
About the derivation languages of grammars and machines

Burkhard Monien

Gesamthochschule Paderborn

Fachbereich Mathematik - Informatik

In the same way as for grammars (see f.e. [iO]) we define

derivation languages also for machines. We show:

i. For each phrase structure grammar

G = (VN,VT, S, P) with P c VN~ × (V N U VT)~ the language of all left

derivations is contained in C . [C is the family of all languages

which are acceptable by deterministic two-way counter automata.]

2, For each nondeterministic multi-tape Turing machine the

derivation language is contained in C. Especially to each L E NTIME (n)

there exists a language L i E C and a length preserving homomorphism

h with L = h(L1). [TIME (..) and NTiME (..), respectively, denote

the time complexity classes defined by deterministic and

nondeterministic multi-tape Turing machines.~

3. For each nondeterministie successor RAM (we define this

machine in such a way that it can guess in one step the content of an

arbitrary register) the derivation language is contained in TIME

(n • log n) and its complement in NTIME (~ . Especially for the

time complexity classes NRAM (..) defined by this machine and for the

time complexity classes Nk DIM (..) defined by nondeterministic

k-dimensional Turing machines the following holds:

a. U NRAM (d-n) c NTIME (n.(log n) 2)
d E

338

b.

c.

NTIME (n) closed under complement ~ U NRAM (d • n) m NTIME

(n * log n) dE IN

U N k D I M (d. n) c NTIME (n-(log n)2).
d E IN

4. With methods which are similar to those used in [6], we

show that NTIME (n • logn) c U NRAM (d • n).
dEIN

This result and the result from 3. imply:

a. NTIME (n) closed under complement ~ U NRAM (d ' n) closed under

complement dCIN

b , There exists a simple string matching problem L such that

L E NTIME (n) implies U NRAM (d • n) = NTIME (n • logn) .
dEIN

The results out oi' 1. are proved in section 1., the results out

of 2. in section 2 and the results out of 3. and 4. in section 3.

Some of the proofs can be found in more detail in [19].

1, Left derivations of phrase structure grammars

We use the same notations as in [10] .

Definition: A phrase structure grammar (PSG) is a 4-tuple

G = (VN,VT, S, P) where VN,V T are the alphabets of non-terminal and

terminal symbols, S £ V N is the start symbol and

P c ((V N U VT)~ - VT*) × (V N U VT)~ is the set of productions.

A derivation is a sequence ~1'''~ ~k ~ V~ (V = V N U V T) such

that for all i = 1,...,k-1 there exist RI,R2,Q1,Q 2 E V ~ with

~i = R1 Q1 R2' ~i+l = R1 Q2 R2 and (Q1,Q2) E P. Now let M be

another set and ~: M ÷ P a bijective mapping. Then to each deriva-

tion of G there corresponds a string v E M ~ in a natural way.

We write: ~1 ~v ~k" The derivation language (Szilard language)

of G is defined by Sz (G) = {v E M r 1. 3 ~ £ VT~: S ~v ~)

A left derivation is a derivation where R i E VT~ holds in
~ left

each step. In this case we write: ~1 v ~k"

SZleft (G) = {v £ M ~ I. 3 ~ C VT ~: S ~vleft ~).

339

It is easy to see thas SZleft (G) is a context-free language

for every PSG G. Under the assumption P c VN~ × V ~ Y. Igarashi [7]

proved that SZleft (G) E TAPE (log n). (TAPE (log n) is the class of

all languages which are acceptable by a Turing machine operating with

a two-way head on its input tape and with the tape bound log n.) We

will improve this result in this section.

Definition: A two-way counter automaton M = (S, X, 6, So, F)

consists of a finite memory (S-set of states, s o E S, F c S), a counter

and an input tape (X-set of input symbols) with a two-way read only

head. 8: S x X × (0,1) + S x (-I,0,+I) x (-1,0,+1) is the transition

function.

A configuration is a 4-tuple (s,w,i,z) with s E S (state),

w £ X ~ (input word), i E {i,..°,l(w)) (head position) and z E IN
o

(number stored by the counter). ~ defines in the usual way a mapping

÷ on the set of configurations. ~÷ is the transitive closure of + .

M a~eDtsw E X ~ if there exist t E F, i E {1,...,l(w)} and z £ IN
o

such that (So,W,i,O) ~+ (t,w,i,z).

Let C denote the class of all languages which are acceptable

by two-way counter automata (notice that these automata work deter-

ministically). It is easy to show that C c TAPE (logn).

Now we prove the main result of this section.

Theorem i: Let G = (VN,VT,P,S) be a phrase structure grammar such

that P c VN~ × V ~. Then SZleft (G) C C.

Proof: Again let M be the set of markers and ~:M ÷ P the bijective

mapping. Then a string b~...b n E M ~ belongs to SZleft (G) if and only

if QI = S (we set ~ (bi) = (Qi,Ri) Vi = 1,...,n) and the two follow-

ing conditiom~s hold.

(i) For all i = 2,...,n there exist Yi E VT~ and ~i E V ~
such that S ~ left

bl...bi_ i Yi Qi ~i" (This guarantees that ~(bi) can

be applied in the i-th step.)

(2) 3 w E VT~: S ~ left bl...b n w. (Note that w is determined

uni~ely if it exists.)

340

We will show in I how a counter automaton tests (i) and in II

how it tests (2).

(I) For all i = 2,...,n we will test the correct occurence

of Qi symbol for symbol. We will investigate for all j = [1,...,l(Qi)}

whether in the stringri, gained by the left derivation bl...bi_l, (i)

the j-th nonterminal symbol of r i is equal to the j-th symbol of Qi

and (ii) whether for j > i the symbol preceeding the j-th nonterminal

symbol is also a nonterminal symbol.

" In order to verify these two conditicus we use the following

simple relation
S ~ left u A v with u,v 6 V ~, A 6 V N

bl...b k

~=~ 3 ~ ~ (l,...,k}, ~ a VN~ and ul,u2,vI,BI,~ 2 ~ V ~ with u = u I u2,

left
v = ~2 Vl and S ~ bl'left''b~-I u I S v I , ~ ~ b~ 61 A ~2 •

81~ left
b~+l...bk u2

Since we consider only left derivationes u I £ VT~.

Furthermore ~1 ~ left bl+l...b k u 2 holds if and only if there exist

~''''~k 6 V ~ such that ~ = ~i' ~k = u2 and ~ ~ b~+lleft ~+1

V ~ = l,...,k-1.

Now suppose i 6 {2,...,n} and suppose our counter automaton

has tested already that the left derivation bl...bi_ I can be carried

out. Consider some j 6 {1 l(Qi)}. If IIri I! ~ J (for arbitrary

v £ V ~ II vll is the number of nonterminals occuring in v) then there

exists a decomposition ri = u A v with II u II = j-1 and A £ V N.

Let l' BI' ~'''''~i-1 be determined by the above relation

(with k = i-l).

In order to determine the j-th nonterminal symbol of~i, our

automaton ~ starts with the number j-1 = II ~i_111 and computes

(going to the left with its head) successively [I ~i_211 ,II ~i_311, ''

and stores them on its counter. Note that for all ~ 6 {~+1,...,i-I}
left ~-1 ~ b ~ holds and therefore

II R II ~ II ~l~ftIl and II ~-lll = II ~II II R~II + !I Q~II. In the case

= I 8 ~ bl ~ A B 2 and therefore II Rl!I > II ~iII. In this way

941

a counter automaton which moves its head to the left and uses

II R~II ~ II ~II as interrupt condition can determine the head position

X. Note that the (If ~II +l)-st nonterminal of R~ is the j-th nontermi-

hal symbol of ~.

Now we will write down this algorithm for some fixed

i ~ (2,...,n) and some fixed j E (l,...,l(Qi)) formally. The algorithm

starts with h = i and z = 0 (h denotes the head position and z the

content of the counter).

A 1

A 2

A3

14

~5

A 6

z = j-i

If h = 1 then STOP

h = h-i

If z ~ II Rh!l then goto A 6

If the (z+i)-st nonterminal symbol of R h is equal to the j-th

symbol of Qi then RETURN else STOP

It should be clear that condition (i) is true if and only if the

above algorithm uses its RETURN exit. Now M moves its head bac~ to the

i-th cell just by reversing the above process. During these operations

computes (in order to verify (ii)) for each sctual head position

E (~,...,i-1) whether the r~htmost symbol of ~ is a nonterminal.

This can be determined easily in the case ~ = ~. Now suppose ~ EV~V N.

Then C N iff II +111 II or II I!
R + 1 E V~V N. Condition (ii) holds for these fixed values i and j iff

~i-1 ~ V~VN"

(II) We now have to show how a counter automaton verifies

that S ~ left w for some w E VT~. Consider again the strings
bl"''bn left
, £ V ~, ~ = 1,... n defined by S ~ T~Q ~ . Then

¥~ C VT~ ~ , bl...b _ 1
left

S ~ bl...b n w holds for some w £ VT~ iff Qn £ VT* and ~n E VT~.

We will define now a counter automaton which decides, starting

from an arbitrary head position k E {2,...,n) whether ~k ~ VT~ or

computes a head position ~ ~ k such that ~k E VT~ ~ ~ E VT~.

In order to do this let A E V N be defined by Qk = QA and let ~ be the

number which is defined as in I. by S ~left ¥~Q~, R~ : ~1A62
bl.-.b~_ 1

and 61 ,~ left
b~+l..bk_l u 2 with y~ u 2 = Yk Q' 62 ~ = 8k"

Note that 6 k £ VT~ if and only if 62 E VT~ and 6~ £ VT~.

342

We have shown in I how a counter automaton can compute the head

position ~ and how it computes simultaneously the number II ~i!! on its

counter. Therefere it can decide whether 8 2 { VT~. In this case

8 k ~ VT~ , otherwise 6 k E VT~ ~=~ ~ E VT~.

Since ~i : E E VT* it is clear that by iterating this process

a counter automaton can decide whether ~n E VT~ o

2. Deriyation !anguages ~f Turing machines

Now we will define the notion of derivation languages also for

Turing machines. We use notations similar to those in [5].

Definition: A nondeterministic k-tape Turing machine

M = (S,X,T,~,So,F) consists of a finite memory (S-set of states,

s o £ S, F c S) and k tapes (T-set of tape symbols, X-set of input

symbols, X c T) which are bounded to the left and on which a read-write

head is moving in both directions. ~: S x T k ÷ 2 S x (Tx {-1,O,+l})k

is the transition function.

A configuration is a(2k+l)-tuple (S,Ul,il,...,uk,i k) with

s £ S (state); Ul,...,u k £ T ~ (tape inscriptions) and il,...,i k £ IN

(head positions). $ defines in the usual way a relation ÷ on the set

on configurations. ~÷ is the transitive closure of + . M accepts

w E X iff there exist t E F; Ul,...,u k £ T * and il,...,i k E IN

such that (So,W,l,e,1,...,~,l) ~ (t,ul,il,...,uk,ik).

In order to define a derivation language in analogy to section

i, we set

P = ((~,~)I~ £ S xT k, y £ S x (T x (-1,0,+1)) k

and ¥ E ~(~)}.

Again we could consider also a set M o of markers and a bijektive

mapping a: M o ÷ P, but because of simplicity we will identify M o with p.

To each computation of M there is associated in a natural way

a v E P~. Let KI,K 2 be two configurations, let K~ ~÷ K 2 hold and let

E P~ be the string describing this computation, then we write

KI ~÷v K2"

343

The derivation language of M is defined by

Sz(M) : {v £ P'I3 t E F; w E X~; Ul,...,u k £ T*; il,...~i k E iN

with (So,W,~,~,l , . ~,I) *÷ (t,ul, .. ' "" ' v i1'" 'Uk'ik)}

Turing machines and phrase structure grammars both accept

(generate) just all recursively enumerable sets but nevertheless the

derivation languages of Turing machines are in some sense much simpler.

This is because a Turing machine changes its configuration in each

step only at uniquely determined positions (this is similar to the

left derivations in section 1). More over the "local past" of a cell

(these are the operations performed by M when it reached this cell for

the last time) can be determined quite easily.

Theorem 2:

Sz(M) [¢.

Let M be a nondeterministic k-tape Turing machine. Then

Proof: Let bl...b n £ P* be some string and consider some number

i £ {2,...,n). Let us assume that we already constructed a counter

automaton which verified that bl...bi_ 1 is a correct string (that

means that bl...bi_ 1 describes a computation of M starting from some

configuration (So,V,l,e,l,...,a,l), v £ X~).

In order to verify that also bl...b i is a correct string we

have to test whether (I) the state given by the first component of b.
l

is equal to the state given by the second component of bi_ 1 and (2)

whether the tape symbols given by the first component of b i are equal

to the tape symbols which are scanned by the heads of M after M has

performed the operations bl...bi_ 1.

Condition (1) can be tested easily. Condition (2) is tested

for each tape separately. Let H.(1) be the position of the j-th head
J

(1 S j ~ k) after i steps. Our counter automaton moves its head

(starting from the i-th cell) back on the input string and computes in

each step the distance IHj(1) - Hj(i)l on its counter (where I is the

actual head position). This is controlled in the same way as in the

proof of Theorem i by the input symbols. Let ~ ~ i be the greatest

number such that IHj(~) - Hj(i) I = O, then b~ gives us the tape symbol

we looked for. If such a number ~ does not exist then M sca~ in its

i-th step on its j-th tape a cell which has never been scanned before.

In this case the corresponding symbol in b i must be the blank symbol

or an input symbol, respectively. It is clear that after performing

344

the~e operations our counter automaton can put its head in a reverse

process on the position i again.

In this way our automaton tests for each i E {2,...,n} whether

b1...b i is correct. A more formal proof is given in [9]7 O

It is not difficult to see that from theorem 2 we get a

homomorphic descpription of NTIME (n). Remember that

NTIME (n) : U NTIME (d.n), [2].
dEIN

CorollarY i: For any L E NTIME (n) there exist L E C and a length

preserving homomorphism h such that L = h (LI).

3. Nondeterministic random access machines

We will prove in this section relations between the complexity

classes of nondeterministic random access machines and Turing machines.

Again we will use the notion of a derivation language.

Definition: A random access machine (RAM) consists of a finite

program which operates on an infinite sequence of registers. Each

register can store a natural number. The contents of the registers

are denoted by the sequence Xo,Xl,X2,... The program consists of

instructions of the type

(i) ~ ÷ XX. , (2) XXi + Xj, (3) X i + X i + i,
J

(4) Goto m if Xj > O, (5) Read Xi, (6) Accept

At the begin of a computation all registers store the number

zero. The meaning of the instructions should be clear. The program is

written line by line. At the beginning the program counter points to

the first line, it is increased by one after the execution of the

corresponding instruction unless a jump is caused by instruction (4).

Because of more details concerning the definitions of RAMs see [3]

or [8].

A configuration is a 3-tuple (m,i,n) with m E IN (program
counter), i E ~ (part of the input sequence which has not been read

345

in to this time) and u E IN ~ (sequence of the contents of the registers).

The program defines a mapping ÷ on the set of configurations . ~÷ is

the transitive closure of + . M accepts i E ~ iff there exist m E IN

and u £ IN ~ such that (l,i,~) ~+ (m,¢,u) and the instruction Accept

stands in the m-th line of the program.

Let X be an alphabet and ~: X + IN a bijective mapping. Let

~: X* ÷ IN ~ be the corresponding monoid homomorphism. We say that M

accepts w E X* iff M accepts ~(w).

Let T: IN ÷ IN be a function. Then we denote by RAM (T(n)) the

class of all languages over finite alphabets which are acceptable by

a RAM which stops for any input of length n, n E ~, after at most

T(n9 steps. Here a step is the execution of one of the instructions

(I) - (6).

Since the only arithmetical operation of our RAM is the

operation + i, a RAM can generate in t steps only numbers which are

bounded by t. Therefore RAM (T(n)) c TIME (T(n) 2 log T(n)) holds

for every "honest" function T. It is not known whether there exists

a faster simulation of deterministic random access machines by Turing

machines.

In analogy to the definition of nondeterministic Turing

machines we can define nondeterministic RAMs by allowing non-

deterministic jumps

(7) Goto m I or Goto m 2

We will make our machine even more efficient by allowing that this

machine can transfer in one step the content of an arbitrarely chosen

register

(8) X. + v x
w n

n£1N

L e t NRAM (T (n ~ be t h e c o m p l e x i t y c l a s s e s d e f i n e d i n t h i s way.

I t was shown i n [6] t h a t e v e r y L E TIME (n ' l o g n) i s a c c e p t e d i n

linear time by a random access machine which can apply the arithmetic

operations x + y and x ~ y in one step. We will show that this result

holds in the nondeterministic case also for our RAM.

Theorem 3: NTIME (n.log n) ~ U NRAM (d'n)
dEIN

Proof: Consider L E NTIME (n.log n). Then there exists ([2]) a

346

no ndeterministic 2-tape Turing machine M = (S,X,T,~,So,F) which accepts

L with the time bound n'log2n. We split the tapes of M up into segments

of the length x.log2n with some x 6 IN which still is to determine. A

nondeterministic RAM M is defined in such a way that after an initial

phase it simulates x.log2n steps of M in a bounded number of steps

(see also [5], proof of Theorem 10.3). We use in this proof that a

RAM has direct access to any one-parametric function which has been

precomputed and whose table is stored by the RAM.

We use a relation R which relates two pairs (~i s ~2,~3 s ~4),

(~i st ~2' ~3 s' ~4) with s,s' 6 S and ~i,~i 6 T ~, l(~i) , i(~ i)

x.log2n V i = I,...,4 iff i(~9 i ~i+I) = i(4 i 4i+ ~) = 3 x'log2n for

i = I~3 and M can perform the computation (s,~ I ~2' I(~i) + I,

~3 ~4 ' I (~3) + i) ~÷ (s', ~ 42, i(~ i) + i, 4 3 ~4' 1(43) + i) in

x.log2n steps.

Let us assume first that we are operating on a random access

machine which has multidimensional access. Then we use an injective

encoding ¥: T~ST ~ ÷ IN and store the relation R on a 4-dimensional

array A in such a way that A(xl,x2,yl,y 2) = i iff

(~-i(xI), y-1(x2)) R (y-1(yl), ¥-I(y2)) holds.

Now our machine has only onedimensional access but we can

overcome this difficulty by a trick.

To encode a multidimensional array by a one dimensional array

normally a bijective pairing function P: IN 2 ÷ IN is used:

Let l,J: IN ÷ IN be the "inverse functions" of P, that means

!(P(x,y)) = ~ and J(P(x,y)) = y V x,y £ IN. Now let x,y E IN be

some numbers and suppose our RAM has to compute P(x,y). Then it just

guesses some z E IN and verifies afterwards that l(z) = x and

J(z) = y. So we have only to find a pairing function P such that the

corresponding functions I and J can be precomputed quickly on a RAM.

Of course it remains to show that the precomputation can be

performed in linear time by our RAM, provided that x is small enough.

But this involves mainly technical problems. A detailed proof is given

in [9]. o

347

Now we will show that our nondeterministie RAM is not "much

faster" than a nondeterministic Turing machine. We will use again the

notion of a derivation language. Note that the set of markers was

always chosen in such a form that it encodes in a suitable manner all

the information which is necessary in order to perform one step and

the alternations induced by this step. In the case of the RAM we choose

M ~ 2 IN U IN 2 × 21N U IN 2. M is an infinite set because each natural

number may be stored by M in a register during some computation.

The set M belonging to a RAM which uses only numbers x ~ p
s

for some p E IN as input numbers is defined in the following way.

~* There exists exactly one r E IN N ~ and this r

determines (~) according to the following schedule.

(In this schedule x,y E IN are arbitrary numbers and z N p~)

instruction in the r-th
line of the program

x i ÷ x x .

J

X ~- X,
X. J
1

x i + xi÷ i

Goto m if x. > 0

{r,(j,x), (x,y)}

{r, i,x), (j,y)}

{r, i,x)}

{r,(j,x)}

{r+l, (i,y)}

{r+l, (x,y)}

{r+l, (i,x+l)}

{r+l}, if x = 0

{m} , otherwise J

Read x.
1

Accept

Goto m I or Goto

x~ ÷ V x
n~IN n

no instruction

m 2

{r}

{r}

{r}

{r,(x,yi}

{r}

{r+l, (i,z)}

@

{m 1} or {m 2}

{r+l, (i,y)}

{r)

Note that ~ stores the content of the registers necessary

in order to apply the instruction in the r-th line of the program.

[(x~y) encodes: y is the content of register x.] ~ stores the

alterations induced by the application of the instruction.

348

It is clear that each (~,¢) E M determines one step of M. If

v £ M ~ is some string and if K I ~+ K 2 is induced by this string, then

we write K 1 ~÷ K 2.

Sz(M) = {~ c M~I~ i c {0, .,p}* .. , m E IN, u E IN ~

(1 i, ~) ~ (m, ~, u) and "Accept" is the

instruction in the m-th line of the program}.

Now let us denote by Q,Z the two projections from (2 IN U IN 2)
2

on its first and second component, respectively. Then the following

lemma holds:

Lemma 1:

1.

2.

3.

For any nondeterministic RAM M bl..bn C Sz (M)

b. E M ¥ i = 1,...,n
i

1 £ Q(b 1) and [r I E Z(bi_ 1) ^ ~2CQ(b i) ~ rl=r 2 ¥ i:2,..,n]

For all i : 1,...,n the following holds: If (x,y) £ Q(b i)

and if j = max {j < i!3 z E IN: (x,z) E Z(bj)}

then y = z if j > 0 and y = 0 otherwise

4. Z (b n) =

The proof of this lemma is straight forward. Note that

condition 3 guarantees that always the correct contents of the

registers are used.

We will construct in the followiag a Turing machine which

accepts Sz (M). First we have to encode the elements of ~ over a

finite alphabet. Let us assume that the elements in the sets ~p and

are ordered in some way (for example take the order used in the

schedule) and let ~s define a mapping

~: IN U{(,), "," ,"(", "}" }÷{0,i,2~3,4} ~ by: ~(n) is the binary

notation of n for all n E IN, ~ ("(") = ~ (")") = 2, ~ (,, i,) = 3

and a ("{") = ~ ("}") = 4. It is clear that ~ induces a mapping

~: M ÷ {0,...,4} ~ and let ~: M ~ ÷ {0,...,4} ~ be the monoid

homomorphism induced by ~.

Furthermore let L o be the following "string-matching" problem:

349

L
O

: {d ~I c..c ~qd@l c..c ~r dlq' r E IN and ~i' @j C {0,1,2} ~

for all 1 S i ~ q, iS j ~ r and for every j E {1,...,r}

there exists a i E {l~..~q} such that ¢j : ~i }.

Theorem 4: Let M be any nondeterministic RAM. Then

1. e~(Sz (M)) E NTIME (n)

2. Let To: IN ÷ }N be some function such that L ° E NTIME I(To(n)]

Then ~ (Sz(M)) E NTIME (To(n))

Proof: It is clear that a deterministic Turing machine can decide in

linear time for every input v C {0,...,4} ~ whether there exists

bl...b n E M s such that v : ~(bl...b n) and whether the conditions

2. and 4. of lemma 1 hold. Therefore we have to consider in the

following only condition 3.

In order to prove 1. note that a nondeterministic Turing

machine can guess some i E {l~..,n} and some (x,y) E Q(bi), then it

can compute the number j and afterwards it can test whether y is the

correct value. These operations can be performed in linear time.

In order to prove 2. let a Turing machine transform for each

i £ {l,...,n} each r 6 (Q(b i) U Z(bi)) N IN into ~, each pair

(x,y) 6 q(b i) into 2~(x)2~(y)2 and each (x,y) 6 Z(b i) into

2~(x)22~(y)2 and separate the pairs by the symbol c. Let v = wlc..cw m

be the string generated in this way. Then condition 3 holds if and

only if for all i = l,...,m such that w i : 2u I 2u 2 2 with u I u 2 6(0,i) ~

the following holds:

If j = max {j ~ if3 u 3 6 {0,1}~,v 6 {2,22}: wj = 2u I v u 3 2}

then u 2 : u 3 if j ~ O and u 2 = O otherwise.

It is clear that this condition can be verified easily if we

have a copy of v = w I c...c Wm which is ordered according to the first

component in such a way that the order of succession for pairs with

equal first component is the same as in v. To ~et this copy we use the

language L o .

First set w! = w~ ~(i) Vi = 1,...,n. Now our nondeterministic
i l

350

Turing machine operates in the following way: ~. It computes the

string w 1' c...CWm'; 2. it guesses some string ~ E (0,1,2,c)*

' d ~ d £ L holds; 3. it verifies and verifies that d w 1' c...c w m o

that ~ = u I c...c u m is lexicographically ordered according to the

first and third component (Note that w' @ wj' for i @ j and therefore i
u I c...c u m is just a copy w I' c...c w m' in a different arrangement)

and 4. it verifies that the modification of condition 3 holds.

It is clear that all these operations (with the exception of

the membership problem in 2.) can be performed in linear time. m

Corollary!

i. U

2.

.

NRAM (d. n) ~ NTIME (n - (log n) 2)
d~N

L E NTIME (n) ==) U NRAM (d • n) = NTIME (n • log n)
o dE IN

If NTIME (n) is closed under complement then U NRAM (d.n) =
dE~

NTIME (n.log n) and U NRAM (d.n) is closed under complement
d£1N

Proof: Let L £ NRAM (d'n) be some language and let M be a RAM

which accepts L with the time bound d.n. Let T 1 : IN ~ IN be some

function such that a*(Sz(M) E NTIME (T1(n)).

Then L E NT!ME (T 1 (d'n'log 2 n)).[A nondeterministic Turing machine

can guess a derivation string (this string has the length d-~'log 2 n)

and afterwards it has only to verify that this string describes a

computation of M with the given input.]

If NTIME (n) is closed under complement then Tl(n) = n

and therefore U NRAM (d'n) = NTIME (n.log 2 n) follows from Theorem 3.
dCIN

The second statement in 3. follows immediately by using transformational

methods.

Furthermore we have proved in Theorem 4 that Tl(n) S To(n).

Therefore 2. follows immediately. In order to prove 1. we have to

show that Tl(n) ~ n • log 2 n. Remember that we can sort any sequence

351

0 ~l,...,O~q, I@1,...,1@r E (O,1,2)*

i l(O~i) + ~ l(l@j~) [see f.e. Mergesort, [i], page 66]. If the
J

sequence is sorted then we can test easily whether

d~ 1 c...c ~qd~ 1 c...c @r d E L o

With just the same methods used in the proof of theorem 4 we

can relate also the complexity classes of multidimensional and one-

dimensional Turing machines.

Theorem 5: U Nk DIM (2n) ~ NTIME (n.(log n)2).
kE~

This is considerably different from the deterministic case where we

know only [11] that

k DIM (2n) c TIME (n 2-1/k. log n).

in 0 (m.log 2 m) steps where m =

References

1. Aho, A.V., Hoporoft, J.E. and Ullman, J.D.: The Design and
Analysis of Computer Algorithms, Addison-Wesley Publ. Comp.,
Reading - Massachusetts, 1974

2. Bock, R.V. and Greibach, S.A.: Quasi - Realtime Languages, Math.
Systems Theory 4, 97-111 (1970).

3. Cook, S.A. and Reckhow, R.A.: Time Bounded Random Access Machines,
J. Comp. Syst. Sciences 7, 354-375 (1973).

4. Gray, J.N., Harrison, M.A. and Ibarra, O.H.: Two-Way Push,down
Automata, Information and Control 11, 30-70 (1967).

5. Hopcroft, J.E., and Ullman, J.D.: Formal Languages and their
Relation to Automata, Addison-Wesley Publ. Comp., Reading -
Massachusetts (1969).

6. Hopcroft, J.E., Paul, W. and Valiant, L.: On time versus space
and related problems, 8-th Ann. Symp. Th. Computing, 57-64 (1967).

7. Igarashi, Y.: The Tape-Complexity of Some Classes of Szilard
Languages, Report Nr. 81, University of Leeds, England.

8. Monien, B.: Characterizations of time-bounded computations by
limited primitive recursion, 2nd colloquium, Automata Languages
and Programming, 280-293 (1974).

9. Monien, B.: Dber die Komplexit~t der Ableitungssprachen von
Grammatiken und Masehinen, Bericht Nr. 35, Abtl. Informatik,
Universit~t Dortmund (1976).

$0. Salomaa, A.: Formal Languages, Academic Press, New York and
London, 1973.

11. Sto~, H.J.: Zwei-Band Simulation von Turingmaschinen. Computing 7,
222-235 (1971).

