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Abstract We provide dual sufficient conditions for subtransversality of collections of sets in an Asplund
space setting. For the convex case, we formulate a necessary and sufficient dual criterion of subtransversal-
ity in general Banach spaces. Our more general results suggest an intermediate notion of subtransversality,
what we call weak intrinsic subtransversality, which lies between intrinsic transversality and subtransver-
sality in Asplund spaces.

Keywords Metric regularity · Metric subregularity · Transversality · Subtransversality · Intrinsic
transversality · Error bound · Normal cone · Alternating projections · Linear convergence

Mathematics Subject Classification (2010) Primary 49J53 · 65K10 · Secondary 49K40 · 49M05 ·
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1 Introduction

We study ways several sets in a normed linear space can be arranged in a ‘regular’ way near a point
in their intersection. Such regular intersection or, in other words, transversality properties are crucial
for the validity of qualification conditions in optimization as well as subdifferential, normal cone and
coderivative calculus, and convergence analysis of computational algorithms.

For brevity, in this article we consider the case of two nonempty sets A and B. The extension of the
definitions and characterizations of transversality properties to the case of any finite collection of n sets
(n > 1) does not require much effort (cf. [33–35,39, 40]). The sets are assumed to have a common point
x̄ ∈ A ∩B. We shall use the notation {A,B} when referring to the pair of two sets A and B as a single
object.

The origins of the concept of regular arrangement of sets in space can be traced back to that of
transversality in differential geometry which deals of course with smooth manifolds (see, for instance,
[21, 24]). It is motivated by the problem of determining when the intersection of two smooth manifolds
is also a smooth manifold near some point in the intersection. This is true when the collection {A,B} of
smooth manifolds is transversal at x̄ ∈ A ∩ B, that is, the sum of the tangent spaces to A and B at x̄
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generates the whole space. In finite dimensions, this property can be equivalently characterized in dual
terms:

NA(x̄) ∩NB(x̄) = {0}, (1)

where NA(x̄) and NB(x̄) are the normal spaces (i.e., orthogonal complements to the tangent spaces) to
A and B, respectively, at the point x̄.

In the current article we study arbitrary (not necessarily smooth or convex) sets in a normed linear
space and focus on a particular transversality concept, called subtransversality which has emerged as a
key – by some estimates the key – notion in the analysis of convergence of iterative methods for solving
feasibility problems. Two equivalent primal space definitions and some qualitative and quantitative char-
acterizations of this property are given in Section 2, where we also compare subtransversality with a more
robust property called simply transversality being a generalization of the discussed above corresponding
property from differential geometry.

The properties of transversality and subtransversality (also known under many other names) of pairs
of sets correspond directly to metric regularity and metric subregularity of set-valued mappings, respec-
tively; see Propositions 2, 3 and 4 below. This means, in particular, that characterizations of regularity
properties of set-valued mappings can be translated into characterizations of the corresponding transver-
sality properties of pairs of sets and vice versa. In the current article, when proving characterizations of
the subtransversality property of pairs of sets, we follow the sequence proposed in [36] when deducing
metric subregularity characterizations for set-valued mappings. Characterizations of subtransversality
can also be obtained by direct translation of the corresponding statements from [36] using Propositions 2
or 4. We avoid doing this here, first, to keep a self-contained mostly geometrical presentation, and second,
because the developments in the current article show that some statements in [36] are formulated not
in the strongest form and can be improved. In fact, the characterizations of subtransversality derived in
the current article can be used to improve the corresponding statements in [36].

In Section 3 we present dual sufficient conditions for subtransversality in Asplund spaces (Theo-
rem 2) as well as a necessary and sufficient criterion for subtransversality of a pair of convex sets in a
general Banach space (Theorem 3), and compare them with the corresponding criterion for transversality
(Theorem 1). All three assertions are in a sense analogues (Theorem 1 being a direct extension) of the
classical criterion (1). Theorem 2 extends and strengthens the corresponding assertion announced in the
recent paper [38]. Along the way we successively establish several sufficient (and some also necessary)
primal and dual conditions of subtransversality and also uncover a new notion of transversality, which we
call weak intrinsic transversality, that lies somewhere between transversality and subtransversality. This
property as well as a finer property of intrinsic transversality (the name is borrowed from [17]) are briefly
discussed in Section 4. A more detailed study of intrinsic transversality and weak intrinsic transversality
and their comparison with the corresponding finite dimensional property introduced in [17] are going to
appear in the forthcoming paper [37].

1.1 Notation and preliminaries

Given a normed linear space X , its topological dual is denoted X∗, while 〈·, ·〉 denotes the bilinear
form defining the pairing between the spaces. B and B

∗ stand for the closed unit balls in X and X∗,
respectively, while Bδ(x) denotes the open ball with centre at x ∈ X and radius δ > 0. Given a set A in
a normed linear space, its interior and boundary are denoted intA and bdA, respectively, while coneA
denotes the cone generated by A: coneA := {ta | a ∈ A, t ≥ 0}. dA(x) stands for the distance from a
point x to a set A. Given an α ∈ R∞ := R∪ {+∞}, α+ denotes its positive part: α+ := max{α, 0}. N is
a set of positive integers.

Dual characterizations of transversality and subtransversality properties involve dual space objects –
normal cones. Given a subset A of a normed linear space X and a point x̄ ∈ A, the Fréchet normal cone
to A at x̄ is defined as follows:

NA(x̄) :=

{

x∗ ∈ X∗ | lim sup
a→x̄, a∈A\{x̄}

〈x∗, a− x̄〉

‖a− x̄‖
≤ 0

}

. (2)
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It is a nonempty weak∗ closed convex cone, often trivial (NA(x̄) = {0}). Similarly, given a function
f : X → R∞ := R ∪ {+∞} and a point x̄ ∈ dom f , the Fréchet subdifferential of f at x̄ is defined as

∂f(x̄) :=

{

x∗ ∈ X∗ | lim inf
x→x̄, x 6=x̄

f(x)− f(x̄)− 〈x∗, x− x̄〉

‖x− x̄‖
≥ 0

}

. (3)

It is a weak∗ closed convex set, often empty. Using Fréchet normal cones, one can define more robust
(and in general nonconvex) limiting normal cones. If dimX < ∞, the definition of the limiting normal
cone to A at x̄ takes the following form:

NA(x̄) := Lim sup
a→x̄, a∈A

NA(a) :=

{

x∗ = lim
k→∞

x∗
k | x∗

k ∈ NA(ak), ak ∈ A, ak → x̄

}

. (4)

If X is a Euclidian space and A is closed, the Fréchet normal cones in definition (4) can be replaced by
the proximal ones:

Np
A(x̄) := cone

(

P−1
A (x̄)− x̄

)

. (5)

Here PA is the projection mapping:

PA(x) := {a ∈ A | ‖x− a‖ = dA(x)} , x ∈ X.

It is easy to verify that Np
A(x̄) ⊂ NA(x̄), and NA(x̄) 6= {0} if and only if x̄ ∈ bdA. Unlike (2) and (5),

the cone (4) can be nonconvex.
If A is a convex set, then all three cones (2), (4) and (5) coincide and reduce to the normal cone in

the sense of convex analysis:

NA(x̄) := {x∗ ∈ X∗ | 〈x∗, a− x̄〉 ≤ 0 for all a ∈ A} .

The proofs of the main results rely on two fundamental results of variational analysis: the Ekeland
variational principle (Ekeland [18]; cf., e.g., [32, Theorem 2.1], [47, Theorem 2.26], [16, Theorem 4B.5])
and several kinds of subdifferential sum rules. Below we provide these results for completeness.

Lemma 1 (Ekeland variational principle) Suppose X is a complete metric space, f : X → R∞ is
lower semicontinuous and bounded from below, ε > 0, λ > 0. If

f(x̄) < inf
X

f + ε,

then there exists an x̂ ∈ X such that
(a) d(x̂, x̄) < λ,
(b) f(x̂) ≤ f(x̄),
(c) f(x) + (ε/λ)d(x, x̂) ≥ f(x̂) for all x ∈ X.

Lemma 2 (Subdifferential sum rules) Suppose X is a normed linear space, f1, f2 : X → R∞, and
x̄ ∈ dom f1 ∩ dom f2.

(i) Fuzzy sum rule. Suppose X is Asplund, f1 is Lipschitz continuous and f2 is lower semicontinuous
in a neighbourhood of x̄. Then, for any ε > 0, there exist x1, x2 ∈ X with ‖xi− x̄‖ < ε, |fi(xi)−fi(x̄)| < ε
(i = 1, 2), such that

∂(f1 + f2)(x̄) ⊂ ∂f1(x1) + ∂f2(x2) + εB∗.

(ii) Convex sum rule. Suppose f1 and f2 are convex and f1 is continuous at a point in dom f2.
Then

∂(f1 + f2)(x̄) = ∂f1(x̄) + ∂f2(x̄).

The first sum rule in the lemma above is known as the fuzzy or approximate sum rule (Fabian [19];
cf., e.g., [32, Rule 2.2], [47, Theorem 2.33]) for Fréchet subdifferentials in Asplund spaces. The other one
is an example of an exact sum rule. It is valid in arbitrary normed (or even locally convex) spaces. For
rule (ii) we refer the readers to [29, Theorem 0.3.3] and [54, Theorem 2.8.7].

Recall that a Banach space is Asplund if every continuous convex function on an open convex set
is Fréchet differentiable on some its dense subset [52], or equivalently, if the dual of each its separable
subspace is separable. We refer the reader to [8, 47, 52] for discussions about and characterizations of
Asplund spaces. All reflexive, in particular, all finite dimensional Banach spaces are Asplund.
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2 Transversality and subtransversality

In this introductory section we briefly discuss two standard regularity properties of a pair of sets in a
normed linear space, namely transversality and subtransversality (also known under other names) with
the emphasis on the second one.

Definition 1 Suppose X is a normed linear space, A,B ⊂ X , and x̄ ∈ A ∩B. {A,B} is subtransversal
at x̄ if one of the following two equivalent conditions is satisfied:

(i) there exist numbers α ∈]0, 1[ and δ > 0 such that

(

A+ (αρ)B
)

∩
(

B + (αρ)B
)

∩ Bδ(x̄) ⊂ (A ∩B) + ρB for all ρ ∈]0, δ[; (6)

(ii) there exist numbers α ∈]0, 1[ and δ > 0 such that

αd (x,A ∩B) ≤ max {d(x,A), d(x,B)} for all x ∈ Bδ(x̄). (7)

The exact upper bound of all α ∈]0, 1[ such that condition (6) or condition (7) is satisfied for some δ > 0
is denoted str[A,B](x̄) with the convention that the supremum of the empty subset of R+ equals 0.

The requirement that α < 1 in both parts of Definition 1 imposes no restrictions on the property.
It is only needed in the case x̄ ∈ int (A ∩ B) (when conditions (6) and (7) are satisfied for some δ > 0
with any α > 0) to ensure that str[A,B](x̄) is always less than or equal to 1 and simplify the subsequent
quantitative estimates. It is easy to check that when x̄ ∈ bd (A ∩B), each of the conditions (6) and (7)
implies α ≤ 1. We are going to use similar requirements in other definitions throughout the article.

The property in part (i) of Definition 1 was introduced recently in [40] (under the name subregularity).
It can be viewed as a local analogue of the global uniform normal property introduced in the convex
setting in [3, Definition 3.1(4)] as a generalization of the property (N) of convex cones by Jameson [30].
A particular case of the Jameson property (N) for convex cones A and B such that B = −A and
A ∩ (−A) = {0} was studied by M. Krein in the 1940s. Subtransversality constant str[A,B](x̄) is, in a
sense, a local analogue of the normality constant in [3, Definition 4.2].

The metric property in part (ii) of Definition 1 is a very well known regularity property that has been
around for more than 30 years under various names ((local) linear regularity, metric regularity, linear
coherence, metric inequality, and subtransversality); cf. [3–5, 15, 17, 23, 25–27, 31, 44, 49, 51, 53, 55, 56]. It
has been used as the key assumption when establishing linear convergence of sequences generated by al-
ternating projection algorithms and a qualification condition for subdifferential and normal cone calculus
formulae. One can also observe that condition (7) is equivalent to the function x 7→ max{d(x,A), d(x,B)}
having a local error bound [2,20,36]/weak sharp minimum [10–12] at x̄ with constant α. The equivalence
of the two properties in Definition 1 and the fact that the exact upper bounds of all α ∈]0, 1[ in conditions
(6) and (7) coincide were established in [40, Theorem 3.1].

The subtransversality of {A,B} is equivalent to the condition str[A,B](x̄) > 0, and str[A,B](x̄)
provides a quantitative characterization of this property.

The subtransversality property of pairs of sets in Definition 1 is a weaker version of another well
known regularity property in the next definition.

Definition 2 Suppose X is a normed linear space, A,B ⊂ X , and x̄ ∈ A ∩ B. {A,B} is transversal at
x̄ if one of the following two equivalent conditions is satisfied:

(i) there exist numbers α ∈]0, 1[ and δ > 0 such that

(A− a− x1) ∩ (B − b− x2) ∩ (ρB) 6= ∅ (8)

for all ρ ∈]0, δ[, a ∈ A ∩ Bδ(x̄), b ∈ B ∩ Bδ(x̄), and all x1, x2 ∈ X with max{‖x1‖, ‖x2‖} < αρ;
(ii) there exist numbers α ∈]0, 1[ and δ > 0 such that

αd (x, (A − x1) ∩ (B − x2)) ≤ max {d(x,A− x1), d(x,B − x2)} for all x ∈ Bδ(x̄), x1, x2 ∈ δB. (9)

The exact upper bound of all α ∈]0, 1[ such that condition (8) or condition (9) is satisfied for some δ > 0
is denoted tr[A,B](x̄) with the convention that the supremum of the empty subset of R+ equals 0.
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The property in part (i) of Definition 2 was introduced by the first author in 2005. Since then the
terminology in the papers (co-)authored by him has changed several time causing some confusion, for
which he apologizes to the readers. The next table reflects the evolution of the terminology.

2005 [33] 2006 [34] 2009 [35] 2013 [39] 2017 [38]
Regularity Strong regularity Property (UR)S Uniform regularity Transversality

In [42] the property is called linearly regular intersection. If A and B are closed convex sets and intA 6= ∅,
then this property is equivalent to the conventional qualification condition: intA ∩ B 6= ∅ (cf. [33,
Proposition 14]).

The metric property in part (ii) of Definition 2 was referred to in [33–35] as strong metric inequality.
The equivalence of the two properties in Definition 2 and the fact that the exact upper bounds of all
α ∈]0, 1[ in conditions (i) and (ii) coincide were established in [33, Theorem 1].

From comparing the second parts in Definitions 1 and 2, one can see that the transversality of a
pair of sets corresponds to the subtransversality of all their small translations holding uniformly (cf. [17,
p. 1638]). The next inequality is straightforward:

tr[A,B](x̄) ≤ str[A,B](x̄).

Example 1 If A = B, then d (x,A ∩B) = d(x,A) = d(x,B) for any x ∈ X . Hence, condition (7) holds
with any α ∈]0, 1[ and δ > 0. Thus, {A,B} is subtransversal at x̄ and str[A,B](x̄) = 1. △

Note that, under the conditions of Example 1, {A,B} does not have to be transversal at x̄.

Example 2 Let X = R
2, A = B = R× {0}, and x̄ = (0, 0). If x1 = (0, ε) and x2 = (0, 0), then condition

(8) does not hold for any a ∈ A, b ∈ B, ρ > 0, and ε > 0. Thus, {A,B} is subtransversal at x̄ thanks to
Example 1, but not transversal, and tr[A,B](x̄) = 0. △

We refer the reader to [40] for more examples illustrating the relationship between the properties in
Definitions 1 and 2.

The next proposition provides a useful metric characterization of the subtransversality property
complementing the one in part (ii) of Definition 1. It was established in [38, Theorem 1(iii)] in the
Euclidean space setting, but the proof given there is valid in an arbitrary normed linear space.

Proposition 1 Suppose X is a normed linear space, A,B ⊂ X, and x̄ ∈ A∩B. {A,B} is subtransversal
at x̄ if and only if there exist numbers α ∈]0, 1[ and δ > 0 such that

αd(x,A ∩B) ≤ d(x,B) for all x ∈ A ∩ Bδ(x̄). (10)

Moreover,
1

2(str′[A,B](x̄))−1 + 1
≤ str[A,B](x̄) ≤ str′[A,B](x̄), (11)

where str′[A,B](x̄) is the exact upper bound of all numbers α ∈]0, 1[ such that condition (10) is satisfied,
with the convention that the supremum of the empty subset of R+ equals 0.

Proposition 1 can be considered as a nonconvex extension of [48, Theorem 3.1].

Remark 1 1. The maximum of the distances in Definitions 1 and 2 (explicitly present in part (ii) and
implicitly also in part (i)) and some other representations in the sequel corresponds to the maximum
norm in R

2 employed in all these definitions and assertions. It can be replaced everywhere by the sum
norm (pretty common in this type of definitions in the literature) or any other equivalent norm. All the
assertions above including the quantitative characterizations will remain valid (as long as the same norm
is used everywhere), although the exact values of str[A,B](x̄) and tr[A,B](x̄) do depend on the chosen
norm and some estimates (e.g. in Propositions 1) can change.

2. In some situations it can be convenient to use the reciprocal (str[A,B](x̄))−1 instead of
str[A,B](x̄) for characterizing the subtransversality property. The property is obviously equivalent to
(str[A,B](x̄))−1 < ∞. For instance, using the reciprocals, the quantitative estimates (11) in Proposi-
tions 1 can be rewritten in a simpler form as

(str′[A,B](x̄))−1 ≤ (str[A,B](x̄))−1 ≤ 2(str′[A,B](x̄))−1 + 1.
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3. Thanks to Propositions 1, one can use str′[A,B](x̄) instead of str[A,B](x̄) for quantitative charac-
terization of the subtransversality property. Note that str′[A,B](x̄) is not symmetric: str′[B,A](x̄) 6=
str′[A,B](x̄). One can strengthen the conclusion of Propositions 1 by replacing str′[A,B](x̄) in the
right-hand side of (11) by min{str′[A,B](x̄), str′[B,A](x̄)} and by max{str′[A,B](x̄), str′[B,A](x̄)} in
its left-hand side. △

Not surprisingly, transversality properties of pairs of sets are strongly connected with the corre-
sponding regularity properties of set-valued mappings. The properties in Definitions 1 and 2 correspond,
respectively, to metric subregularity and metric regularity of set-valued mappings (cf., e.g., [16]), which
partially explains the terminology adopted in the current article.

Definition 3 Suppose X and Y are metric spaces, F : X ⇒ Y , and (x̄, ȳ) ∈ gphF := {(x, y) ∈ X × Y |
y ∈ F (x)}.

(i) F is metrically regular at (x̄, ȳ) ∈ gphF if there exist numbers α > 0 and δ > 0 such that

αd
(

x, F−1(y)
)

≤ d(y, F (x)) for all x ∈ Bδ(x̄), y ∈ Bδ(ȳ);

(ii) F is metrically subregular at (x̄, ȳ) ∈ gphF if there exist numbers α > 0 and δ > 0 such that

αd
(

x, F−1(ȳ)
)

≤ d(ȳ, F (x)) for all x ∈ Bδ(x̄).

In a slight violation of the notation adopted in [16], we will use rg[F ](x̄, ȳ) and srg[F ](x̄, ȳ) to denote the
exact upper bounds of all α in parts (i) and (ii) of the above definition, respectively.

The regularity properties in Definition 3 lie at the core of the contemporary variational analysis. They
have their roots in classical analysis and are crucial for the study of stability of solutions to (generalized)
equations and various aspects of subdifferential calculus and optimization theory. For the state of the
art of the regularity theory of set-valued mappings and its numerous applications we refer the reader to
the book by Dontchev and Rockafellar [16] and the comprehensive survey by Ioffe [27, 28].

Given a pair of subsets A and B of a normed linear space X , one can define a set-valued mapping
F : X ⇒ X2 by the equality (cf. [26, 27])

F (x) := (A− x) × (B − x), x ∈ X. (12)

The next proposition employs the maximum norm on X2 (‖(x1, x2)‖ := max{‖x1‖ , ‖x2‖}, x1, x2 ∈ X).

Proposition 2 Suppose X is a normed linear space, A,B ⊂ X, x̄ ∈ A ∩ B, and a set-valued mapping
F : X ⇒ X2 is defined by (12).

(i) {A,B} is transversal at x̄ if and only if F is metrically regular at (x̄, 0);
(ii) {A,B} is subtransversal at x̄ if and only if F is metrically subregular at (x̄, 0).

Moreover, tr[A,B](x̄) = rg[F ](x̄, 0) and str[A,B](x̄) = srg[F ](x̄, 0).

Conversely, given a set-valued mapping F : X ⇒ Y between normed linear spaces and a point
(x̄, ȳ) ∈ gphF , one can define two sets in X × Y :

A := gphF, B := X × {ȳ}. (13)

The next proposition employs the maximum norm on X×Y (‖(x, y)‖ := max{‖x‖ , ‖y‖}, x ∈ X , y ∈ Y ).

Proposition 3 Suppose X and Y are normed linear spaces, F : X ⇒ Y , (x̄, ȳ) ∈ gphF , and sets A and
B are defined by (13).

(i) F is metrically regular at (x̄, ȳ) if and only if {A,B} is transversal at (x̄, ȳ);
(ii) F is metrically subregular at (x̄, ȳ) if and only if {A,B} is subtransversal at (x̄, ȳ).

Moreover,

1

2(rg[F ](x̄, ȳ))−1 + 1
≤ tr[A,B](x̄) ≤ min

{

rg[F ](x̄, ȳ)

2
, 1

}

,

1

2(srg[F ](x̄, ȳ))−1 + 1
≤ str[A,B](x̄) ≤ min

{

srg[F ](x̄, ȳ)

2
, 1

}

.
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The equivalences in Propositions 2 and 3 and some quantitative estimates can be found in [33,
Theorems 2 and 3, and Corollaries 2.1 and 3.1]; see also [26, Proposition 3.5], [27, Theorem 6.12], [34,
Propositions 8 and 9], [35, Theorems 7 and 8, and Corollary 7.1] and [38, Theorem 3]. The quantitative
estimates in Proposition 3 are taken from [40, Theorem 5.1].

Remark 2 The quantitative estimates in Proposition 3 can be improved by choosing an appropriate norm
on X × Y .

In the Euclidian space setting, the following (not more than) single-valued mapping G : X2
⇒ X can

replace (12) in the equivalences in Proposition 2 (cf. [43]):

G(x1, x2) :=

{

{x1 − x2} if x1 ∈ A and x2 ∈ B,

∅ otherwise.
(14)

The next proposition employs the Euclidian norm on X2 (‖(x1, x2)‖ :=

√

‖x1‖
2 + ‖x2‖

2, x1, x2 ∈ X).

Proposition 4 Suppose X is a Euclidian space, A,B ⊂ X, x̄ ∈ A ∩B, and a mapping G : X2
⇒ X is

defined by (14).

(i) {A,B} is transversal at x̄ if and only if G is metrically regular at ((x̄, x̄), 0);
(ii) {A,B} is subtransversal at x̄ if and only if G is metrically subregular at ((x̄, x̄), 0).

Moreover,

1

2(rg[G]((x̄, x̄), 0))−1 + 1
≤ tr[A,B](x̄) ≤

1
√

2(rg[G]((x̄, x̄), 0))−2 − 1
,

1

2(srg[G]((x̄, x̄), 0))−1 + 1
≤ str[A,B](x̄) ≤

1
√

2(srg[G]((x̄, x̄), 0))−2 − 1
.

The above proposition is extracted from [38, Theorem 3]; see also [27, Corollary 6.13].
In view of Propositions 2, 3 and 4, regularity models in terms of set-valued mappings and pairs of

sets are in a sense equivalent. In the current article we focus on the second model.
One of the typical applications of transversality properties of pairs (or more generally finite collections)

of sets is to the convergence analysis of alternating (or cyclic) projections for solving feasibility problems
[1, 4–7, 9, 17, 22, 23, 28, 38, 41–43,45, 50].

Given two sets A and B, the feasibility problem consists in finding a point in their intersection A∩B.
If these are closed sets in finite dimensions, alternating projections are determined by a sequence (xk)
starting with some point x0 and such that

xk+1 ∈ PAPB(xk) (k = 0, 1, . . .).

Here PA and PB stand for the Euclidean projection operators on the corresponding sets, i.e., e.g.,

PA(x) := {a ∈ A | ‖x− a‖ = d(x,A)},

where the Euclidean norm and distance are used. If A is closed and convex, then PA is a singleton. In
analyzing convergence of the alternating projections (xk), it is usually helpful to look at the sequence
of intermediate points (bk) with bk ∈ PB(xk) and xk+1 ∈ PA(bk) (k = 0, 1, . . .). We denote the joining
sequence by (zk), that is

z2n = xn and z2n+1 = bn, (n = 0, 1, . . .). (15)

For simplicity of presentation let us assume throughout the discussion, without loss of generality, that
x0 ∈ A.

Bregman [9] and Gubin et al [22] showed that, if A ∩ B 6= ∅ and the sets are closed and convex, the
sequence converges to a point in A ∩ B. In the case of two subspaces, this fact was established by von
Neumann in the mid-1930s; that is why the method of alternating projections is sometimes referred to
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as von Neumann’s method. It was noted in [50] that alternating projections can be traced back to the
1869 work by Schwarz. It was shown in [22] that, if riA ∩ riB 6= ∅, the convergence is linear, i.e.,

‖xk − x̂‖ ≤ αck (k = 0, 1, . . .), (16)

where x̂ ∈ A ∩B is the limit of the sequence, α > 0 and c ∈]0, 1[. If (16) holds, it is often said that (xk)
converges with R-linear rate c. A systematic analysis of the convergence of alternating projections in the
convex setting was done by Bauschke and Borwein [4,5], who demonstrated that it is the subtransversality
property in Definition 1 that is needed to ensure linear convergence. In fact, as the next proposition taken
from [45] shows, subtransversality in the convex setting is necessary and sufficient for linear convergence
of alternating projections.

Proposition 5 Suppose X is a Euclidean space, A,B ⊂ X are closed and convex, and x̄ ∈ A ∩B.

(i) If {A,B} is subtransversal at x̄, then alternating projections converge linearly with rate at most
1− str[A,B](x̄)2, provided that the starting point is sufficiently close to x̄.

(ii) If alternating projections converge linearly with rate c ∈]0, 1[ for any starting point sufficiently close
to x̄, then {A,B} is subtransversal at x̄ and str[A,B](x̄) ≥ 1−c

3−c .

The picture becomes much more complicated if the convexity assumption is dropped. In view of the
following proposition taken from [45], subtransversality remains a necessary condition for certain types
of linear convergence of alternating projections.

Proposition 6 Suppose X is a Euclidean space, A,B ⊂ X are closed, and x̄ ∈ A∩B. If for any starting
point x0 sufficiently close to x̄,

(i) either every sequence of alternating projections (xk) is linear monotone with rate c ∈]0, 1[ in the sense
that

d(xk+1, A ∩B) ≤ cd(xk, A ∩B) (k = 0, 1, . . .), (17)

(ii) or every sequence of joining alternating projections (zk) determined by (15) satisfies the following
conditions for a constant c ∈]0, 1[

‖zk+2 − zk+1‖ ≤ ‖zk+1 − zk‖, (k = 0, 1, . . .), (18a)

‖z2k+2 − z2k+1‖ ≤ c‖z2k+1 − z2k‖, (k = 0, 1, . . .), (18b)

then {A,B} is subtransversal at x̄ and str[A,B](x̄) ≥ 1−c
5−c .

As shown in [45], properties (17) and (18) both imply linear convergence of alternating projections
with R-linear rate, and the three properties are equivalent when the sets are convex. It is conjectured in
[45] that subtransversality is necessary for linear convergence of (both convex and nonconvex) alternating
projections. At the same time, simple examples show that subtransversality is not sufficient to guarantee
(any) convergence of alternating projections to a solution of the feasibility problem.

A study of the convergence of alternating projections in the nonconvex setting was initiated recently
by Lewis and Malick [43], and Lewis et al. [42], who demonstrated in the Euclidean space setting that a
stronger transversality property in Definition 2 is sufficient for the local linear convergence of alternating
projections for, respectively, a pair of smooth manifolds or a pair of arbitrary closed sets one of which is
super-regular at the reference point. The last property holds, in particular, for convex sets and smooth
manifolds. It was shown later by Drusvyatskiy et al. [17] that transversality guarantees local linear
convergence of alternating projections for a pair of closed sets in a Euclidean space without the super-
regularity assumption. The role of the transversality property in the convergence analysis of alternating
projections in the nonconvex setting is studied in Drusvyatskiy et al. [17], Kruger and Thao [41], Noll
and Rondepierre [50], and Kruger et al. [38].

In view of Propositions 5 and 6 and the above discussion, subtransversality is close to being necessary
for the local linear convergence of alternating projections for a pair of closed sets in a Euclidean space, but
is not sufficient unless the sets are convex. On the other hand, transversality is sufficient, but is far from
being necessary even in the convex case. For example, transversality always fails when the affine span
of the union of the sets is not equal to the whole space, while alternating projections can still converge
linearly as is the case when the sets are convex with nonempty intersection of their relative interiors. A
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quest has started for the weakest regularity property lying between transversality and subtransversality
and being sufficient for the local linear convergence of alternating projections. We mention here the
articles by Bauschke et al. [6, 7] utilizing restricted normal cones, Drusvyatskiy et al. [17] introducing
and successfully employing intrinsic transversality, Noll and Rondepierre [50] introducing a concept of
separable intersection, with 0-separability being a weaker property than intrinsic transversality and still
implying the local linear convergence of alternating projections under the additional assumption that
one of the sets is 0-Hölder regular at the reference point with respect to the other.

3 Dual characterizations

The dual criterion for the transversality property in Definition 2 in Asplund spaces is well known,
see [33–35,39, 40].

Theorem 1 Suppose X is Asplund, A,B ⊂ X are closed, and x̄ ∈ A ∩ B. Then {A,B} is transversal
at x̄ if and only if there exist numbers α ∈]0, 1[ and δ > 0 such that ‖x∗

1 + x∗
2‖ > α for all a ∈ A∩Bδ(x̄),

b ∈ B ∩ Bδ(x̄), and all x∗
1 ∈ NA(a) and x∗

2 ∈ NB(b) satisfying ‖x∗
1‖ + ‖x∗

2‖ = 1. Moreover, the exact
upper bound of all such α equals tr[A,B](x̄).

In finite dimensions, the above criterion admits convenient equivalent reformulations in terms of
limiting normals.

Corollary 1 Suppose dimX < ∞, A,B ⊂ X are closed, and x̄ ∈ A ∩B. Then {A,B} is transversal at
x̄ if and only if one of the following two equivalent conditions is satisfied:

(i) there exists a number α ∈]0, 1[ such that ‖x∗
1 + x∗

2‖ > α for all x∗
1 ∈ NA(x̄) and x∗

2 ∈ NB(x̄) satisfying
‖x∗

1‖+ ‖x∗
2‖ = 1;

(ii) NA(x̄) ∩
(

−NB(x̄)
)

= {0}.

Moreover, the exact upper bound of all α in (i) equals tr[A,B](x̄).

The property in part (ii) of Corollary 1 is a well known qualification condition/nonseparabilty prop-
erty that has been around for about 30 years under various names (basic qualification condition, normal
qualification condition, transversality, transversal intersection, regular intersection, linearly regular inter-
section, and alliedness property); cf. [13, 27, 42, 43, 46, 47, 51]. When A and B are smooth manifolds, it
coincides with (1).

The next theorem deals with the subtransversality property in Definition 1. It provides a dual sufficient
condition for this property in an Asplund space.

Theorem 2 Suppose X is Asplund, A,B ⊂ X are closed, and x̄ ∈ A∩B. Then {A,B} is subtransversal
at x̄ if there exist numbers α ∈]0, 1[ and δ > 0 such that, for all a ∈ (A\B)∩Bδ (x̄), b ∈ (B\A)∩Bδ(x̄) and
x ∈ Bδ(x̄) with ‖x− a‖ = ‖x− b‖, there exists an ε > 0 such that ‖x∗

1 + x∗
2‖ > α for all a′ ∈ A ∩ Bε(a),

b′ ∈ B ∩ Bε(b), x
′
1 ∈ Bε(a), x

′
2 ∈ Bε(b), x

′ ∈ Bε(x), and x∗
1, x

∗
2 ∈ X∗ satisfying

‖x′ − x′
1‖ = ‖x′ − x′

2‖ , (19)

‖x∗
1‖+ ‖x∗

2‖ = 1, 〈x∗
1, x

′ − x′
1〉 = ‖x∗

1‖‖x
′ − x′

1‖, 〈x∗
2, x

′ − x′
2〉 = ‖x∗

2‖‖x
′ − x′

2‖, (20)

d(x∗
1, NA(a

′)) < δ, d(x∗
2, NB(b

′)) < δ. (21)

Moreover, str[A,B](x̄) ≥ α.

In the convex case, one can formulate a necessary and sufficient dual criterion of subtransversality in
general Banach spaces which takes a simpler form.

Theorem 3 Suppose X is a Banach space, A,B ⊂ X are closed and convex, and x̄ ∈ A∩B. Then {A,B}
is subtransversal at x̄ if and only if there exist numbers α ∈]0, 1[ and δ > 0 such that ‖x∗

1 + x∗
2‖ > α

for all a ∈ (A \ B) ∩ Bδ(x̄), b ∈ (B \ A) ∩ Bδ(x̄), x ∈ Bδ(x̄) with ‖x− a‖ = ‖x− b‖, and x∗
1, x

∗
2 ∈ X∗

satisfying

‖x∗
1‖+ ‖x∗

2‖ = 1, 〈x∗
1, x− a〉 = ‖x∗

1‖‖x− a‖, 〈x∗
2, x− b〉 = ‖x∗

2‖‖x− b‖, (22)

d(x∗
1, NA(a)) < δ, d(x∗

2, NB(b)) < δ.

Moreover, the exact upper bound of all such α equals str[A,B](x̄).
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Remark 3 1. It is sufficient to check the conditions of Theorems 1, 2 and 3 only for x∗
1 6= 0 and x∗

2 6= 0.
Indeed, if one of the vectors x∗

1 and x∗
2 equals 0, then by the normalization condition ‖x∗

1‖ + ‖x∗
2‖ = 1,

the norm of the other one equals 1, and consequently ‖x∗
1 +x∗

2‖ = 1, i.e., such pairs x∗
1, x

∗
2 do not impose

any restrictions on α.

2. Similarly to the classical condition (1), the (sub)transversality characterizations in Theorems 1,
2 and 3 require that among all admissible (i.e., satisfying all the conditions of the theorems) pairs of
nonzero elements x∗

1 and x∗
2 there is no one with x∗

1 and x∗
2 oppositely directed.

3. The sum ‖x∗
1‖ + ‖x∗

2‖ in Theorems 1, 2 and 3 corresponds to the sum norm on R
2, which is

dual to the maximum norm on R
2 used in Definitions 1 and 2. It can be replaced by max{‖x∗

1‖, ‖x
∗
2‖}

(cf. [51, (6.11)]) or any other norm on R
2.

4. Condition (7) is equivalent to the inequality αd (x,A ∩B) ≤ max {‖x− a‖, ‖x− b‖} holding for
all triples x ∈ Bδ(x̄), a ∈ A and b ∈ B. Since x̄ ∈ A ∩ B, it is sufficient to check this inequality only
for those triples which satisfy α‖x − x̄‖ > max {‖x− a‖, ‖x− b‖}. This simple observation shows that
the statement of Theorem 2 can be slightly strengthened by adding the following condition: ‖x− a‖ =
‖x− b‖ < α‖x− x̄‖. △

The proof of Theorem 2 follows the sequence proposed in [36] when deducing metric subregularity
characterizations for set-valued mappings and consists of a series of propositions providing lower primal
and dual estimates for the constant str[A,B](x̄) and, thus, sufficient conditions for the subtransversality
of the pair {A,B} at x̄ which can be of independent interest.

First observe that constant str[A,B](x̄) characterizing subtransversality and introduced in Defini-
tion 1 can be written explicitly as

str[A,B](x̄) = lim inf
a→x̄, b→x̄, x→x̄

a∈A, b∈B, x/∈A∩B

f(a, b, x)

d (x,A ∩B)
= lim inf

a→x̄, b→x̄, x→x̄
x/∈A∩B

f̂(a, b, x)

d (x,A ∩B)
, (23)

with the convention that the infimum over the empty set equals 1, and the functions f : X3 → R and
f̂ : X3 → R∞ defined, respectively, by

f(x1, x2, x) := max{‖x1 − x‖ , ‖x2 − x‖}, x1, x2, x ∈ X, (24)

f̂(x1, x2, x) := f(x1, x2, x) + iA×B(x1, x2), x1, x2, x ∈ X, (25)

where iA×B is the indicator function of A×B: iA×B(x1, x2) = 0 if x1 ∈ A, x2 ∈ B and iA×B(x1, x2) = +∞
otherwise.

Below, we are going to use two different norms on X3: a norm depending on a parameter ρ > 0 and
defined as follows:

‖(x1, x2, x)‖ρ := max {‖x‖ , ρ ‖x1‖ , ρ ‖x2‖} , x1, x2, x ∈ X, (26)

and the conventional maximum norm ‖(·, ·, ·)‖ corresponding to ρ = 1 in the above definition; we drop
the subscript ρ in this case. It is easy to check that the dual norm corresponding to (26) has the following
form:

‖(x∗
1, x

∗
2, x

∗)‖ρ = ‖x∗‖+ ρ−1(‖x∗
1‖+ ‖x∗

2‖), x∗
1, x

∗
2, x

∗ ∈ X∗. (27)

The next proposition provides an equivalent primal space representation of the subtransversality
constant (23). Its proof is based on the application of the Ekeland variational principle (Lemma 1).

Proposition 7 Suppose X is a Banach space, A,B ⊂ X are closed, and x̄ ∈ A∩B. Then the following
representation of the subtransversality constant (23) is true:

str[A,B](x̄) = lim
ρ↓0

inf
a∈A∩Bρ(x̄), b∈B∩Bρ(x̄)

x∈Bρ(x̄), max{‖x−a‖,‖x−b‖}>0

sup
a′∈A, b′∈B,u∈X
(a′,b′,u) 6=(a,b,x)

(f(a, b, x)− f(a′, b′, u))+
‖(a′, b′, u)− (a, b, x)‖ρ

, (28)

with the convention that the infimum over the empty set equals 1.
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Proof Let R denote the expression in the right-hand side of (28). We first show that str[A,B](x̄) ≤ R. If
str[A,B](x̄) = 0, the inequality holds trivially. Let 0 < α < str[A,B](x̄). By (23), there is a δ > 0 such
that

f(a, b, x)

d (x,A ∩B)
> α (29)

for all a ∈ A∩Bδ(x̄), b ∈ B∩Bδ(x̄) and x ∈ Bδ(x̄) with x /∈ A∩B. Choose a positive ρ < min{δ, (α+1)−1}
and any a ∈ A ∩ Bρ(x̄), b ∈ B ∩ Bρ(x̄) and x ∈ Bρ(x̄) with max{‖x− a‖ , ‖x− b‖} > 0. If x /∈ A ∩ B,
then, in view of (29), one can find a u ∈ A ∩B such that

f(a, b, x)

‖u− x‖
> α.

Then,

f(a, b, x)− f(u, u, u)

‖(u, u, u)− (a, b, x)‖ρ
=

f(a, b, x)

max{‖u− x‖ , ρ ‖u− a‖ , ρ ‖u− b‖}

≥
f(a, b, x)

max{‖u− x‖ , ρ(‖u− x‖+ ‖x− a‖), ρ(‖u− x‖+ ‖x− b‖)}

=
f(a, b, x)

max{‖u− x‖ , ρ(max{‖x− a‖ , ‖x− b‖}+ ‖u− x‖)}

=
f(a, b, x)

max{‖u− x‖ , ρ(f(a, b, x) + ‖u− x‖)}

= min















f(a, b, x)

‖u− x‖
,

1

ρ

(

1 +
(

f(a,b,x)
‖u−x‖

)−1
)















> α.

If x ∈ A ∩B, then

f(a, b, x)− f(x, x, x)

‖(x, x, x) − (a, b, x)‖ρ
=

f(a, b, x)

max{ρ ‖x− a‖ , ρ ‖x− b‖}
= ρ−1 > α+ 1 > α. (30)

Combining the two cases, we obtain

inf
a∈A∩Bρ(x̄), b∈B∩Bρ(x̄)

x∈Bρ(x̄), max{‖x−a‖,‖x−b‖}>0

sup
a′∈A, b′∈B,u∈X
(a′,b′,u) 6=(a,b,x)

(f(a, b, x)− f(a′, b′, u))+
‖(a′, b′, u)− (a, b, x)‖ρ

≥ α.

The claimed inequality follows after letting ρ ↓ 0 and α ↑ str[A,B](x̄).
Now we show the opposite inequality: R ≤ str[A,B](x̄). Let str[A,B](x̄) < α < ∞. Choose an α′ > 0

and a ρ > 0 such that str[A,B](x̄) < α′ < α and ρ < 1− α′/α, and set

η := min
{ρ

4
,

ρ

2α′
, ρ

2

ρ

}

. (31)

By (23), there are â ∈ A, b̂ ∈ B and x̂ ∈ Bη(x̄) \ (A ∩B) such that

f(â, b̂, x̂) < α′d (x̂, A ∩B) . (32)

As x̂ /∈ A ∩B, we have either x̂ 6= â or x̂ 6= b̂; hence ε := f(â, b̂, x̂) > 0. Denote µ := d (x̂, A ∩B). Then
0 < ε < α′µ and µ ≤ ‖x̂− x̄‖ ≤ η ≤ ρ

4 < 1. Applying to the lower semicontinuous function (25) the
Ekeland variational principle (Lemma 1) with ε as above and

λ := µ(1 − µ
ρ

2−ρ ) > 0, (33)

we find points a ∈ A, b ∈ B and x ∈ X such that

‖(a, b, x)− (â, b̂, x̂)‖ρ < λ, f(a, b, x) ≤ f(â, b̂, x̂), (34)
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and

f(a′, b′, u) +
ε

λ
‖(a′, b′, u)− (a, b, x)‖ρ ≥ f(a, b, x) for all (a′, b′, u) ∈ A×B ×X. (35)

Thanks to (34), (33), (31) and (32), we have

‖x− x̂‖ < λ < µ ≤ ‖x̂− x̄‖ ,

d (x,A ∩B) ≥ d (x̂, A ∩B)− ‖x− x̂‖ > µ− λ = µ
2

2−ρ , (36)

‖x− x̄‖ ≤ ‖x− x̂‖+ ‖x̂− x̄‖ < 2 ‖x̂− x̄‖ ≤ 2η ≤
ρ

2
, (37)

f(a, b, x) ≤ f(â, b̂, x̂) < α′µ ≤ α′η ≤
ρ

2
. (38)

It follows from (36) that x /∈ A ∩B, and consequently, either x 6= a or x 6= b. Besides, by (37) and (38),

‖x− x̄‖ < ρ and max{‖a− x̄‖ , ‖b− x̄‖} ≤ max{‖x− a‖ , ‖x− b‖}+ ‖x− x̄‖ < ρ.

Observe that µ
ρ

2−ρ ≤ η
ρ

2−ρ < η
ρ
2 ≤ ρ, and consequently, by (32) and (33),

ε

λ
<

α′µ

λ
=

α′

1− µ
ρ

2−ρ

<
α′

1− ρ
< α.

Thanks to (35) and (24), we have

f(a, b, x)− f(a′, b′, u) ≤ α ‖(a′, b′, u)− (a, b, x)‖ρ for all (a′, b′, u) ∈ A×B ×X.

It follows that

inf
a∈A∩Bρ(x̄), b∈B∩Bρ(x̄)

x∈Bρ(x̄), max{‖x−a‖,‖x−b‖}>0

sup
a′∈A, b′∈B, u∈X
(a′,b′,u) 6=(a,b,x)

f(a, b, x)− f(a′, b′, u)

‖(a′, b′, u)− (a, b, x)‖ρ
≤ α.

Taking limits in the last inequality as ρ ↓ 0 and α ↓ str[A,B](x̄) yields the claimed inequality. ⊓⊔

Remark 4 1. The right-hand side of (28) is the uniform strict outer slope [36] of the function (25)
(considered as a function of two variables x and (x1, x2)) at (x̄, (x̄, x̄)).

2. The inequality ‘≤’ in (28) is valid in arbitrary (not necessarily complete) normed linear spaces.
The completeness of the space X is only needed for the inequality ‘≥’, the proof of which is based on
the application of the Ekeland variational principle. △

The next proposition provides another two primal space representations of the subtransversality
constant (23) which impose additional restrictions on the choice of a, b and x under the inf in (28).

Proposition 8 Suppose X is a Banach space, A,B ⊂ X are closed, and x̄ ∈ A∩B. Then the following
representations of the subtransversality constant (23) are true:

str[A,B](x̄) = lim
ρ↓0

inf
a∈(A\B)∩Bρ(x̄), b∈(B\A)∩Bρ(x̄)

x∈Bρ(x̄)

sup
a′∈A, b′∈B, u∈X
(a′,b′,u) 6=(a,b,x)

(f(a, b, x)− f(a′, b′, u))+
‖(a′, b′, u)− (a, b, x)‖ρ

= lim
ρ↓0

inf
a∈(A\B)∩Bρ(x̄), b∈(B\A)∩Bρ(x̄)

x∈Bρ(x̄), ‖x−a‖=‖x−b‖

sup
a′∈A, b′∈B, u∈X
(a′,b′,u) 6=(a,b,x)

(f(a, b, x)− f(a′, b′, u))+
‖(a′, b′, u)− (a, b, x)‖ρ

, (39)

with the convention that the infimum over the empty set equals 1.
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Proof Let R, R1 and R2 denote the right-hand side of (28), and the first and the second expressions
in (39), respectively. Comparing the sets of restrictions on the choice of a, b and x under the inf in
these expressions, it is easy to observe that R ≤ R1 ≤ R2. Next we show that both inequalities hold as
equalities.

R = R1. Let a ∈ A, b ∈ B, x ∈ X , max{‖x− a‖ , ‖x− b‖} > 0, and ρ ∈]0, 1/2[. If b ∈ A, i.e.,
b ∈ A ∩B, then f(b, b, b) = 0 and

‖(b, b, b)− (a, b, x)‖ρ = max {‖b− x‖ , ρ ‖b− a‖} ≤ max {‖b − x‖ , ρ(‖b− x‖+ ‖a− x‖)}

≤ max {1, 2ρ}max {‖b− x‖ , ‖a− x‖} = max {‖b− x‖ , ‖a− x‖} .

Similarly, if a ∈ B, i.e., a ∈ A ∩B, then f(a, a, a) = 0 and

‖(a, a, a)− (a, b, x)‖ρ ≤ max {‖b− x‖ , ‖a− x‖} .

Thus, in both cases,

sup
u∈X, a′∈A, b′∈B
(a′,b′,u) 6=(a,b,x)

f(a, b, x)− f(a′, b′, u)

‖(a′, b′, u)− (a, b, x)‖ρ
≥ 1. (40)

Since str[A,B](x̄) ≤ 1, all points a and b with either a ∈ A ∩ B or b ∈ A ∩ B can be excluded when
computing str[A,B](x̄) using (28). This proves R = R1.

R1 = R2. Let a ∈ A, b ∈ B, x ∈ X and ρ > 0. If ‖x− a‖ < ‖x− b‖, then f(a, b, x) = ‖x− b‖. Taking
ut := x − t(x − b) for t > 0, we have f(a, b, ut) = (1 − t) ‖x− b‖ for all sufficiently small t > 0, and
‖(a, b, ut)− (a, b, x)‖ρ = ‖ut − x‖ = t ‖x− b‖. Hence,

f(a, b, x)− f(a, b, ut)

‖(a, b, ut)− (a, b, x)‖ρ
= 1. (41)

Similarly, if ‖x− b‖ < ‖x− a‖, then we can take ut := x− t(x−a) to arrive at the same equality (41) for
all sufficiently small t > 0. Thus, in both cases, inequality (40) holds, and points with ‖x− a‖ 6= ‖x− b‖
can be excluded when computing str[A,B](x̄) using the first representation in (39). ⊓⊔

Remark 5 The expression after sup in the right-hand sides of (28) and (39) can be greater than 1 (see (30)
when ρ < 1). Nevertheless, str[A,B](x̄) computed in accordance with (28) or (39) (under the conventions
employed in Propositions 7 and 8) is always less than or equal to 1. △

Now we define a ‘localized’ subtransversality constant:

str1[A,B](x̄) := lim
ρ↓0

inf
a∈(A\B)∩Bρ(x̄), b∈(B\A)∩Bρ(x̄)

x∈Bρ(x̄)

lim sup
a′→a, b′→b, u→x

a′∈A, b′∈B
(a′,b′,u) 6=(a,b,x)

(f(a, b, x)− f(a′, b′, u))+
‖(a′, b′, u)− (a, b, x)‖ρ

, (42)

with the convention that the infimum over the empty set equals 1. It corresponds to the first expression
in (39) with sup replaced by lim sup. Observe that

lim sup
u→x, a′→a, b′→b

a′∈A, b′∈B
(a′,b′,u) 6=(a,b,x)

(f(a, b, x)− f(a′, b′, u))+
‖(a′, b′, u)− (a, b, x)‖ρ

.

in the above definition is the ρ-slope [36] (i.e., the slope [2, 14, 20, 26] with respect to the distance in X3

corresponding to the norm defined by (26)) at (x, (a, b)) of the function (u, (a′, b′)) 7→ f(a′, b′, u).

Proposition 9 Suppose X is a normed linear space, A,B ⊂ X are closed, and x̄ ∈ A ∩ B. Then the
following representation of the subtransversality constant (42) is true:

str1[A,B](x̄) = lim
ρ↓0

inf
a∈(A\B)∩Bρ(x̄), b∈(B\A)∩Bρ(x̄)

x∈Bρ(x̄), ‖x−a‖=‖x−b‖

lim sup
a′→a, b′→b, u→x

a′∈A, b′∈B
(a′,b′,u) 6=(a,b,x)

(f(a, b, x)− f(a′, b′, u))+
‖(a′, b′, u)− (a, b, x)‖ρ

, (43)

with the convention that the infimum over the empty set equals 1.
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Proof The proof follows that of the last equality in (39). Comparing (42) and (43), we immediately
get the inequality str1[A,B](x̄) ≤ R, where R denotes the right-hand side of (43). If a ∈ A, b ∈ B,
x ∈ X , and ‖x− a‖ < ‖x− b‖, we take ut := x − t(x − b) for t > 0 and arrive at the equality (41)
valid for all sufficiently small t > 0. This yields an analogue of the inequality (40) with sup replaced by
lim sup as in (42). The same argument applies in the case ‖x− b‖ < ‖x− a‖. As a result, the points
with ‖x− b‖ 6= ‖x− a‖ can be excluded when computing str1[A,B](x̄) using definition (42). This proves
representation (43). ⊓⊔

Remark 6 One can define an analogue of str1[A,B](x̄) using the limiting procedure in the representation
of str[A,B](x̄) in (28). Unlike the ‘nonlocal’ case in Propositions 7 and 8, such an analogue does not
coincide in general with str1[A,B](x̄) defined by (42), although it can still be used for formulating
sufficient conditions of subtransversality. In this paper, we are not going to use quantities defined with
the help of the limiting procedure in the representation of str[A,B](x̄) in (28). △

The next proposition clarifies the relationship between str1[A,B](x̄) and str[A,B](x̄).

Proposition 10 Suppose X is a Banach space, A,B ⊂ X are closed, and x̄ ∈ A ∩B. Then

(i) str1[A,B](x̄) ≤ str[A,B](x̄);
(ii) if A and B are convex, then (i) holds as equality.

Proof (i) is an immediate consequence of the definition (42) and the first representation in (39) (or
Proposition (9) and the second representation in (39)).

(ii) Let A and B be convex. Then function f defined by (24) is convex. For any a ∈ A \B, b ∈ B \A,
x ∈ X , we have f(a, b, x) > 0. Hence, for any ρ > 0, and any a′ ∈ A, b′ ∈ B and u ∈ X with
f(a′, b′, u) < f(a, b, x) (such a triple exists, e.g., f(x̄, x̄, x̄) = 0), we have

f(a, b, x)− f(a′, b′, u)

‖(a, b, x)− (a′, b′, u)‖ρ
≤ lim

t↓0

f(a, b, x)− f((a, b, x) + t((a′, b′, u)− (a, b, x))

‖(a, b, x)− ((a, b, x) + t((a′, b′, u)− (a, b, x))‖ρ

≤ lim sup
u→x, a′→a, b′→b

a′∈A, b′∈B
(a′,b′,u) 6=(a,b,x)

(f(a, b, x)− f(a′, b′, u))+
‖(a′, b′, u)− (a, b, x)‖ρ

.

In view of the first representation in (39) and definition (42), we have str[A,B](x̄) ≤ str1[A,B](x̄). In
view of (i), this proves (ii). ⊓⊔

Remark 7 Proposition 10 is valid in arbitrary (not necessarily complete) normed linear spaces if
str[A,B](x̄) is defined by one of the expressions in (39) (see Remark 4.2). △

To proceed to dual characterizations of subtransversality, we need a representation of the subdiffer-
ential of the convex function f given by (24). It is computed in the next lemma which improves (in the
current setting) [40, Lemma 4.2].

Lemma 3 Let X be a normed space and f be given by (24). Then

∂f(x1, x2, x) =
{

(x∗
1, x

∗
2,−x∗

1 − x∗
2) ∈ (X∗)3 | (x∗

1, x
∗
2) ∈ ∂g(x1 − x, x2 − x)

}

, x1, x2, x ∈ X, (44)

where g is the maximum norm on X2:

g(x1, x2) := max{‖x1‖ , ‖x2‖}, x1, x2 ∈ X. (45)

If x1 6= x or x2 6= x, then (x∗
1, x

∗
2, x

∗) ∈ ∂f(x1, x2, x) if and only if the following conditions are satisfied:

x∗
1 + x∗

2 + x∗ = 0, ‖x∗
1‖+ ‖x∗

2‖ = 1,

〈x∗
1, x1 − x〉 = ‖x∗

1‖ ‖x1 − x‖ , 〈x∗
2, x2 − x〉 = ‖x∗

2‖ ‖x2 − x‖ ,

if ‖x1 − x‖ < ‖x2 − x‖ , then x∗
1 = 0,

if ‖x2 − x‖ < ‖x1 − x‖ , then x∗
2 = 0.
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Proof The convex function f given by (24) is a composition of the continuous linear mapping

(x1, x2, x) 7→ (x1 − x, x2 − x) (46)

from X3 to X2 and the norm (45) on X2. The mapping adjoint to (46) is from (X∗)2 to (X∗)3 and is of
the form

(x∗
1, x

∗
2) 7→ (x∗

1, x
∗
2,−x∗

1 − x∗
2).

Representation (44) is a consequence of the standard convex chain rule (cf., e.g., [29, Theorem 4.2.2]).
The dual norm corresponding to (45) is of the form (x∗

1, x
∗
2) 7→ ‖x∗

1‖ + ‖x∗
2‖. Hence (cf., e.g., [29,

Subection 0.3.2], [54, Corollary 2.4.16]), if (x1, x2) 6= 0, then

∂g(x1, x2) =
{

(x∗
1, x

∗
2) ∈ (X∗)2 | ‖x∗

1‖+ ‖x∗
2‖ = 1, 〈(x∗

1, x
∗
2), (x1, x2)〉 = max{‖x1‖ , ‖x2‖}

}

. (47)

If ‖x∗
1‖+ ‖x∗

2‖ = 1, then the last condition in (47) is equivalent to the following group of conditions:

〈x∗
1, x1〉 = ‖x∗

1‖ ‖x1‖ , 〈x∗
2, x2〉 = ‖x∗

2‖ ‖x2‖ ,

if ‖x1‖ < ‖x2‖ , then x∗
1 = 0,

if ‖x2‖ < ‖x1‖ , then x∗
2 = 0.

The second part of the proposition follows now from the representation (44). ⊓⊔

The subtransversality constant (42) admits dual estimates which are crucial for the conclusions of
Theorems 2 and 3. In what follows we will use notations itrw[A,B](x̄) and itrc[A,B](x̄) for the supremum
of all α in Theorems 2 and 3, respectively, with the convention that the supremum over the empty set
equals 0. It is easy to check the following explicit representations of the two constants:

itrw[A,B](x̄) := lim
ρ↓0

inf
a∈(A\B)∩Bρ(x̄), b∈(B\A)∩Bρ(x̄)

x∈Bρ(x̄), ‖x−a‖=‖x−b‖

lim inf
x′→x, x′

1
→a, x′

2
→b, a′→a, b′→b

a′∈A, b′∈B, ‖x′−x′
1
‖=‖x′−x′

2
‖

d(x∗
1
,NA(a′))<ρ, d(x∗

2
,NB(b′))<ρ, ‖x∗

1
‖+‖x∗

2
‖=1

〈x∗
1
,x′−x′

1
〉=‖x∗

1
‖ ‖x′−x′

1
‖, 〈x∗

2
,x′−x′

2
〉=‖x∗

2
‖ ‖x′−x′

2
‖

‖x∗
1 + x∗

2‖, (48)

itrc[A,B](x̄) := lim inf
x→x̄, a→x̄, b→x̄

a∈A\B, b∈B\A, ‖x−a‖=‖x−b‖
d(x∗

1
,NA(a))→0, d(x∗

2
,NB(b))→0, ‖x∗

1
‖+‖x∗

2
‖=1

〈x∗
1
,x−a〉=‖x∗

1
‖ ‖x−a‖, 〈x∗

2
,x−b〉=‖x∗

2
‖ ‖x−b‖

‖x∗
1 + x∗

2‖, (49)

with the convention that the infimum over the empty set equals 1.

Proposition 11 Suppose X is a Banach space, A,B ⊂ X are closed, and x̄ ∈ A ∩B.

(i) If either X is Asplund or A and B are convex, then the following dual representations of the sub-
transversality constant (42) are true:

str1[A,B](x̄) = lim
ρ↓0

inf
a∈(A\B)∩Bρ(x̄), b∈(B\A)∩Bρ(x̄)

x∈Bρ(x̄)

(x∗
1
,x∗

2
,x∗)∈∂f̂(a,b,x), ‖x∗

1
‖+‖x∗

2
‖<ρ

‖x∗‖

= lim
ρ↓0

inf
a∈(A\B)∩Bρ(x̄), b∈(B\A)∩Bρ(x̄)

x∈Bρ(x̄), ‖x−a‖=‖x−b‖

(x∗
1
,x∗

2
,x∗)∈∂f̂(a,b,x), ‖x∗

1
‖+‖x∗

2
‖<ρ

‖x∗‖ , (50)

where the function f̂ : X3 → R∞ is defined by (25) and the convention that the infimum over the
empty set equals 1 is in force. Moreover,

(ii) if X is Asplund, then str1[A,B](x̄) ≥ itrw[A,B](x̄);
(iii) if A and B are convex, then str1[A,B](x̄) = itrc[A,B](x̄).

15



Proof (i) Let R1 and R2 denote the first and second expressions in (50), respectively. We first show that

str1[A,B](x̄) ≤ R1. Let ρ > 0, a ∈ A, b ∈ B, x ∈ X , (x∗
1, x

∗
2, x

∗) ∈ ∂f̂(a, b, x) and ‖x∗
1‖ + ‖x∗

2‖ < ρ2.
Then, using the definition (3) of the Fréchet subdifferential and representation (27) of the dual norm,
we obtain

lim sup
a′→a, b′→b, u→x

a′∈A, b′∈B
(a′,b′,u) 6=(a,b,x)

f(a, b, x)− f(a′, b′, u)

‖(a′, b′, u)− (a, b, x)‖ρ
≤ ‖(x∗

1, x
∗
2, x

∗)‖ρ

− lim inf
a′→a, b′→b, u→x

a′∈A, b′∈B
(a′,b′,u) 6=(a,b,x)

f(a′, b′, u)− f(a, b, x)− 〈(x∗
1, x

∗
2, x

∗), (a′, b′, u)− (a, b, x)〉

‖(a′, b′, u)− (a, b, x)‖ρ

≤ ‖(x∗
1, x

∗
2, x

∗)‖ρ = ‖x∗‖+ ρ−1(‖x∗
1‖+ ‖x∗

2‖) ≤ ‖x∗‖+ ρ.

If ρ < 1, then ρ2 < ρ and it follows from the above estimate that

inf
a∈(A\B)∩Bρ(x̄), b∈(B\A)∩Bρ(x̄)

x∈Bρ(x̄)

lim sup
u→x, a′→a, b′→b

a′∈A, b′∈B
(a′,b′,u) 6=(a,b,x)

f(a, b, x)− f(a′, b′, u)

‖(a′, b′, u)− (a, b, x)‖ρ

≤ inf
a∈(A\B)∩Bρ2(x̄), b∈(B\A)∩Bρ2(x̄)

x∈Bρ2(x̄)

(x∗
1
,x∗

2
,x∗)∈∂f̂(a,b,x), ‖x∗

1
‖+‖x∗

2
‖<ρ2

‖x∗‖+ ρ.

Passing to the limits as ρ ↓ 0 and using definition (42), we arrive at the inequality str1[A,B](x̄) ≤ R1.
Next we prove the opposite inequality. Let str1[A,B](x̄) < β < α < ∞, ρ > 0 and ρ′ := min{1, α−1}ρ.

By (43), one can find points â ∈ (A \ B) ∩ Bρ′(x̄), b̂ ∈ (B \ A) ∩ Bρ′ (x̄) and x̂ ∈ Bρ′ (x̄), such that

‖x̂− â‖ = ‖x̂− b̂‖ and

f(â, b̂, x̂)− f(a′, b′, u) ≤ β‖(a′, b′, u)− (â, b̂, x̂)‖ρ′ for all (a′, b′, u) ∈ A×B ×X near (â, b̂, x̂).

In other words, (â, b̂, x̂) is a local minimizer of the function

(a′, b′, u) 7→ f̂(a′, b′, u) + β‖(a′, b′, u)− (â, b̂, x̂)‖ρ′ ,

and consequently, its Fréchet subdifferential at (â, b̂, x̂) contains zero. We consider two cases.
1) X is an Asplund space. Take an ε > 0 such that

ε < min{d(â, B), d(b̂, A)}, ‖x̂− x̄‖+ ε < ρ′, ‖â− x̄‖+ ε < ρ′, ‖b̂− x̄‖+ ε < ρ′, β + ε < α.

Applying the fuzzy sum rule for Fréchet subdifferentials (Lemma 2(i)) and the representation (27) of the

dual norm, we can find points a ∈ A∩Bε(â), b ∈ B ∩Bε(b̂), x ∈ Bε(x̂) and (x∗
1, x

∗
2, x

∗) ∈ ∂f̂(a, b, x) such
that

‖(x∗
1, x

∗
2, x

∗)‖ρ′ = ‖x∗‖+ (‖x∗
1‖+ ‖x∗

2‖)/ρ
′ < β + ε.

It follows that a ∈ (A \B) ∩ Bρ(x̄), b ∈ (B \A) ∩ Bρ(x̄) and x ∈ Bρ(x̄).

2) A and B are convex. Then function f̂ is convex. Applying the convex sum rule (Lemma 2(ii)), we

can find a subgradient (x∗
1, x

∗
2, x

∗) ∈ ∂f̂(â, b̂, x̂) such that

‖(x∗
1, x

∗
2, x

∗)‖ρ′ = ‖x∗‖+ (‖x∗
1‖+ ‖x∗

2‖)/ρ
′ ≤ β.

Thus, in both cases we have

‖x∗‖+ (‖x∗
1‖+ ‖x∗

2‖)/ρ
′ < α,

and consequently,
‖x∗‖ < α, ‖x∗

1‖ < ρ and ‖x∗
2‖ < ρ.
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It follows that R1 ≤ α. By letting α → str1[A,B](x̄), we obtain the claimed inequality.
Observe that, unlike the first case, in the second one we did not produce a new triple (a, b, x) to replace

(â, b̂, x̂), so the equality ‖x̂− â‖ = ‖x̂ − b̂‖ is preserved. Hence, in the convex case both representations
in (50) have been proved.

Now we proceed to the proof of the ‘moreover’ part of the proposition. The remaining equality
R1 = R2 in the Asplund space case will be established in the process.

(ii) Suppose X is Asplund. Let str1[A,B](x̄) < α < 1 and ρ > 0. By the first representation in (50)

proved above, there are a ∈ (A\B)∩Bρ(x̄), b ∈ (B \A)∩Bρ(x̄), x ∈ Bρ(x̄) and (w∗
1 , w

∗
2 , w

∗) ∈ ∂f̂(a, b, x),

where f̂ is given by (25), such that

‖w∗
1‖+ ‖w∗

2‖ < ρ and ‖w∗‖ < α. (51)

Denote δ0 := max{‖x− a‖ , ‖x− b‖} > 0, δ1 :=
∣

∣ ‖x− a‖ − ‖x− b‖
∣

∣ and choose an ε > 0 such that

ε < min

{

d(a,B), d(b, A),
δ0
2

}

, (52)

if δ1 > 0 then ε <
δ1
4
, (53)

‖x− x̄‖+ ε < ρ, δ0 + 2ε < ρ, (54)

‖w∗
1‖+ ε < ρ, ‖w∗

2‖+ ε < ρ, ‖w∗‖+ ε < α. (55)

Observe that function f̂ is the sum of two functions: the Lipschitz continuous function f defined by
(24) and the lower semicontinuous indicator function iA×B (considered as a function on X3). We can
apply the fuzzy sum rule for Fréchet subdifferentials (Lemma 2(i)): there exist points x′

1, x
′
2, x

′ ∈ X ,
a′ ∈ A, b′ ∈ B, x∗

1, x
∗
2, x

∗, u∗
1, u

∗
2 ∈ X∗ such that

‖x′ − x‖ < ε, ‖x′
1 − a‖ < ε, ‖x′

2 − b‖ < ε, ‖a′ − a‖ < ε, ‖b′ − b‖ < ε, (56)

(−x∗
1,−x∗

2, x
∗) ∈ ∂f(x′

1, x
′
2, x

′), u∗
1 ∈ NA(a

′), u∗
2 ∈ NB(b

′), (57)

‖(w∗
1 , w

∗
2 , w

∗)− (−x∗
1,−x∗

2, x
∗)− (u∗

1, u
∗
2, 0)‖ < ε.

The last inequality is equivalent to the following three:

‖w∗ − x∗‖ < ε, ‖w∗
1 + x∗

1 − u∗
1‖ < ε, ‖w∗

2 + x∗
2 − u∗

2‖ < ε. (58)

Thanks to (52), (56) and (54), we have a′ /∈ B, b′ /∈ A and the following estimates:

max{‖x′
1 − x′‖ , ‖x′

2 − x′‖} ≥ max{ ‖x− a‖ − ‖x′
1 − a‖ − ‖x′ − x‖,

‖x− b‖ − ‖x′
2 − b‖ − ‖x′ − x‖} > δ0 − 2ε > 0. (59)

If δ1 > 0 then, in view of (53) and (56),
∣

∣ ‖x′
1 − x′‖ − ‖x′

2 − x′‖
∣

∣ ≥
∣

∣ ‖a− x‖ − ‖b− x‖
∣

∣− ‖x′
1 − a‖ − ‖x′

2 − b‖ − 2 ‖x′ − x‖ > δ1 − 4ε > 0. (60)

Thanks to (59) and Lemma 3, we have

x∗ = x∗
1 + x∗

2, (61)

‖x∗
1‖+ ‖x∗

2‖ = 1, (62)

〈x∗
1, x

′ − x′
1〉 = ‖x∗

1‖ ‖x
′ − x′

1‖, 〈x∗
2, x

′ − x′
2〉 = ‖x∗

2‖ ‖x
′ − x′

2‖, (63)

if ‖x′
1 − x′‖ < ‖x′

2 − x′‖ , then x∗
1 = 0, (64)

if ‖x′
2 − x′‖ < ‖x′

1 − x′‖ , then x∗
2 = 0. (65)

It follows from (61), the first inequality in (58) and the second inequality in (55) that

‖x∗
1 + x∗

2‖ = ‖x∗‖ ≤ ‖w∗‖+ ε < α. (66)

Then ‖x∗
2‖ − ‖x∗

1‖ < α, ‖x∗
1‖ − ‖x∗

2‖ < α and, in view of (62),

‖x∗
1‖ >

1− α

2
> 0 and ‖x∗

2‖ >
1− α

2
> 0. (67)
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Hence, by (64), (65), and (60), we have ‖x′
1 − x′‖ = ‖x′

2 − x′‖ and δ1 = 0, i.e., δ0 = ‖x− a‖ = ‖x− b‖.
This proves the second equality in (50). Inequalities (58) and (55) yield the following estimates:

d(x∗
1 , NA(a

′)) ≤ ‖x∗
1 − u∗

1‖ < ‖w∗
1‖+ ε < ρ,

d(x∗
2, NB(b

′)) ≤ ‖x∗
2 − u∗

2‖ < ‖w∗
2‖+ ε < ρ.

In view of (62), (63) and (66), after taking limits as ε ↓ 0, we conclude that

lim inf
x′→x, x′

1
→a, x′

2
→b, a′→a, b′→b

a′∈A, b′∈B, ‖x′−x′
1
‖=‖x′−x′

2
‖

d(x∗
1
,NA(a′))<ρ, d(x∗

2
,NB(b′))<ρ, ‖x∗

1
‖+‖x∗

2
‖=1

〈x∗
1
,x′−x′

1
〉=‖x∗

1
‖ ‖x′−x′

1
‖, 〈x∗

2
,x′−x′

2
〉=‖x∗

2
‖ ‖x′−x′

2
‖

‖x∗
1 + x∗

2‖ ≤ α.

By letting ρ ↓ 0 and α ↓ str1[A,B](x̄), we obtain the claimed inequality.
(iii) Let A and B be convex. We first prove the inequality itrc[A,B](x̄) ≤ str1[A,B](x̄) by modifying

slightly (simplifying!) the above proof of (i) replacing the fuzzy sum rule for Fréchet subdifferentials by
the exact convex sum rule.

Let str1[A,B](x̄) < α < 1 and ρ > 0. By the second representation in (50) proved above, there are

a ∈ (A\B)∩Bρ(x̄), b ∈ (B\A)∩Bρ(x̄), x ∈ Bρ(x̄) with ‖x− a‖ = ‖x− b‖, and (w∗
1 , w

∗
2 , w

∗) ∈ ∂f̂(a, b, x),

where f̂ is given by (25), satisfying conditions (51). Observe that function f̂ is the sum of two convex
functions: the Lipschitz continuous function f defined by (24) and the indicator function iA×B (considered
as a function on X3). We can apply the convex sum rule (Lemma 2(ii)): there exist a subgradient
(−x∗

1,−x∗
2, x

∗) ∈ ∂f(a, b, x) and normals u∗
1 ∈ NA(a) and u∗

2 ∈ NB(b) such that

w∗ = x∗, w∗
1 = u∗

1 − x∗
1, w∗

2 = u∗
2 − x∗

2. (68)

Thanks to Lemma 3, conditions (61) and (62) hold true as well as the following two:

〈x∗
1, x− a〉 = ‖x∗

1‖ ‖x− a‖, 〈x∗
2, x− b〉 = ‖x∗

2‖ ‖x− b‖. (69)

It follows from (61), (51) and the first equality in (68) that

‖x∗
1 + x∗

2‖ = ‖x∗‖ = ‖w∗‖ < α. (70)

Then ‖x∗
2‖ − ‖x∗

1‖ < α, ‖x∗
1‖ − ‖x∗

2‖ < α and, in view of (62), inequalities (67) hold true. Conditions
(51) and (68) yield the following estimates:

d(x∗
1, NA(a)) ≤ ‖x∗

1 − u∗
1‖ = ‖w∗

1‖ < ρ,

d(x∗
2, NB(b)) ≤ ‖x∗

2 − u∗
2‖ = ‖w∗

2‖ < ρ.

Hence, itrc[A,B](x̄) ≤ α. By letting α ↓ str1[A,B](x̄), we obtain the claimed inequality.
Let itrc[A,B](x̄) < α < 1 and ρ ∈]0, 1[. By definition (49), there are a ∈ (A \ B) ∩ Bρ(x̄), b ∈

(B \ A) ∩ Bρ(x̄), x ∈ Bρ(x̄) with ‖x− a‖ = ‖x− b‖, x∗
1, x

∗
2 ∈ X∗, and normals u∗

1 ∈ NA(a), u
∗
2 ∈ NB(b)

satisfying (69) and

‖x∗
1‖+ ‖x∗

2‖ = 1, ‖x∗
1 + x∗

2‖ < α, ‖x∗
1 − u∗

1‖ <
ρ

2
, ‖x∗

2 − u∗
2‖ <

ρ

2
. (71)

Thus, (u∗
1, u

∗
2) ∈ ∂iA×B(a, b) and (−x∗

1,−x∗
2, x

∗) ∈ ∂f(a, b, x), where x∗ := x∗
1 + x∗

2. By the convex sum

rule (Lemma 2(ii)), (w∗
1 , w

∗
2 , x

∗) ∈ ∂f̂(a, b, x), where w∗
1 = u∗

1−x∗
1, w

∗
2 = u∗

2 −x∗
2. Then ‖w∗

1‖+ ‖w∗
2‖ < ρ

and, in view of the second representation in (50), str1[A,B](x̄) ≤ α. By letting α ↓ itrc[A,B](x̄), we
obtain the inequality str1[A,B](x̄) ≤ itrc[A,B](x̄). ⊓⊔

Remark 8 The inequality ‘≤’ in both representations in (50) as well as the opposite inequalities in the
convex case are valid in arbitrary (not necessarily complete) normed linear spaces. △

Proof of Theorems 2 and 3 The theorems follow now from Propositions 10 and 11 and definitions (48)
and (49). ⊓⊔

Proposition 12 Suppose X is a Banach space, A,B ⊂ X are closed and convex, and x̄ ∈ A ∩B. Then
str[A,B](x̄) = str1[A,B](x̄) = itrc[A,B](x̄).

Proof The assertion is a consequence of Proposition 10(ii) and Proposition 11(iii). ⊓⊔

Remark 9 Using the representations in Propositions 7, 8, 9 and 11, one can formulate several intermediate
sufficient (and in some cases also necessary) conditions of subtransversality. △

18



4 Intrinsic transversality

The two-limit definition (48) as well as the corresponding dual space characterization of subtransversality
in Theorem 2 look complicated and difficult to verify. The following one-limit modification of (48) in
terms of Fréchet normals can be useful:

itr[A,B](x̄) := lim inf
a→x̄, b→x̄, x→x̄

a∈A\B, b∈B\A, x 6=a, x 6=b
x∗
1
∈NA(a)\{0}, x∗

2
∈NB(b)\{0}, ‖x∗

1
‖+‖x∗

2
‖=1

‖x−a‖
‖x−b‖

→1,
〈x∗

1
,x−a〉

‖x∗
1
‖‖x−a‖

→1,
〈x∗

2
,x−b〉

‖x∗
2
‖‖x−b‖

→1

‖x∗
1 + x∗

2‖, (72)

with the convention that the infimum over the empty set equals 1. The relationship between the constants
(48), (49) and (72) is given by the next proposition.

Proposition 13 Suppose X is a Banach space, A,B ⊂ X are closed, and x̄ ∈ A ∩B.

(i) 0 ≤ itr[A,B](x̄) ≤ itrw[A,B](x̄) ≤ itrc[A,B](x̄) ≤ 1;
(ii) if dimX < ∞, then

itrw[A,B](x̄) = lim inf
a→x̄, b→x̄, x→x̄

a∈A\B, b∈B\A, ‖x−a‖=‖x−b‖

d(x∗
1
,NA(a))→0, d(x∗

2
,NB(b))→0, ‖x∗

1
‖+‖x∗

2
‖=1

〈x∗
1
,x−a〉=‖x∗

1
‖ ‖x−a‖, 〈x∗

2
,x−b〉=‖x∗

2
‖ ‖x−b‖

‖x∗
1 + x∗

2‖, (73)

with the convention that the infimum over the empty set equals 1;
(iii) if dimX < ∞, and A and B are convex, then itrw[A,B](x̄) = itrc[A,B](x̄) = str[A,B](x̄).

Proof (i) All three constants are nonnegative by definition and, thanks to the conventions made, never
greater than 1. Definition (49) corresponds to taking x′ = x, x′

1 = a′ = a and x′
2 = b′ = b under the

lim inf in (48). Hence, itrw[A,B](x̄) ≤ itrc[A,B](x̄).

Next we show that itr[A,B](x̄) ≤ itrw[A,B](x̄). Let itrw[A,B](x̄) < α < 1 and ρ > 0. Choose an α′

with itrw[A,B](x̄) < α′ < α and a ρ′ > 0 with

ρ′ < min

{

ρ

2
,
1

2
,
α− α′

4
,
ρ(1− α)

4

}

. (74)

By definition (48), there exist a ∈ (A \ B) ∩ Bρ′(x̄), b ∈ (B \ A) ∩ Bρ′ (x̄) and x ∈ Bρ′ (x̄) such that
‖x− a‖ = ‖x− b‖, and

lim inf
x′→x, x′

1
→a, x′

2
→b, a′→a, b′→b

a′∈A, b′∈B, ‖x′−x′
1
‖=‖x′−x′

2
‖

d(x∗
1
,NA(a′))<ρ′, d(x∗

2
,NB(b′))<ρ′, ‖x∗

1
‖+‖x∗

2
‖=1

〈x∗
1
,x′−x′

1
〉=‖x∗

1
‖ ‖x′−x′

1
‖, 〈x∗

2
,x′−x′

2
〉=‖x∗

2
‖ ‖x′−x′

2
‖

‖x∗
1 + x∗

2‖ < α′. (75)

We obviously have a 6= b, x 6= a and x 6= b. Choose an ε > 0 such that

ε < d(a,B), ε < d(b, A), 2ε

(

1 +
4

1− α

(

ρ−
4ρ′

1− α

)−1
)

< ‖x− a‖ ,
4ε

‖x− a‖ − 2ε
< ρ,

‖x− x̄‖+ ε < ρ′, ‖a− x̄‖+ ε < ρ′, ‖b− x̄‖+ ε < ρ′.

By (75), there are points a′ ∈ A ∩ Bε(a), b
′ ∈ B ∩ Bε(b), x

′
1 ∈ Bε(a), x

′
2 ∈ Bε(b), x

′ ∈ Bε(x), and
x∗
1, x

∗
2 ∈ X∗ satisfying conditions (19), (20),

d(x∗
1, NA(a

′)) < ρ′, d(x∗
2, NB(b

′)) < ρ′ and ‖x∗
1 + x∗

2‖ < α′. (76)

19



Then

d(a′, B) ≥ d(a,B)− ‖a′ − a‖ > d(a,B)− ε > 0, (77)

d(b′, A) ≥ d(b, A)− ‖b′ − b‖ > d(b, A) − ε > 0, (78)

‖x′ − a′‖ ≤ ‖x− a‖+ ‖x′ − x‖+ ‖a′ − a‖ < ‖x− a‖+ 2ε,

‖x′ − b′‖ ≤ ‖x− b‖+ ‖x′ − x‖+ ‖b′ − b‖ < ‖x− b‖+ 2ε,

‖x′ − a′‖ ≥ ‖x− a‖ − ‖x′ − x‖ − ‖a′ − a‖ > ‖x− a‖ − 2ε >
8ε

1− α

(

ρ−
4ρ′

1− α

)−1

> 0, (79)

‖x′ − b′‖ ≥ ‖x− b‖ − ‖x′ − x‖ − ‖b′ − b‖ > ‖x− b‖ − 2ε >
8ε

1− α

(

ρ−
4ρ′

1− α

)−1

> 0, (80)

‖x′ − a′‖

‖x′ − b′‖
<

‖x− a‖+ 2ε

‖x− b‖ − 2ε
= 1 +

4ε

‖x− a‖ − 2ε
< 1 + ρ, (81)

‖x′ − a′‖

‖x′ − b′‖
>

‖x− a‖ − 2ε

‖x− b‖+ 2ε
= 1−

4ε

‖x− a‖+ 2ε
< 1− ρ, (82)

‖x′ − x̄‖ ≤ ‖x− x̄‖+ ‖x′ − x‖ < ‖x− x̄‖+ ε < ρ′ < ρ, (83)

‖a′ − x̄‖ ≤ ‖a− x̄‖+ ‖a′ − a‖ < ‖a− x̄‖+ ε < ρ′ < ρ, (84)

‖b′ − x̄‖ ≤ ‖b− x̄‖+ ‖b′ − b‖ < ‖b− x̄‖+ ε < ρ′ < ρ, (85)
∣

∣‖x∗
1‖ − ‖x∗

2‖
∣

∣ ≤ ‖x∗
1 − (−x∗

2)‖ < α′.

The last estimate together with the equality ‖x∗
1‖+ ‖x∗

2‖ = 1 yield

‖x∗
1‖ <

1 + α′

2
, ‖x∗

2‖ <
1 + α′

2
, (86)

‖x∗
1‖ >

1− α′

2
> 0, ‖x∗

2‖ >
1− α′

2
> 0. (87)

By (76), there are Fréchet normals v∗1 ∈ NA(a
′) and v∗2 ∈ NB(b

′) such that

‖x∗
1 − v∗1‖ < ρ′, ‖x∗

2 − v∗2‖ < ρ′. (88)

Hence, by (88), (74), (76), (87) and (86),

‖v∗1‖+ ‖v∗2‖ ≥ ‖x∗
1‖+ ‖x∗

2‖ − ‖x∗
1 − v∗1‖ − ‖x∗

2 − v∗2‖ > 1− 2ρ′ > 0, (89)

‖v∗1 + v∗2‖ ≤ ‖x∗
1 + x∗

2‖+ ‖x∗
1 − v∗1‖+ ‖x∗

2 − v∗2‖ < α′ + 2ρ′, (90)

‖v∗1‖ > ‖x∗
1‖ − ρ′ >

1− α′

2
− ρ′ >

1− α

2
, ‖v∗2‖ > ‖x∗

2‖ − ρ′ >
1− α′

2
− ρ′ >

1− α

2
, (91)

‖v∗1‖ < ‖x∗
1‖+ ρ′ <

1 + α′

2
+ ρ′ <

1 + α

2
, ‖v∗2‖ < ‖x∗

2‖+ ρ′ <
1 + α′

2
+ ρ′ <

1 + α

2
, (92)
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and

〈v∗1 , x
′ − a′〉 ≥ 〈x∗

1, x
′ − a′〉 − ‖x∗

1 − v∗1‖‖x
′ − a′‖

≥ 〈x∗
1, x

′ − x′
1〉 − ‖x∗

1‖‖x
′
1 − a′‖ − ‖x∗

1 − v∗1‖‖x
′ − a′‖

= ‖x∗
1‖‖x

′ − x′
1‖ − ‖x∗

1‖‖x
′
1 − a′‖ − ‖x∗

1 − v∗1‖‖x
′ − a′‖ (by (20))

≥ ‖v∗1‖‖x
′ − x′

1‖ − ‖x∗
1 − v∗1‖‖x

′ − x′
1‖

− ‖x∗
1‖‖x

′
1 − a′‖ − ‖x∗

1 − v∗1‖‖x
′ − a′‖

≥ ‖v∗1‖(‖x
′ − a′‖ − ‖x′

1 − a′‖)

− ‖x∗
1 − v∗1‖(‖x

′ − a′‖+ ‖x′
1 − a′‖)

− ‖x∗
1‖‖x

′
1 − a′‖ − ‖x∗

1 − v∗1‖‖x
′ − a′‖

= (‖v∗1‖ − 2‖x∗
1 − v∗1‖)‖x

′ − a′‖

− (‖v∗1‖+ ‖x∗
1 − v∗1‖+ ‖x∗

1‖)‖x
′
1 − a′‖

> (‖v∗1‖ − 2ρ′)‖x′ − a′‖ −

(

1 + α

2
+

α− α′

2
+

1 + α′

2

)

2ε (by (88), (92), (86), (74))

= (‖v∗1‖ − 2ρ′)‖x′ − a′‖ − (1 + α)2ε

> (‖v∗1‖ − 2ρ′)‖x′ − a′‖ − 4ε (α < 1)

>

(

‖v∗1‖ − 2ρ′ −
1− α

2
ρ+ 2ρ′

)

‖x′ − a′‖ (by (79))

=

(

‖v∗1‖ −
1− α

2
ρ

)

‖x′ − a′‖

> ‖v∗1‖(1− ρ)‖x′ − a′‖. (by (91))

Thus,

〈v∗1 , x
′ − a′〉

‖v∗1‖‖x
′ − a′‖

> 1− ρ.

Similarly,

〈v∗2 , x
′ − b′〉

‖v∗2‖‖x
′ − b′‖

> 1− ρ.

Set

x̂∗
1 =

v∗1
‖v∗1‖+ ‖v∗2‖

, x̂∗
2 =

v∗2
‖v∗1‖+ ‖v∗2‖

.

Then x̂∗
1 ∈ NA(a

′) \ {0}, x̂∗
2 ∈ NB(b

′) \ {0}, ‖x̂∗
1‖+ ‖x̂∗

2‖ = 1 and, by (89), (90), (74) and the inequality
1 + α < 2, we have

‖x̂∗
1 + x̂∗

2‖ =
‖v∗1 + v∗2‖

‖v∗1‖+ ‖v∗2‖
<

α′ + 2ρ′

1− 2ρ′
<

α′ + α−α′

2

1− α−α′

2

<
α′ + α−α′

1+α

1− α−α′

1+α

= α,

〈x̂∗
1, x

′ − a′〉

‖x̂∗
1‖‖x

′ − a′‖
> 1− ρ,

〈x̂∗
2, x

′ − b′〉

‖x̂∗
2‖‖x

′ − b′‖
> 1− ρ.

Hence, recalling (77), (78), (79), (80), (83), (84) and (85),

inf
a′∈(A\B)∩Bρ(x̄), b

′∈(B\A)∩Bρ(x̄)

x′∈Bρ(x̄), x
′ 6=a′, x′ 6=b′

x̂∗
1
∈NA(a′)\{0}, x̂∗

2
∈NB(b′)\{0}, ‖x̂∗

1
‖+‖x̂∗

2
‖=1

1−ρ<
‖x′−a′‖
‖x′−b′‖

<1+ρ,
〈x̂∗

1
,x′−a′〉

‖x̂∗
1
‖‖x′−a′‖

>1−ρ,
〈x̂∗

2
,x′−b′〉

‖x̂∗
2
‖‖x′−b′‖

>1−ρ

‖x̂∗
1 + x̂∗

2‖ < α,

The claimed inequality follows after passing to the limits as ρ ↓ 0 and α ↓ itrw[A,B](x̄).
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(ii) If dimX < ∞, then, thanks to the compactness of the unit sphere, the lim inf in (48) reduces to

inf
d(x∗

1
,NA(a))≤ρ, d(x∗

2
,NB(b))≤ρ, ‖x∗

1
‖+‖x∗

2
‖=1

〈x∗
1
,x−a〉=‖x∗

1
‖ ‖x−a‖, 〈x∗

2
,x−b〉=‖x∗

2
‖ ‖x−b‖

‖x∗
1 + x∗

2‖.

As a result, the right-hand side of (48) reduces to that of (73).

(iii) In the convex case, the limiting and Fréchet normal cones coincide, and so do the right-hand
sides of (73) and (49). The second equality is a consequence of Proposition 12. ⊓⊔

The property introduced in Theorem 2 as a sufficient dual space characterization of subtransversality
and corresponding to the condition itrw[A,B](x̄) > 0 as well as the stronger property corresponding to
the condition itr[A,B](x̄) > 0 are themselves important transversality properties of the pair {A,B} at
x̄. Borrowing partially the terminology from [17], we are going to call these properties weak intrinsic
transversality and intrinsic transversality, respectively.

Definition 4 Suppose X is a normed linear space, A,B ⊂ X are closed, and x̄ ∈ A∩B. The pair {A,B}
is

(i) weakly intrinsically transversal at x̄ if itrw[A,B](x̄) > 0, i.e., there exist numbers α ∈]0, 1[ and δ > 0
such that, for all a ∈ (A \ B) ∩ Bδ(x̄), b ∈ (B \ A) ∩ Bδ(x̄) and x ∈ Bδ(x̄) with ‖x− a‖ = ‖x− b‖,
one has ‖x∗

1 + x∗
2‖ > α for some ε > 0 and all a′ ∈ A ∩ Bε(a), b

′ ∈ B ∩ Bε(b), x
′
1 ∈ Bε(a), x

′
2 ∈ Bε(b),

x′ ∈ Bε(x), and x∗
1, x

∗
2 ∈ X∗ satisfying conditions (19), (20) and (21);

(ii) intrinsically transversal at x̄ if itr[A,B](x̄) > 0, i.e., there exist numbers α ∈]0, 1[ and δ > 0 such
that ‖x∗

1 + x∗
2‖ > α for all a ∈ (A \B) ∩Bδ(x̄), b ∈ (B \A) ∩Bδ(x̄), x ∈ Bδ(x̄), x

∗
1 ∈ NA(a) \ {0} and

x∗
2 ∈ NB(b) \ {0} satisfying

x 6= a, x 6= b, 1− δ <
‖x− a‖

‖x− b‖
< 1 + δ, (93)

‖x∗
1‖+ ‖x∗

2‖ = 1,
〈x∗

1, x− a〉

‖x∗
1‖‖x− a‖

> 1− δ,
〈x∗

2, x− b〉

‖x∗
2‖‖x− b‖

> 1− δ. (94)

Remark 10 The properties introduced in Definition 4 are less restrictive than the dual criterion of
transversality in Theorem 1. △

In view of Definition 4, Theorem 2 says that in Asplund spaces weak intrinsic transversality (and con-
sequently intrinsic transversality) implies subtransversality. Thanks to Proposition 13(i) and Remark 10,
we have the following chain of implications in Asplund spaces:

transversality =⇒ intrinsic transversality

=⇒ weak intrinsic transversality =⇒ subtransversality.

By Proposition 13(iii), when the space is finite dimensional and the sets are convex, the last two properties
are equivalent.

As a consequence of Proposition 13(i), we obtain the following dual sufficient condition of subtransver-
sality of a pair of closed sets in an Asplund space. It expands and improves [40, Theorem 4.1] as well as
a more recent result announced without proof in the Euclidean space setting in [38, Theorem 4(ii)].

Corollary 2 Suppose X is Asplund, A,B ⊂ X are closed, and x̄ ∈ A∩B. Then {A,B} is subtransversal
at x̄ if there exist numbers α ∈]0, 1[ and δ > 0 such that ‖x∗

1 + x∗
2‖ > α for all a ∈ (A \ B) ∩ Bδ(x̄),

b ∈ (B \A) ∩ Bδ(x̄), x ∈ Bδ(x̄), x
∗
1 ∈ NA(a) \ {0} and x∗

2 ∈ NB(b) \ {0} satisfying (93) and (94).
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