also [6, 16, 20, 21]). The main arguments are also given here
while computing e′′Θ(t) (see Sect. 5).

We can now state our key-result.

Theorem 2.5. Assume ∂Ω0 is of class C4,α. Then there exist η0 > 0 and a function ω :]0, η0] 7→ R with
lim
r↓0

ω(r) = 0, such that for all η ∈ (0, η0] and all Θ ∈ V(η) with meas(Θ(Ω0)) = meas(Ω0), we have for all

t ∈ [0, 1],

|e′′Θ(t)− e′′Θ(0)| ≤ ω(η) ‖mΘ‖2H1/2(∂Ω0). (2.12)

It is easy to guess how Theorem 1 can be deduced from this theorem by application of Taylor formula (see the
end of this paper). The main point is that around the equilibrium shape Ω0, if the positivity condition (2.8)
holds, then the second derivative will actually be H1/2(∂Ω0)-coercive uniformly in a C2,α-neighborhood of Ω0.

The above property depends on the nature of the various terms which come out in the expression of the
second derivative. Obviously, it can be shown to be valid for many other similar functionals like those already
mentioned above (see [4, 11]).

With respect to the regularity assumptions, the hypothesis that the critical point should be of class C4,α is
not a restriction since Henrot and the second author have shown in [13] that if a regular Jordan curve with a
C2 boundary is a critical point for this functional, then it is in fact analytic.
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3. Proofs of geometrical results

Let us recall the classical definitions of Hölder spaces and norms. Let D be an open subset of Rp, p ≥ 1 and
let q ≥ 1. Then the C2(D̄,Rq)-norm is defined as

‖u‖2 = ‖u‖L∞(D,Rq) + sup
1≤i≤n

‖∂iu‖L∞(D,Rq) + sup
1≤i,j≤n

‖∂2
i,ju‖L∞(D,Rq).

For α ∈ (0, 1), the Hölder space C2,α(D̄,Rq) is the subspace of C2-functions such that

max
1≤i,j≤n

sup
(x,y)∈D2,

x 6=y

‖∂2
i,ju(x)− ∂2

i,ju(y)‖
‖x− y‖α < +∞,

and the C2,α-norm is defined as

‖u‖2,α = ‖u‖2 + max
1≤i,j≤n

sup
(x,y)∈D2,

x 6=y

‖∂2
i,ju(x)− ∂2

i,ju(y)‖
D‖x− y‖α ·

It gives to C2,α(D̄,Rq) a Banach space structure. A similar definition may be given for Ck,α(D̄,Rq), k ≥ 0 by
replacing the second derivatives by the kth derivatives.

3.1. Proof of Lemma 2.2.

This is rather classical but we give here an elementary proof whose ingredients will be partly used later in
this paper.

Assume first that ∂Ω0 is of class C2. Let us consider the mapping T from R × R into R2 defined by
T (s, τ) = γ(s) + τ n(s) which is of class C1 and L-periodic in s. The derivative of T at (s0, 0) is given by

T ′(s0, 0) = [γ′(s0) n(s0)]

so that detT ′(s0, 0) = −1. By the inverse mapping theorem, T is a local C1-diffeomorphism.
Let us show that, if τ1 is small enough, T is also a global bijection from [0, L)× (−τ1, τ1) into Tτ1 .
Let τ(s0), η(s0) > 0 be such that T is a diffeomorphism from (s0 − η(s0), s0 + η(s0)) × (−τ(s0), τ(s0)) onto

a neighborhood ω(s0) of γ(s0). Up to still reducing τ(s0), one can also assume that

ω(s0) ∩ ∂Ω0 = T
(
(s0 − η(s0), s0 + η(s0))× {0}

)
. (3.1)

Let r(s0) be such that B(γ(s0), r(s0)) ⊂ ω(s0). One can find a finite covering of ∂Ω0 by the union of the
{∂Ω0 ∩B(γ(si), 1

2 r(si)), si ∈ [0, L), i = 1...p}. Next we set:

r1 := min{r(si), i = 1...p}, τ1 := min{r1/5, τ(si), i = 1...p}.

Then the announced global bijection property holds. Indeed, assume

γ(s) + τ n(s) = γ(ŝ) + τ̂ n(ŝ), with τ, τ̂ ∈ (−τ1, τ1), s, ŝ ∈ [0, L). (3.2)

Then

‖γ(s)− γ(ŝ)‖ ≤ τ + τ̂ ≤ 2 τ1 <
1
2
r1.
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Therefore, γ(s) and γ(ŝ) belong to the same ball B(γ(si), r(si)). Then, by (3.1), there exist

σ, σ̂ ∈ (−η(si) + si, si + η(si)), σ = s mod (L), σ̂ = ŝ mod (L),

such that

γ(s) = γ(σ), γ(ŝ) = γ(σ̂).

Then, (3.2) can be rewritten

γ(σ) + τ n(σ) = γ(σ̂) + τ̂ n(σ̂), with τ, τ̂ ∈ (−τ1, τ1), σ, σ̂ ∈ (−η(si) + si, si + η(si)).

By the local bijection property of T , σ = σ̂, τ = τ̂ . Since now γ is a bijection from [0, L) onto ∂Ω0, s, ŝ ∈ [0, L)
and γ(s) = γ(ŝ) imply finally that s = ŝ.

For the regularity, we know that (s̃(x), τ̃ (x)) = T−1(x) is of class C1 on Tτ1 . We then easily check that
∇τ̃(x) = n(s̃(x)) (see 3.4 below). Therefore, τ̃ ′ is of class C1 and τ̃ is of class C2 (note that τ̃ is the distance
function to ∂Ω0 and it is classical that it has the regularity of ∂Ω0, see e.g. [10]). If γ is of class Ck,α, then T
and T−1 are of class Ck−1,α. So is τ̃ ′ so that τ̃ is of class Ck,α.

Let us now consider Θ ∈ V(η1), η1 > 0; recall that Θ is then of class C2,α and that γ is assumed to be of class
Ck,α with k = 2 or 3. The mapping Y (s) = Θ(γ(s)) is of class C2,α and, if η1 is small enough so that Y (s) ∈ Tτ1
for all s, with the previous notations and ψ(s) := s̃(Y (s)), one can write

Y (s) = γ(ψ(s)) + τ̃(Y (s))n(ψ(s)). (3.3)

For the regularity, ψ is of class Ck−1,α and τ̃(Y ) of class C2,α. Let us check that ψ is invertible by proving that
its derivative does not vanish. It is given by

ψ′(s) = s̃′(Y (s))Y ′(s).

We can deduce the expression of s̃′ by inverting

T ′(s, τ) = [γ′(s) + τn′(s) n(s)] (3.4)

and we easily obtain

∇s̃(x) = −γ′(s̃(x))/detT ′(x). (3.5)

Since T is a diffeomorphism, detT ′ does not vanish so that ψ′ vanishes if and only if 0 = γ′(s) · Y ′(s). It is not
the case if η1 is small enough since

|γ′(s) · Y ′(s)− 1| = |γ′(s) · (Y ′(s)− γ′(s))‖ ≤ ‖Y ′(s)− γ′(s)‖ ≤ C ‖Θ− Id‖C1

where we used Y ′ = DΘ γ′ for the last inequality. Therefore ψ is invertible and is a bijection from [0, L) into
[ψ(0), ψ(0) + L). Plugging ψ−1(s) in place of s into (3.3) leads to

Y (ψ−1(s)) = γ(s) + dΘ(s)n(s) (3.6)

where we set dΘ(s) = τ̃(Y (ψ−1(s))). We check that dΘ is of class Ck−1,α.
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We finish the proof of Lemma 2.2 by obtaining the estimate on dΘ when k = 3. We will use the following
technical lemma whose proof is left to the reader:

Lemma 3.1. Let p, q ≥ 1, A : Rp → Rp of class C2,α, β : Rq → Rp of class C2,α and B : Rp → Rp of class
C3,α. Then, there exists C1 = C1(‖β‖C2,α) and C2 = C2(‖B‖C3,α , ‖A‖C2,α) such that

‖A ◦ β‖C2,α ≤ C1 ‖A‖C2,α , (3.7)
‖B ◦A−B‖C2,α ≤ C2 ‖A− Id‖C2,α . (3.8)

Remark. Note that C2 involves the third derivative of B.

We first apply twice the above lemma to bound the C2,α-norm of ψ = s̃(Θ(γ)) by a constant depending on
the data and on η1 (we use here that s̃ is of class C2,α and therefore that γ is of class C3,α). We deduce that
the C2,α-norm of ψ−1 is also bounded by a similar constant.

Next we apply the above lemma with A = dΘ(ψ) and β = ψ−1 to get

‖dΘ‖C2,α ≤ ‖dΘ(ψ)‖C2,α .

Then we use

dΘ(ψ(s)) = τ̃ ◦Θ ◦ γ(s) = τ̃ ◦Θ ◦ γ(s)− τ̃ ◦ γ(s) = [τ̃ ◦Θ− τ̃ ] ◦ γ,

and we apply again the first part of the above lemma with A = τ̃ ◦Θ− τ̃ and β = γ to obtain

‖dΘ ◦ ψ‖C2,α ≤ C ‖τ̃ ◦Θ− τ̃‖C2,α .

Finally we use the second part of the above lemma to conclude (recall that by previous remarks, here τ̃ is of
class C3,α).

3.2. Proof of Proposition 2.3

We will construct the function mΘ from R2 into R so that XΘ = mΘn be divergence-free. Here, n denotes
the extension of the unit normal to Tτ1 as defined in (2.10). We will use the local coordinates (s, τ) introduced
in Lemma 1 to first define m in a neighborhood of ∂Ω0. Let us compute div(n) by differentiating

x = γ(s̃(x)) + τ̃(x)n(x)

with respect to x:

Id = Dγ(s̃(x))Ds̃(x) + n(x)Dτ̃ (x) + τ̃(x)Dn(x).

We use the expressions of the derivatives of s̃, τ̃ obtained above (∇s̃ is given in (3.5) and ∇τ̃(x) = n(x)) and
we take the trace of the latter equality to get

2 = −(detT ′(x))−1 + 1 + τ̃(x)div(n)(x).

By using also (see 3.4),

detT ′(s, τ) = det(γ′,n)(s) + τdet(n′,n)(s) = −1 + τdet(n′,n)(s),

we deduce the expression of div(n):

div(n)(s, τ) = τ−1(1 + (detT ′)−1) =
det(n′,n)(s)

τdet(n′,n)(s)− 1
· (3.9)
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From now on, we introduce the notation a(s) := det(n,n′)(s). Note that a(s) is exactly the curvature at γ(s)
of the curve ∂Ω0 seen from inside. It is of class C2,α since ∂Ω0 is assumed to be of class C4,α. An important
remark on (3.9) is that

∀(s, τ) ∈ Tτ1 , 1 + τa(s) > 0,

since det T ′ 6= 0 on Tτ1 . We fix τ2 ∈ (0, τ1) (depending only on ∂Ω0 and τ1) such that

∀(s, τ) ∈ T̄τ2 , 1 + τa(s) ≥ cτ2 > 0. (3.10)

For vector fields of the form X = m(s, τ)n, we have

divX = (∇m,n) +mdivn = ∂τm(s, τ) +
a(s)m(s, τ)
1 + τa(s)

, (3.11)

so that X = mn will be divergence-free if it satisfies:(
1 + τa(s)

)
∂τm(s, τ) + a(s)m(s, τ) = 0. (3.12)

This leads to

m(s, τ) =
f(s)

1 + τa(s)
(3.13)

where f is to be determined as follows: let Θ ∈ V(η2) with η2 = min{η1, τ2} (where η1, τ2 are defined in Lemma 1
and 3.10); then f should be such that the following boundary conditions be satisfied

Φ(0, ∂Ω0) = ∂Ω0,Φ(1, ∂Ω0) = Θ(∂Ω0) (3.14)

where Φ(t, .) is the flow of X, that is the solution of{
∂tΦ(t, x) = X(Φ(t, x)), t > 0,
Φ(0, x) = x.

Since X = mn, the trajectories of Φ(t, x) starting at x = γ(s) ∈ ∂Ω0 are parallel to n, at least for small t, so
that

Φ(t, γ(s)) = γ(s) + τ(s, t)n(s). (3.15)

The above system reduces to the scalar ordinary differential equation in τ(., .)

∂tτ(s, t) = m(s, τ(t, s)), (3.16)

and the boundary conditions (3.14) become

τ(s, 0) = 0, τ(s, 1) = dΘ(s), (3.17)

where dΘ is defined in Lemma 1. According to (3.13), the equation (3.16) is equivalent to the existence of a
function C(s) such that

1
2
a(s)τ(s, t)2 + τ(s, t) = f(s)t+ C(s). (3.18)
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Now f, C have to satisfy (3.17): the condition τ(s, 0) = 0 leads to C(s) = 0 and the other one to

f(s) = −
[1
2
a(s)dΘ(s)2 + dΘ(s)

]
. (3.19)

It remains to prove that, with this choice of f , the equation (3.18) does have a solution τ(s, t) for t ∈ [0, 1]. It
is indeed the case since it is a quadratic equation in τ(s, t) with discriminant

∆(t) = 1 +
[
a(s)2dΘ(s)2 + 2a(s)dΘ(s)

]
t.

This quantity is linear in t, nonnegative at t = 0 as well as at t = 1 since:

∆(1) =
[
a(s)dΘ(s) + 1

]2
.

Recall that, by (3.10) and η2 ≤ η1, 1 +a(s)dΘ(s) ≥ cτ2 . We deduce the existence on [0, 1] of a solution to (3.18)
given by {

τ(s, t) =
[
− 1 +

√
1 + t(a(s)2dΘ(s)2 + 2a(s)dΘ(s))

]
/a(s), if a(s) 6= 0

τ(s, t) = tdΘ(s), if a(s) = 0.
(3.20)

At this step, for all Θ ∈ V(η2), we have constructed a divergence-free vector-field X = mn in the neighbor-
hood Tτ1 of ∂Ω0 where m, given by the formulas (3.13, 3.19) is of class C2,α. We will now use it to define the
divergence-free vector-field XΘ on the whole space R2 (see also the remark at the end of this paragraph).

We denote by ζ a C∞0 (R2,R)-function, identically equal to 1 on Tτ2 and with compact support in Tτ1 . Recall
that Φ([0, 1]× ∂Ω0) ⊂ Tτ2 . Since div(X) = 0 on Tτ1 , there exists ξ ∈ C3,α locally so that X = (ξy,−ξx). But,
as proved e.g. in [13], this is valid globally on Tτ1 since

0 =
∫
∂Ω0

(XΘ,n) =
∫
∂Ω0

m =
∫ L

0

m(s, 0) ds, (3.21)

as we check below. Then we set

XΘ := ((ξζ)y ,−(ξζ)x).

Obviously XΘ coincides with X = mn on Tτ2 and, by construction of m, satisfies all the conclusions of
Proposition 2.3.

To obtain the final estimate on ΦΘ, recall first that, at least on T (η2)

XΘ =
f(s̃)

1 + τ̃ a(s̃)
n(s̃), f = −1

2
ad2

Θ − dΘ.

By using Lemma 3.1 and the estimate of Lemma 2.2, we deduce

‖XΘ‖C2,α ≤ C ‖dΘ‖C2,α ≤ C ‖Θ− Id‖C2,α .

Again by Lemma 3.1

‖XΘ(ΦΘ(t))‖C2,α ≤ C
(
‖ΦΘ(t)‖C2,α

)
‖XΘ‖C2,α .

We then deduce the announced estimate on ΦΘ from the latter estimates and the fact that ΦΘ is the flow ofXΘ.
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It remains to check (3.21). This is coming from the assumption that meas(Θ(Ω0)) = meas(Ω0). Indeed, this
implies

0 =
∫ L

0

{
(
γ(s) + dΘ(s)n(s)

)
∧
(
γ(s) + dΘ(s)n(s)

)′ − γ(s) ∧ γ(s)′} ds

which gives (we drop the s-dependence)

0 =
∫ L

0

dΘ(n ∧ γ′ + γ ∧ n′) + d′Θγ ∧ n+ d2
Θn ∧ n′

or after integrating the term in d′ by parts and using the notation a(s) introduced before:

0 =
∫ L

0

2dΘ + d2
Θa(s).

But, according to (3.13, 3.19), this is exactly (3.21).

Remark. About the extension of X outside Tτ1 : the fact that divX = 0 on Tτ1 implies that, for any extension
of X to R2, t→ meas

(
Φ(t,Ω0)

)
is linear in t since the second derivative vanishes. As Φ(1) is a diffeomorphism

and Φ(1, ∂Ω0) = Θ(∂Ω0), then Φ(1,Ω0) = Θ(Ω0). Since meas
(
Θ(Ω0)

)
= meas(Ω0), then t→ meas

(
Φ(t,Ω0)

)
is

constant. Therefore, any extension of X would be convenient for our purpose. This remark is actually to be
used in the general case when ∂Ω0 is a finite number of Jordan’s curves and Tτ1 a neighborhood of ∂Ω0. Then,
if Ω0 is for instance not connected, we would not be able to extend X as a free-divergence vector field on R2.

3.3. Some more estimates

With the notations of the previous section, we have:

Proposition 3.2. Under the assumption of Proposition 2.3, there exists a constant C depending only on the
data such that for all Θ ∈ V(η2) and all t ∈ [0, 1]

‖mΘ(ΦΘ(t))−mΘ‖L2(∂Ω0) ≤ C‖mΘ‖L2(∂Ω0)‖Θ− Id‖2,α. (3.22)

‖mΘ(ΦΘ(t))−mΘ‖H1/2(∂Ω0) ≤ C‖mΘ‖H1/2(∂Ω0)‖Θ− Id‖2,α. (3.23)

Proof. Recall (see 3.13, 3.20) that, in terms of local coordinates and with the previous notations

mΘ(ΦΘ(t, γ(s))) −mΘ(γ(s)) = m(s, τ(s, t)) −m(s, 0) = f(s)[(1 + τ(s, t)a(s))−1 − 1], (3.24)

f(s) = m(s, 0) = mΘ(γ(s)) = −
[1
2
a(s)dΘ(s)2 + dΘ(s)

]
. (3.25)

As a consequence

‖mΘ(ΦΘ(t, .))−mΘ(.)‖L2(∂Ω0) ≤ ‖mΘ(.)‖L2(∂Ω0) sup
s∈[0,L]

|(1 + τ(s, t)a(s))−1 − 1)|.

We know from (3.10) that 1 + τ(s, t)a(s) is bounded from below by cτ2 on {(s, t) ∈ [0, L]× [0, 1]}. Therefore,
since (1 + τa)−1 − 1 = −τa/(1 + τa)

sup
s∈[0,L]

|(1 + τ(s, t)a(s))−1 − 1)| ≤ c−1
τ2 ‖a‖∞ sup

(s,t)∈[0,L]×[0,1]

|τ(s, t)|.
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Using (3.20), we bound τ from above by

|τ(s, t)| ≤ |a(s)|dΘ(s)2 + 2|dΘ(s)| ≤ C‖dΘ‖∞ ≤ C‖Θ− Id‖2,α,

the latter inequality coming from (2.9). This proves the first estimate of Proposition 3.2. For the second one,
we use the following lemma:

Lemma 3.3. Let v ∈ H1/2(∂Ω0), w ∈ C1(∂Ω0). Then, v w belongs to H1/2(∂Ω0) and

‖v w‖H1/2(∂Ω0) ≤ C‖v‖H1/2(∂Ω0)‖w‖C1(∂Ω0) (3.26)

for some constant C depending only on Ω0.

We postpone the proof of this lemma and continue the proof of the proposition. From this lemma and the
expression (3.24), we obtain:

‖mΘ(ΦΘ(t, .)) −mΘ(.)‖H1/2(∂Ω0) ≤ ‖mΘ(.)‖H1/2(∂Ω0)‖(1 + τ(., t)a(.))−1 − 1)‖C1([0,L]).

By differentiation with respect to s, we see that

‖∂s(1 + τ(., t)a(.))−1‖L∞([0,L]) ≤ c2τ2‖∂s(a(.)τ(., t))‖∞.

Using the expression of τ in (3.20), we obtain the existence of C such that

‖∂s(a(.)τ(., t))‖∞ ≤ C‖dΘ‖C1 ≤ C‖Θ− Id‖2,α.

This finishes the proof of the proposition.

Proof of Lemma 3.3. Let V be an harmonic extension of v to Ω0 and W a C1-extension of w to Ω0 so that, for
some constant C depending only on Ω0,

‖V ‖H1(Ω0) ≤ C‖v‖H1/2(∂Ω0), ‖W‖C1(Ω0) ≤ C‖w‖C1(∂Ω0).

We then have

‖v w‖H1/2(∂Ω0) ≤ C ‖V W‖H1(Ω0).

We now use

‖V W‖L2(Ω0) ≤ ‖V ‖L2(Ω0)‖W‖L∞(Ω0),

‖∇V W‖L2(Ω0) ≤ ‖∇V ‖L2(Ω0)‖W‖L∞(Ω0), ‖V ∇W‖L2(Ω0) ≤ ‖V ‖L2(Ω0)‖∇W‖L∞(Ω0)

and the estimate (3.26) follows.

We finish this section by stating some more geometric estimates.

Proposition 3.4. There is a constant C > 0 such that for all Θ ∈ V(η2) and all t ∈ [0, 1]:
1. ‖DΦΘ(t)− IdR2‖L∞ + ‖D2ΦΘ(t)‖L∞ ≤ C ‖Θ− IdR2‖2,α
2. ‖DΦΘ(t)−1 − IdR2‖L∞ + ‖D

[
DΦΘ(t)−1

]
‖L∞ ≤ C ‖Θ− IdR2‖2,α

3. if nt denotes the unit normal field to Ωt,

‖nt(ΦΘ(t))− n‖C1(∂Ω0) ≤ C ‖Θ− IdR2‖2,α (3.27)
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4. if J(t) = detDΦΘ(t) |tDΦΘ(t)−1n| then

‖J(t)− 1‖L∞(∂Ω0) ≤ C ‖Θ− IdR2‖2,α. (3.28)

Proof of Proposition 3.4. Note first that, thanks to the estimate (2.11), it is sufficient to bound each of the four
expressions in the Proposition by C ‖ΦΘ(t)− IdR2‖2,α.

The first estimate comes from the definition of the C2,α-norm applied to ΦΘ(t)− IdR2 .
For the second one, use that for all x ∈ R2

DΦΘ(t)−1(x) = IdR2 +
∞∑
n=1

[IdR2 −DΦΘ(t)(x)]n. (3.29)

It follows that (up to still reducing η2)

‖DΦΘ(t)−1(x)− IdR2‖ ≤ ‖DΦΘ(t)(x) − IdR2‖
1− ‖DΦΘ(t)(x) − IdR2‖ ≤ C‖DΦΘ(t)(x) − IdR2‖.

For the estimate on the second derivative, we differentiate (3.29) and bound norms from above similarly.
For the third estimate, let us denote

z(s) := ∂s[ΦΘ(t, γ(s))] = DΦΘ(t, γ(s))γ′(s).

Since n(s) and nt
(
ΦΘ(t, γ(s))

)
are respectively deduced from γ′(s) and z(s)/|z(s)| by a rotation of angle −π/2,

we have

‖nt(ΦΘ(t)) − n‖C1(∂Ω0) = ‖ z|z| − γ
′‖C1(∂Ωt).

We will estimate the right-hand side. We have

||z(s)| − 1| = ||z(s)| − |γ′(s)|| ≤ |z(s)− γ′(s)| ≤ ‖DΦΘ(t, γ(s))− Id‖ ≤ ‖ΦΘ(t)− IdR2‖2,α.

If η2 is chosen small enough – and we assume it here – this implies

||z(s)| − 1| ≤ C ‖Θ− IdR2‖2,α ≤ 1/2, |z(s)| ≥ 1/2, ||z(s)|−1 − 1| ≤ C ‖Θ− IdR2‖2,α

∣∣ z(s)
|z(s)| − γ

′(s)
∣∣ ≤ |z(s)|

∣∣|z(s)|−1 − 1
∣∣+ |z(s)− γ′(s)| ≤ C ‖Θ− IdR2‖2,α,

whence the L∞-estimate of z|z|−1 − γ′. For the L∞-estimate of its derivative, note first that

z′(s) = D2ΦΘ(t, γ(s))(γ′(s), γ′(s)) +DΦΘ(t, γ(s))γ′′(s)

so that

|z′(s)− γ′′(s)| ≤ ‖D2ΦΘ(t)‖∞ + ‖DΦΘ(t)− Id‖|γ′′(s)| ≤ C ‖ΦΘ − Id‖2,α.

Now, we use

∂s(z(s)|z(s)|−1) = z′(s)|z(s)|−1 − z(s)|z(s)|−3〈z(s), z′(s)〉.
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We treat this expression as before, using in particular the estimate of ||z(s)|−1 − 1|, the only new term being
〈z(s), z′(s)〉 which we estimate as follows:

|〈z, z′〉| = |〈z, z′〉 − 〈γ′, γ′′〉| ≤ |〈z − γ′, z′〉+ 〈γ′, z′ − γ′′〉|

and, as shown before, we obtain a bound from above by C ‖Θ− IdR2‖2,α.
Finally, the variation of J(t) in (3.28) is then easily estimated.

4. Properties of uΩt

Here again we fix Θ ∈ V(η2). We consider the solution uΩt of the following Dirichlet problem on the moving
domain Ωt = ΦΘ(t,Ω0) {

−∆uΩt = k in Ωt,
uΩt = 0 on ∂Ωt.

(4.1)

We will often write u(t) for uΩt . We will now make estimates on the “transported” solution ũ(t) defined on the
fixed domain Ω0 by

ũ(t) = uΩt ◦ ΦΘ(t) (= u(t) ◦ ΦΘ(t)).

Then ũ(t) is solution of a new problem on the fixed domain, namely

−L(Θ, t) ũ(t) = k ◦ ΦΘ(t) on Ω0, ũ(t) = 0 on ∂Ω0, (4.2)

where L(Θ, t) is the differential operator explicitly given by:

L(Θ, t) = ai,j(t)Di,j + bi(t)Di (4.3)

=
[
∂1Ψi

t∂1Ψj
t + ∂2Ψi

t∂2Ψj
t

]
Di,j +

[
∂2

1,1Ψi
t + ∂2

2,2Ψi
t

]
D′i (4.4)

where Ψt = ΦΘ(t)−1. We then have the following main estimate.

Proposition 4.1. There exists a function ω : [0, 1] → R with ω(0+) = limr↓0 ω(r) = 0 (“modulus of continu-
ity”) such that:

sup
t∈[0,1]

‖ũ(t)− uΩ0‖C2(Ω̄0) ≤ ω
(
‖Θ− IdR2‖2,α

)
. (4.5)

Remark. The modulus of continuity ω depends on the regularity of the right-hand side k in (4.1). If we assume
k of class C2, then one can choose ω(η) = C η and even have the C2,α norm instead of the C2 norm. More
comments and indications of the proof of this remark may be found after the proof of the proposition.

Proof of Proposition 4.1. The main idea is here to use Schauder’s estimates in Hölder spaces for the solution of
the Dirichlet problem governed by an uniformly elliptic operator with Hölder continuous coefficients. Indeed,
we have:

Lemma 4.2. Assume η2 is small enough. Then, there is a constant U depending only on the data and on the
C2,α-norm of Θ such that for all t ∈ [0, 1]

‖ũ(t)‖2,α,Ω0 ≤ U. (4.6)
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Proof of Lemma 4.2. Let us first remark that the operators L(Θ, t) are uniformly elliptic. Indeed, the part of
second order of L(Θ, t) can be written matricially as

A(Θ, t) =
(
∂1Ψ1

t ∂2Ψ1
t

∂1Ψ2
t ∂2Ψ2

t

)(
∂1Ψ1

t ∂1Ψ2
t

∂2Ψ1
t ∂2Ψ2

t

)
= DΨt

tDΨt.

This proves that A(Θ, t) is a symmetric nonnegative matrix. Since detDΨt = 1 6= 0, it is positive definite.
The smallest eigenvalue being a continuous function of t, it is uniformly bounded from below on the compact
interval [0, 1]. Actually the bound depends only on the C2,α-norm of Θ if η2 is small enough since

‖DΨt
tDΨt − Id‖ ≤ ‖DΨt

tDΨt −DΨt‖+ ‖DΨt − Id‖
≤ ‖Ψt − Id‖2,α ≤ C ‖Θ− Id‖2,α ≤ C η2.

Now, since Ψt = ΦΘ(t)−1 is of class C2,α, the coefficients of L(Θ, t) are C0,α with a norm depending only on the
C2,α-norm of ΦΘ(t)−1, that is also on the C2,α-norm of Θ. From classical Schauder’s estimates applied to the
equation (4.2) (see for example [10]), there is constant C depending only on the data and on the C2,α -norm of
Θ such that

‖ũ(t)‖2,α,Ω0 ≤ C ‖k ◦ ΦΘ(t)‖0,α,Ω0 .

Since k ∈ C0,α and ΦΘ(t) ∈ C2,α, then k ◦ ΦΘ(t) ∈ C0,α and the Lemma 4.2 is proved.
We can now finish the proof of Proposition 4.1. We define ω as

∀η ∈]0, η2[, ω(η) := sup
Θ∈V(η),t∈[0,1]

‖ũ(t)− uΩ0‖C2(Ω̄0).

Lemma 4.2 guarantees that this quantity is well defined, and we just need to prove that ω(0+) = 0. This follows
from the compact embedding of C2,α(Ω0) into C2(Ω̄0). Indeed, if ω(0+) 6= 0, there are a > 0 and sequences
tn ∈ [0, 1],Θn ∈ V(η2),Ωn = ΦΘn(tn,Ω0), ũn = uΩn ◦ ΦΘn(tn) such that

‖Θn − IdR2‖2,α ≤ 1/n, (4.7)
‖ũn − uΩ0‖C2(Ω̄0) ≥ a > 0. (4.8)

The sequence ũn is bounded in C2,α(Ω̄0) and by compactness, there is a subsequence converging in C2(Ω̄0) to
some ulim ∈ C2(Ω̄0) and a subsequence of tn converging to some tlim ∈ [0, 1]. We then remark that

L(Θn, tn)ũn −∆ulim =
[
L(Θn, tn)−∆

]
ũn + ∆

[
ũn − ulim

]
.

Passing to the limit as n→∞ shows that ulim is solution of the equation

∆u = k in Ω0,
u = 0 on ∂Ω0.

This is in contradiction with (4.8) as the Dirichlet problem has a unique solution in C2(Ω̄0) namely uΩ0 . This
proves that ω(0+) = 0.

Remark. As a consequence of Proposition 4.1, ũ(t) is continuous into C2(Ω̄0) at t0 = 0. Since t0 = 0 is
not particular for problem (4.1), the same is true for t → u(t) ◦ ΦΘ(t) ◦ ΦΘ(t0)−1 at t = t0 ∈ [0, 1] and, by
composition:

t ∈ [0, 1]→ ũ(t) ∈ C2(Ω̄0) is continuous. (4.9)
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Remark. Another approach to estimate a norm of the difference ũ(t) − uΩ0 would be the following. For
simplicity, we set u0 := uΩ0 and k̃(t) := k ◦ ΦΘ(t). We have from (4.2) and from (4.1) with t = 0

−∆(ũ(t)− u0) = k̃(t)− k + [L(Θ, t)−∆](ũ(t)). (4.10)

Since ũ(t)− u0 = 0 on ∂Ω0, we can apply the Schauder’s estimates again to (4.10)

‖ũ(t)− u0‖2,α,Ω0 ≤ C ‖k̃(t)− k‖0,α,Ω0 + ‖[L(Θ, t)−∆](ũ(t))‖0,α,Ω0 .

Thanks to the C2,α estimate of Lemma 4.2, the C0,α norm of the second term of the right-hand side is easily
estimated by ‖ΦΘ(t)− Id‖2,α. But, even if k̃(t)−k is indeed in C0,α, its C0,α-norm cannot be estimated in terms
of ‖ΦΘ(t)− Id‖2,α.

What one can at least say is that:

‖k̃(t)− k‖∞ ≤ ‖k‖0,α ‖ΦΘ(t)− Id‖α∞.

By interpolation, for ε ∈ (0, α), we get an estimate of ‖k̃(t)− k‖0,ε with a modulus of continuity in ηα−ε. This
yields (4.1) and even a C2,ε-estimate with an explicit modulus of continuity. One can also check that, if k is of
class C2, then, the C0,α-norm (and even the Lipschitz-norm) of k̃(t)− k can be estimated by C ‖ΦΘ(t)− Id‖2,α.
Then one obtains a C2,α-estimate of ũ(t)− uΩ0 .

5. Proof of the theorems

Again, we fix Θ a diffeomorphism in V(η2) such that meas
(
Θ(Ω0)

)
= meas(Ω0). As in the previous sections,

we consider the function mΘ, the vector field XΘ = mΘ n, ΦΘ, the domains Ωt = ΦΘ(t,Ω0), the solutions
u(t) = uΩt , ũ(t) = u(t) ◦ ΦΘ(t). As announced in the introduction, we study the second derivatives of
t ∈ [0, t] → E(Ωt) + Λ meas(Ωt). Since, ∀t ∈ [0, 1], meas(Ωt) = meas(Ω0), it coincides with the second
derivative of t→ E(Ωt). We denote

eΘ(t) := E(Ωt) = − d
dt
‖u(t, .)‖2H1

0 (Ωt)
.

To compute the second derivative, we use the following classical lemma [6,16,21].

Lemma 5.1. Let H : [0, 1]× R2 7→ R be such that H, ∂tH,∇H ∈ C([0, 1];L1(R2)). Then

d
dt

∫
Ωt

H(t, x)dx =
∫

Ωt

[
∂tH(t, x) + div{H(t, x)XΘ(x)}

]
dx. (5.1)

Remark. As usual in shape differentiation, this lemma may be extended to functions defined only on Ωt. If for
instance (this will be enough for us here),

H(t) ◦ ΦΘ(t) ∈ C1([0, 1]; C0(Ω̄0)) ∩ C0([0, 1]; C1(Ω̄0)), (5.2)

then we may define ∂tH(t) ∈ C0(Ω̄t) in such a way that (5.1) remains valid. This may be done through a given
linear continuous extension operator P from Ck(Ω̄0) into Ck(R2), k = 0, 1, 2. We set

H̄(t) := P
(
H(t) ◦ ΦΘ(t)

)
◦ Φ−1

Θ (t), (5.3)

and, by definition ∂tH(t) := ∂tH̄(t) on Ω̄t (note that H(t) and H̄(t) also coincide on Ω̄t). Applying Lemma 5.1
as stated above to H̄ yields the formula (5.1) for H.
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Here, ũ(t) = u(t) ◦ ΦΘ(t) is continuous into C2(Ω̄0) (see (4.9)) so that its extension ū is well-defined. As we
will see below, its derivative ∂tu(= ∂tū) is well-defined and

∂tu ◦ ΦΘ(t) ∈ C0(0, 1; C1(Ω̄0)). (5.4)

We will use this in the next computations and we will often write u for ū.
By differentiating formally (4.1) with respect to t, we see that ∂tu(t) should be solution of −∆(∂tu(t)) = 0 in Ωt,

∂tu(t,ΦΘ(t)) + 〈∇u(t,ΦΘ(t)),XΘ(ΦΘ(t))〉 = 0 on ∂Ω0

or also ∂tu(t) + 〈∇u(t),XΘ〉 = 0 on ∂Ωt.
(5.5)

Since ∇u(t) ∈ C1,α(∂Ωt), classical regularity results from Schauder theory (see e.g. [10]) ensure the existence of
a C1,α-solution to this equation with a C1,α-norm uniformly bounded for t ∈ [0, 1]. Moreover, its composition
with ΦΘ(t) is continuous with values into C1(Ω̄0) since it is the case of t → ∇u(t) ◦ ΦΘ(t). We easily deduce
that this solution is not hing but ∂tu and the formal computation is justified as well as (5.4).

Derivation of the magnetic energy

We apply Lemma 5.1 to H = |∇u|2 = |∇ū|2.

d
dt
‖u(t, .)‖2H1

0(Ωt)
= 2

∫
Ωt

〈∇u(t, .),∇∂tu(t, .)〉dx+
∫

Ωt

div
[
|∇u(t, .)|2XΘ

]
dx.

The first term of this sum vanishes since by Green’s formula, we have:∫
Ωt

〈∇u(t, .),∇∂tu(t, .)〉dx = −
∫

Ωt

u(t, .)∆x∂tu(t, .)dx+
∫
∂Ωt

u(t, .)〈∇∂tu(t, .),nt〉dσ.

This is equal to zero since u(t) = 0 on ∂Ωt and ∆∂tu = 0 on Ωt; (recall that we denote by nt the unit normal
derivative to Ωt). So we obtain:

d
dt
‖u(t, .)‖2H1

0(Ωt)
=
∫

Ωt

div
[
|∇u(t, .)|2XΘ

]
dx. (5.6)

As a first consequence, using Green’s formula, we have

d
dt t=0

[Λ meas(Ωt) +E(Ωt)] =
∫
∂Ω0

[Λ− |∇uΩ0 |2]〈XΘ,n〉dσ.

Since Ω0 is a critical shape, we see on this formula (valid for any vector field in place of XΘ) that Λ = |∇uΩ0 |2
on ∂Ω0 as announced in (2.4).

Next, applying Lemma 5.1 (at least formally, see below) to the expression (5.6) leads to the second derivative

d2

dt2
‖u(t, .)‖2H1

0(Ωt)
=
∫

Ωt

div
[
∂t|∇u(t, .)|2XΘ

]
dx+

∫
Ωt

div{div
[
|∇u(t, .)|2XΘ

]
XΘ}dx. (5.7)
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As such, these expressions may not be defined, but we integrate by parts and we set

e′′Θ(t) = −2B(t)−A(t), (5.8)

B(t) =
∫
∂Ωt

〈∇∂tu(t),∇u(t)〉〈XΘ,nt〉dσ,

A(t) =
∫
∂Ωt

〈∇|∇u(t)|2,XΘ〉〈XΘ,nt〉dσ,

where we used that div XΘ = 0 to simplify the expression of A(t). To justify this computation, we may apply
Lemma 5.1 to Hn(t) = div

[
|∇Un(t)|2XΘ

]
where Un are regularized approximations by convolution in RN of ū.

Because of the regularity of ū at the boundary, the convergence under the integrals holds uniformly,

The study of A(t)

We first change variable in the integral on the moving boundary to get an integral on the fixed boundary.
The Jacobian we need is estimated in (3.28) of Proposition 3.4. We use also that

∇u(t) ◦ ΦΘ(t) =t
[
DΦΘ(t)

]−1∇ũ(t)

and the similar formula with |∇u(t)|2 in place of u(t).
We will simply write Φt for ΦΘ(t), X for XΘ, m for mΘ, X̃(t) for XΘ ◦ ΦΘ(t), m̃(t) for mΘ ◦ ΦΘ(t) and

ñt(t) for nt ◦ΦΘ(t). Note that by (2.10), (3.15), n ◦ ΦΘ(t) = n on T (η2). We obtain

A(t) =
∫
∂Ωt

〈∇|∇u(t)|2,X〉〈X,nt〉dσ,

=
∫
∂Ω0

〈tDΦ−1
t ∇|tDΦ−1

t ∇ũ(t)|2, X̃(t)〉〈X̃(t), ñt(t)〉J(t) dσ,

=
∫
∂Ω0

m̃(t)2〈tDΦ−1
t ∇|tDΦ−1

t ∇ũ(t)|2,n〉〈n, ñt(t)〉J(t) dσ.

The goal is now to estimate A(t) −A(0). We set{
a0(t) := m̃(t), a1(t) := 〈tDΦ−1

t ∇|tDΦ−1
t ∇ũ(t)|2,n〉

a2(t) := 〈n, ñt(t)〉, a3(t) := J(t).

We denote by C any constant depending only on the C2,α-norm of Θ and we set η := ‖Θ− IdR2‖2,α. We have
the following estimates for i in {2, 3} and for all t in [0, 1]

‖ai(t)‖L∞(∂Ω0) ≤ C, ‖ai(t)− ai(0)‖L∞(∂Ω0) ≤ C η. (5.9)

This is coming from (3.27) in Proposition 3.4. For i = 1, we will prove below the following for all t in [0, 1]

‖a1(t)‖L∞(∂Ω0) ≤ C, ‖a1(t)− a1(0)‖L∞(∂Ω0) ≤ C ω(η), (5.10)

where ω is the modulus of continuity appearing in Proposition 4.1. Next, we also have for all t in [0, 1]

‖a0(t)‖L2(∂Ω0) ≤ C‖m‖L2(∂Ω0), ‖a0(t)− a0(0)‖L2(∂Ω0) ≤ C η ‖m‖L2(∂Ω0). (5.11)

This is the content of the first part of Proposition 3.2. Now, we write

A(t)−A(0) =
∫
∂Ω0

[a0(t)2 − a0(0)2]
∏

i=1,2,3

ai(t) +
∫
∂Ω0

a0(t)2[
∏

i=1,2,3

ai(t)−
∏

i=1,2,3

ai(0)]. (5.12)
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The second integral is bounded by C ‖m‖2L2(∂Ω0)‖
∏
i=1,2,3 ai(t)−

∏
i=1,2,3 ai(0)‖∞. We easily check that

‖
∏

i=1,2,3

ai(t)−
∏

i=1,2,3

ai(0)‖∞ ≤ C
∑

i=1,2,3

‖ai(t)− ai(0)‖∞ ≤ C (ω(η) + η),

the last inequality coming from (5.9, 5.10). Next we will assume for simplicity that ω(η) ≥ C η.
The first integral in (5.12) is bounded above by

‖
∏

i=1,2,3

ai(t)‖∞‖a0(t)− a0(0)‖L2(∂Ω0)‖a0(t) + a0(0)‖L2(∂Ω0) ≤ C η ‖m‖2L2(∂Ω0),

where we used (5.11) for the last inequality. Finally, for all t in [0, 1], we get

|A(t)−A(0)| ≤ C ω(η)‖m‖2L2(∂Ω0). (5.13)

It remains to prove (5.10). The L∞-bound on a1(t) is obvious from the C2-estimates of Lemma 4.2 on ũ(t). For
the L∞-estimate on the difference, inserting ∇|tDΦ−1

t ∇ũ(t)|2, we obtain a first bound by

C ‖tDΦ−1
t − Id‖∞ + C ‖∇|tDΦ−1

t ∇ũ(t)|2 −∇|∇u(0)|2‖∞.

Using the C2-estimates of Proposition 4.1 for the second term, we prove that this is bounded by C ω(η).

The study of B(t)

Recall that

B(t) =
∫
∂Ωt

〈∇∂tu(t),∇u(t)〉〈XΘ,nt〉dσ.

As u(t) is constant along ∂Ωt, its gradient is normal and therefore

∇u(t) = 〈∇u(t),nt〉nt.

If we denote ∂ntu := 〈∇u(t),nt〉, we deduce that

〈∇∂tu(t),∇u(t)〉 = ∂ntu 〈∇∂tu(t),nt〉. (5.14)

Since also XΘ = mn, the boundary condition for ∂tu(t) may be rewritten (see (5.5))

∂tu(t) +m∂ntu〈nt,n〉 = 0 on ∂Ωt. (5.15)

Let us now introduce the Steklov-Poincaré operator Ct on Ωt defined from H1/2(∂Ωt) into H−1/2(∂Ωt) as
follows: if z ∈ H1/2(∂Ωt), we consider the harmonic extension Z of z to Ωt and we define Ct(z) := 〈∇Z,nt〉.
For the properties of this operator, one can refer for example to [5]. A simple computation shows that,∫

∂Ωt

z Ct(z) =
∫

Ωt

|∇Z|2,

this, at least for regular enough functions z (in general, the first integral is to be replaced by 〈z, Ct(z)〉H1/2×H−1/2).
Then, if we set z(t) := −m∂ntu〈nt,n〉, we have by (5.5, 5.14, 5.15)

〈∇∂tu(t),nt〉 = Ct(z(t)), 〈∇∂tu(t),∇u(t)〉 = ∂ntuCt(z(t)).
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This gives a new expression for B(t):

B(t) = −
∫
∂Ωt

z(t)Ct(z(t)) = −
∫

Ωt

|∇Z(t)|2,

where Z(t) is the harmonic extension of z(t) to Ωt. We also denote Z̃(t) := Z(t) ◦Φt, z̃(t) := z(t) ◦Φt. We then
have to estimate

B(t)−B(0) =
∫

Ω0

|∇Z(0)|2 −
∫

Ω0

|tDΦ−1
t ∇Z̃(t)|2,

(recall that the Jacobian detDΦt is here equal to 1). We denote again by C any constant depending only on
the C2,α-norm of Θ and we set again η := ‖Θ− IdR2‖2,α.

Lemma 5.2. We have the following main estimates: for all t ∈ [0, 1]

‖z̃(t)‖H1/2(∂Ω0) ≤ C ‖m‖H1/2(∂Ω0), ‖z̃(t)− z(0)‖H1/2(∂Ω0) ≤ C ω(η)‖m‖H1/2(∂Ω0)

‖Z̃(t)‖H1(Ω0) ≤ C ‖m‖H1/2(∂Ω0), ‖Z̃(t)− Z(0)‖H1(Ω0) ≤ C ω(η)‖m‖H1/2(∂Ω0).

Assuming this lemma, we obtain

|B(t)− B(0)| ≤ ‖tDΦ−1
t ∇Z̃(t) +∇Z(0)‖L2‖tDΦ−1

t ∇Z̃(t)−∇Z(0)‖L2

≤ C ‖m‖H1/2(∂Ω0)

[
‖tDΦ−1

t ∇Z̃(t)−t DΦ−1
t ∇Z(0)‖L2 + ‖tDΦ−1

t ∇Z(0)−∇Z(0)‖L2

]
≤ C ‖m‖H1/2(∂Ω0)

[
‖∇Z̃(t)−∇Z(0)‖L2 + C η‖∇Z(0)‖L2

]
≤ C ‖m‖H1/2(∂Ω0)[ω(η)‖m‖H1/2(∂Ω0) + η‖m‖H1/2(∂Ω0)].

This together with (5.8, 5.13) finishes the proof of Theorem 2.5. It only remains to prove Lemma 5.2.

Proof of Lemma 5.2. Recall that

z(t) := −m∂ntu〈nt,n〉, z̃(t) := z(t) ◦ Φt.

From Lemma 3.3, we have

‖z̃(t)‖H1/2(∂Ω0) ≤ ‖m‖H1/2(∂Ω0)‖(∂ntu ◦ Φt)〈ñt,n〉‖C1(∂Ω0).

From Propositions 3.4 and 4.1, we easily deduce the first estimate on z̃ in Lemma 5.2. For the difference, we
write

z̃(t)− z(0) = z̃(t) +m〈∇u0,n〉 = m [〈∇u0,n〉 − (∂ntu ◦ Φt)〈ñt,n〉].

Again, by Lemma 3.3, we have to estimate the C1-norm of 〈∇u0,n〉 − (∂ntu ◦ Φt)〈ñt,n〉 which is bounded by
the sum

‖〈∇u0,n〉(1− 〈ñt,n〉)‖C1 + ‖〈ñt,n〉[〈∇u0,n〉 − ∂ntu ◦ Φt]‖C1 .

The first term is estimated as expected by C η thanks to (3.27). The second one depends on the C1-norm of
〈∇u0,n〉 − ∂ntu ◦Φt = 〈∇u0,n〉 − 〈tDΦ−1

t ∇ũ(t), ñ(t)〉. We use Propositions 4.1 and 3.4 to estimate it by ω(η)
and the part concerning z̃ in the Lemma is complete.
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Since Z(0) is harmonic on Ω0 with value z(0) at the boundary, we have

‖Z(0)‖H1(Ω0) ≤ C ‖z(0)‖H1/2(∂Ω0) ≤ C ‖m‖H1/2(∂Ω0).

The estimate on the H1-norm of Z̃(t)− Z(0) starts with the equation

L(Θ, t)(Z̃(t)) = 0 on Ω0,

which we rewrite

−∆(Z̃(t)− Z(0)) = [L(Θ, t)−∆](Z̃(t)) on Ω0.

This implies that

‖Z̃(t)− Z(0)‖H1(Ω0) ≤ C [‖z̃(t)− z(0)‖H1/2(∂Ω0) + ‖[L(Θ, t)−∆](Z̃(t))‖H−1(Ω0). (5.16)

The first term has just been estimated by C ω(η)‖m‖H1/2(∂Ω0). As we check below, for all w ∈ H1(Ω0), we have

‖[L(Θ, t)−∆](w)‖H−1(Ω0) ≤ C η ‖w‖H1(Ω0). (5.17)

We now decompose

[L(Θ, t)−∆](Z̃(t)) = [L(Θ, t)−∆][Z̃(t)− Z(0)] + [L(Θ, t)−∆](Z(0)),

to obtain

‖[L(Θ, t)−∆](Z̃(t))‖H−1(Ω0) ≤ C η‖Z̃(t)− Z(0)‖H1(Ω0) + C η ‖m‖H1/2(∂Ω0). (5.18)

Together with (5.16), this implies

‖Z̃(t)− Z(0)‖H1(Ω0)(1− C η) ≤ C ω(η)‖m‖H1/2(∂Ω0)

from which we deduce the last estimate of Lemma 5.2.
It remains to prove (5.17). We do it by duality as follows. Let ψ ∈ C∞0 , then∫

Ω0

[L(Θ, t)−∆]w ψ =
∫

Ω0

[∑
i,j

(ai,j(t)− ai,j(0))Di,jw +
∑
i

(bi(t)− bi(0))Diw
]
ψ,

where ai,j , bi are the coefficients of L(Θ, t) (see 4.3). Now∣∣∣∫
Ω0

(ai,j(t)− ai,j(0))Di,jw ψ
∣∣∣ =

∣∣∣∫
Ω0

[Dj(ai,j(t)− ai,j(0))ψ + (ai,j(t)− ai,j(0))Djψ]Diw
∣∣∣,

≤ C ‖ai,j(t)− ai,j(0)‖C1‖ψ‖H1
0
‖w‖H1 ,

≤ C η ‖ψ‖H1
0
‖w‖H1 ,∣∣∣∫

Ω0

(bi(t)− bi(0))Diw ψ
∣∣∣ ≤ C ‖bi(t)− bi(0)‖L∞‖ψ‖L2‖w‖H1 ,

≤ C η ‖ψ‖L2‖w‖H1 .

The estimate (5.17) follows.
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Proof of Theorem 2.1. Let Θ ∈ V(η) where η is small enough so that Theorem 2.5 applies. We write Taylor
formula at order 2 for t→ eΘ(t) + Λ meas(Ωt) which is of class C2 . As meas(Ωt) is constant and Ω0 is assumed
to be a critical point for the constrained functional, e′Θ(0) = 0 and the Taylor’s formula writes

eΘ(1) = eΘ(0) +
∫ 1

0

(1− t)e′′Θ(t)dt.

We have

e′′Θ(0) = −2B(0)−A(0) =
∫
∂Ω0

2z(0)C0(z(0))−m2〈∇|∇u0|2,n〉.

Here z(0) = −m 〈∇u0,n〉 and |〈∇u0,n〉|2 = |∇u0|2 = Λ. On the other hand (see below),

〈∇|∇u0|2,n〉 = −2 Λ C (5.19)

where C is the curvature of ∂Ω0 seen from inside. Therefore

e′′Θ(0) = 2 Λ
∫
∂Ω0

mC0(m) + Cm2, (5.20)

which is the expression we announced in (2.7). Now, m is of class C2,α and satisfies (see (3.21))
∫
∂Ω0

m = 0. By
assumption (2.8),

e′′Θ(0) ≥ c ‖m‖2H1/2(∂Ω0). (5.21)

Recall that this occurs when Ω0 is convex for example. But by Theorem 2.5, we have for all t ∈ [0, 1],

e′′Θ(t) ≥ e′′Θ(0)− C ω(η) ‖m‖2H1/2(∂Ω0).

Therefore, there exists η0 > 0 such that, for all Θ ∈ V(η0) and ∀t ∈ [0, 1],

e′′Θ(t) ≥ C ‖m‖2H1/2(∂Ω0),

and

eΘ(1)− eΘ(0) ≥ C ‖m‖2H1/2(∂Ω0),

which is strictly positive if m 6= 0 whence the theorem.
Let us finally check (5.19) by the following elementary local computation (inspired from [7]) where we assume

that Ω0 is locally above the graph of the function f : (−ε,+ε)→ R with f(0) = f ′(0) = 0. For simplicity, we
write u instead of u0 that is: u0 = u(x, y). The function u is such that:

∀x ∈ (−ε,+ε), u(x, f(x)) = 0, 〈∇u0,n〉 = −uy(x, f(x)).

By differentiation, we have

0 = ux(x, f(x)) + uy(x, f(x))f ′(x),

0 = uxx(x, f(x)) + 2uxy(x, f(x))f ′(x) + uyy(x, f(x))f ′(x)2 + uy(x, f(x))f ′′(x),
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which gives at x = 0 : 0 = ux(0, 0), 0 = uxx(0, 0) + uy(0, 0)f ′′(0). We also have

〈∇|∇u0|2,n〉 = −∂y{(ux)2 + (uy)2} = −2 (uxuxy + uyuyy).

Recall now that the right-hand side k in (2.4) is compactly supported in Ω0. By regularity, we have uxx+uyy = 0
on the boundary. Therefore, at x = 0, we obtain

〈∇|∇u0|2,n〉 = 2 uy(0, 0)uxx(0, 0) = −2 (uy(0, 0))2 f ′′(0),

and (uy(0, 0))2 = |∇u0|2 = Λ. The formula (5.19) follows since f ′′(0) = C.

Remark. If we do not assume k to be compactly supported in Ω0, then we have to use uyy = −uxx− k instead
so that

〈∇|∇u0|2,n〉 = −2 uy[−uxx − k] = −2 (uy(0, 0))2 f ′′(0) + 2 k uy = −2 Λ C − 2 k 〈∇u0,n〉.

We know that |〈∇u0,n〉| is constant on ∂Ω0 and equal to Λ1/2. Assume ∂Ω0 is connected. Then, by regularity,
〈∇u0,n〉 itself is constant and equal to εΛ1/2 with ε = +1 or −1. The sign is determined by the relation∫

Ω0

k =
∫

Ω0

−∆u0 =
∫
∂Ω0

−〈∇u0,n〉 = −εΛ1/2 length(∂Ω0),

which shows that ε = − sign(
∫

Ω0
k). Finally, the second derivative becomes

e′′Θ(0) = 2 Λ
∫
∂Ω0

mC0(m) + m2
[
C − kΛ−1/2sign(

∫
Ω0

k)
]
. (5.22)

6. About the coercivity of e′′Θ(0)

If k is compactly supported in Ω0, then expression (5.20) is valid. Note that then the stability depends only
on the geometry of ∂Ω0. If moreover ∂Ω0 is convex, then the coercivity (5.21) holds. Obviously, this extends
to curves C2-close to convex curves.

If k is identically equal to a positive constant, then any disk of radius R =
√
S/π is a critical shape. We

have k S = Λ1/2 2πR and by (5.22)

e′′Θ(0) = 2 Λ
∫
∂Ω0

mC0(m)− 1
R
m2 = 2 Λ〈[C0 −

1
R

Id](m),m〉H−1/2×H1/2 .

We easily check that this vanishes for m = sin θ and m = cos θ so that e′′Θ(0) does not satisfy (2.8) or (5.21).
This obviously corresponds to the fact that the disk remains a critical shape when moved by translation. One
can check that e′′Θ(0) is however positive on the set of m′s orthogonal to the linear space spanned by {1, cos, sin}
and this is also a consequence of Theorem 2.5 (see e.g. [11, 14]).

One may also compute what happens for radial functions k. Then the disk centered at the origin and of
radius R =

√
S/π is a critical shape and (we assume for instance

∫
Ω0
k ≥ 0)

e′′Θ(0) = 2 Λ
∫
∂Ω0

mC0(m) +m2[
1
R
− 2πRk(R)∫

Ω0
k

].

We easily check that ∫
∂Ω0

mC0(m) ≥ 1
R

∫
∂Ω0

m2.
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Therefore, for η positif and small

e′′Θ(0) ≥ 2 Λ{η ‖m‖2H1/2 +
∫
∂Ω0

2m2

R
[1− η

2
− k(R)πR2∫

Ω0
k

] },

so that e′′Θ(0) is coercive if k(R)〈
R
Ω0
k

πR2 ·

More detailed studies of such quadratic forms may be found in [11] where more general functional involving
the perimeter of the shapes (i.e. surface tension) are considered. Moreover, the case of the less stable “exterior”
problem (or “exterior shaping problem”) is also treated where the Dirichlet problem is set in the exterior of the
shapes. The positivity is then more difficult to study. An extension of the results of this paper to the case with
surface tension can be found in [4] as well as N -dimensional situations.

Acknowledgements. We thank Michel Crouzeix for several helpful discussions and Jean Descloux for pointing out to us
this stability question.

References
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