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In the same way as for grammars (see f.e. [iO]) we define 

derivation languages also for machines. We show: 

i. For each phrase structure grammar 

G = (VN,VT, S, P) with P c VN~ × (V N U VT)~ the language of all left 

derivations is contained in C . [C is the family of all languages 

which are acceptable by deterministic two-way counter automata.] 

2, For each nondeterministic multi-tape Turing machine the 

derivation language is contained in C. Especially to each L E NTIME (n) 

there exists a language L i E C and a length preserving homomorphism 

h with L = h(L1). [TIME (..) and NTiME (..), respectively, denote 

the time complexity classes defined by deterministic and 

nondeterministic multi-tape Turing machines.~ 

3. For each nondeterministie successor RAM (we define this 

machine in such a way that it can guess in one step the content of an 

arbitrary register) the derivation language is contained in TIME 

(n • log n) and its complement in NTIME (~ . Especially for the 

time complexity classes NRAM (..) defined by this machine and for the 

time complexity classes Nk DIM (..) defined by nondeterministic 

k-dimensional Turing machines the following holds: 

a. U NRAM (d-n) c NTIME (n.(log n) 2) 
d E 
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b. 

c. 

NTIME (n) closed under complement ~ U NRAM (d • n) m NTIME 

(n * log n) dE IN 

U N k D I M (d. n) c NTIME (n-(log n)2). 
d E IN 

4. With methods which are similar to those used in [6], we 

show that NTIME (n • logn) c U NRAM (d • n). 
dEIN 

This result and the result from 3. imply: 

a. NTIME (n) closed under complement ~ U NRAM (d ' n) closed under 

complement dCIN 

b ,  There exists a simple string matching problem L such that 

L E NTIME (n) implies U NRAM (d • n) = NTIME (n • logn) . 
dEIN 

The results out oi' 1. are proved in section 1., the results out 

of 2. in section 2 and the results out of 3. and 4. in section 3. 

Some of the proofs can be found in more detail in [19]. 

1, Left derivations of phrase structure grammars 

We use the same notations as in [10] . 

Definition: A phrase structure grammar (PSG) is a 4-tuple 

G = (VN,VT, S, P) where VN,V T are the alphabets of non-terminal and 

terminal symbols, S £ V N is the start symbol and 

P c ((V N U VT)~ - VT*) × (V N U VT)~ is the set of productions. 

A derivation is a sequence ~1'''~ ~k ~ V~ (V = V N U V T) such 

that for all i = 1,...,k-1 there exist RI,R2,Q1,Q 2 E V ~ with 

~i = R1 Q1 R2' ~i+l = R1 Q2 R2 and (Q1,Q2) E P. Now let M be 

another set and ~: M ÷ P a bijective mapping. Then to each deriva- 

tion of G there corresponds a string v E M ~ in a natural way. 

We write: ~1 ~v ~k" The derivation language (Szilard language) 

of G is defined by Sz (G) = {v E M r 1. 3 ~ £ VT~: S ~v ~) 

A left derivation is a derivation where R i E VT~ holds in 
~ left 

each step. In this case we write: ~1 v ~k" 

SZleft (G) = {v £ M ~ I. 3 ~ C VT ~: S ~vleft ~). 
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It is easy to see thas SZleft (G) is a context-free language 

for every PSG G. Under the assumption P c VN~ × V ~ Y. Igarashi [7] 

proved that SZleft (G) E TAPE (log n). (TAPE (log n) is the class of 

all languages which are acceptable by a Turing machine operating with 

a two-way head on its input tape and with the tape bound log n.) We 

will improve this result in this section. 

Definition: A two-way counter automaton M = (S, X, 6, So, F) 

consists of a finite memory (S-set of states, s o E S, F c S), a counter 

and an input tape (X-set of input symbols) with a two-way read only 

head. 8: S x X × (0,1) + S x (-I,0,+I) x (-1,0,+1) is the transition 

function. 

A configuration is a 4-tuple (s,w,i,z) with s E S (state), 

w £ X ~ (input word), i E {i,..°,l(w)) (head position) and z E IN 
o 

(number stored by the counter). ~ defines in the usual way a mapping 

÷ on the set of configurations. ~÷ is the transitive closure of + . 

M a~eDtsw E X ~ if there exist t E F, i E {1,...,l(w)} and z £ IN 
o 

such that (So,W,i,O) ~+ (t,w,i,z). 

Let C denote the class of all languages which are acceptable 

by two-way counter automata (notice that these automata work deter- 

ministically). It is easy to show that C c TAPE (logn). 

Now we prove the main result of this section. 

Theorem i: Let G = (VN,VT,P,S) be a phrase structure grammar such 

that P c VN~ × V ~. Then SZleft (G) C C. 

Proof: Again let M be the set of markers and ~:M ÷ P the bijective 

mapping. Then a string b~...b n E M ~ belongs to SZleft (G) if and only 

if QI = S (we set ~ (bi) = (Qi,Ri) Vi = 1,...,n) and the two follow- 

ing conditiom~s hold. 

(i) For all i = 2,...,n there exist Yi E VT~ and ~i E V ~ 
such that S ~ left 

bl...bi_ i Yi Qi ~i" (This guarantees that ~(bi) can 

be applied in the i-th step.) 

(2) 3 w E VT~: S ~ left bl...b n w. (Note that w is determined 

uni~ely if it exists.) 
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We will show in I how a counter automaton tests (i) and in II 

how it tests (2). 

(I) For all i = 2,...,n we will test the correct occurence 

of Qi symbol for symbol. We will investigate for all j = [1,...,l(Qi)} 

whether in the stringri, gained by the left derivation bl...bi_l, (i) 

the j-th nonterminal symbol of r i is equal to the j-th symbol of Qi 

and (ii) whether for j > i the symbol preceeding the j-th nonterminal 

symbol is also a nonterminal symbol. 

" In order to verify these two conditicus we use the following 

simple relation 
S ~ left u A v with u,v 6 V ~, A 6 V N 

bl...b k 

~=~ 3 ~ ~ (l,...,k}, ~ a VN~ and ul,u2,vI,BI,~ 2 ~ V ~ with u = u I u2, 

left 
v = ~2 Vl and S ~ bl'left''b~-I u I S v I , ~ ~ b~ 61 A ~2 • 

81~ left 
b~+l...bk u2 

Since we consider only left derivationes u I £ VT~. 

Furthermore ~1 ~ left bl+l...b k u 2 holds if and only if there exist 

~''''~k 6 V ~ such that ~ = ~i' ~k = u2 and ~ ~ b~+lleft ~+1 

V ~ = l,...,k-1. 

Now suppose i 6 {2,...,n} and suppose our counter automaton 

has tested already that the left derivation bl...bi_ I can be carried 

out. Consider some j 6 {1 ..... l(Qi)}. If IIri I! ~ J (for arbitrary 

v £ V ~ II vll is the number of nonterminals occuring in v) then there 

exists a decomposition ri = u A v with II u II = j-1 and A £ V N. 

Let l' BI' ~'''''~i-1 be determined by the above relation 

(with k = i-l). 

In order to determine the j-th nonterminal symbol of~i, our 

automaton ~ starts with the number j-1 = II ~i_111 and computes 

(going to the left with its head) successively [I ~i_211 ,II ~i_311, '' 

and stores them on its counter. Note that for all ~ 6 {~+1,...,i-I} 
left ~-1 ~ b ~ holds and therefore 

II R II ~ II ~l~ftIl and II ~-lll = II ~II II R~II + !I Q~II. In the case 

= I 8 ~ bl ~ A B 2 and therefore II Rl!I > II ~iII. In this way 
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a counter automaton which moves its head to the left and uses 

II R~II ~ II ~II as interrupt condition can determine the head position 

X. Note that the (If ~II +l)-st nonterminal of R~ is the j-th nontermi- 

hal symbol of ~. 

Now we will write down this algorithm for some fixed 

i ~ (2,...,n) and some fixed j E (l,...,l(Qi)) formally. The algorithm 

starts with h = i and z = 0 (h denotes the head position and z the 

content of the counter). 

A 1 

A 2 

A3 

14 

~5 

A 6 

z = j-i 

If h = 1 then STOP 

h = h-i 

If z ~ II Rh!l then goto A 6 

If the (z+i)-st nonterminal symbol of R h is equal to the j-th 

symbol of Qi then RETURN else STOP 

It should be clear that condition (i) is true if and only if the 

above algorithm uses its RETURN exit. Now M moves its head bac~ to the 

i-th cell just by reversing the above process. During these operations 

computes (in order to verify (ii)) for each sctual head position 

E (~,...,i-1) whether the r~htmost symbol of ~ is a nonterminal. 

This can be determined easily in the case ~ = ~. Now suppose ~ EV~V N. 

Then C N iff II   +111 II or II I! 
R + 1 E V~V N. Condition (ii) holds for these fixed values i and j iff 

~i-1 ~ V~VN" 

(II) We now have to show how a counter automaton verifies 

that S ~ left w for some w E VT~. Consider again the strings 
bl"''bn left 
, £ V ~, ~ = 1,... n defined by S ~ T~Q ~ . Then 

¥~ C VT~ ~ , bl...b _ 1 
left 

S ~ bl...b n w holds for some w £ VT~ iff Qn £ VT* and ~n E VT~. 

We will define now a counter automaton which decides, starting 

from an arbitrary head position k E {2,...,n) whether ~k ~ VT~ or 

computes a head position ~ ~ k such that ~k E VT~ ~ ~ E VT~. 

In order to do this let A E V N be defined by Qk = QA and let ~ be the 

number which is defined as in I. by S ~left ¥~Q~, R~ : ~1A62 
bl.-.b~_ 1 

and 61 ,~ left 
b~+l..bk_l u 2 with y~ u 2 = Yk Q' 62 ~ = 8k" 

Note that 6 k £ VT~ if and only if 62 E VT~ and 6~ £ VT~. 
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We have shown in I how a counter automaton can compute the head 

position ~ and how it computes simultaneously the number II ~i!! on its 

counter. Therefere it can decide whether 8 2 { VT~. In this case 

8 k ~ VT~ , otherwise 6 k E VT~ ~=~ ~ E VT~. 

Since ~i : E E VT* it is clear that by iterating this process 

a counter automaton can decide whether ~n E VT~ o 

2. Deriyation !anguages ~f Turing machines 

Now we will define the notion of derivation languages also for 

Turing machines. We use notations similar to those in [5]. 

Definition: A nondeterministic k-tape Turing machine 

M = (S,X,T,~,So,F) consists of a finite memory (S-set of states, 

s o £ S, F c S) and k tapes (T-set of tape symbols, X-set of input 

symbols, X c T) which are bounded to the left and on which a read-write 

head is moving in both directions. ~: S x T k ÷ 2 S x (Tx {-1,O,+l})k 

is the transition function. 

A configuration is a(2k+l)-tuple (S,Ul,il,...,uk,i k) with 

s £ S (state); Ul,...,u k £ T ~ (tape inscriptions) and il,...,i k £ IN 

(head positions). $ defines in the usual way a relation ÷ on the set 

on configurations. ~÷ is the transitive closure of + . M accepts 

w E X iff there exist t E F; Ul,...,u k £ T * and il,...,i k E IN 

such that (So,W,l,e,1,...,~,l) ~ (t,ul,il,...,uk,ik). 

In order to define a derivation language in analogy to section 

i, we set 

P = ((~,~)I~ £ S xT k, y £ S x (T x (-1,0,+1)) k 

and ¥ E ~(~)}. 

Again we could consider also a set M o of markers and a bijektive 

mapping a: M o ÷ P, but because of simplicity we will identify M o with p. 

To each computation of M there is associated in a natural way 

a v E P~. Let KI,K 2 be two configurations, let K~ ~÷ K 2 hold and let 

E P~ be the string describing this computation, then we write 

KI ~÷v K2" 
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The derivation language of M is defined by 

Sz(M) : {v £ P'I3 t E F; w E X~; Ul,...,u k £ T*; il,...~i k E iN 

with (So,W,~,~,l , . ~,I) *÷ (t,ul, .. ' "" ' v i1'" 'Uk'ik)} 

Turing machines and phrase structure grammars both accept 

(generate) just all recursively enumerable sets but nevertheless the 

derivation languages of Turing machines are in some sense much simpler. 

This is because a Turing machine changes its configuration in each 

step only at uniquely determined positions (this is similar to the 

left derivations in section 1). More over the "local past" of a cell 

(these are the operations performed by M when it reached this cell for 

the last time) can be determined quite easily. 

Theorem 2: 

Sz(M) [ ¢. 

Let M be a nondeterministic k-tape Turing machine. Then 

Proof: Let bl...b n £ P* be some string and consider some number 

i £ {2,...,n). Let us assume that we already constructed a counter 

automaton which verified that bl...bi_ 1 is a correct string (that 

means that bl...bi_ 1 describes a computation of M starting from some 

configuration (So,V,l,e,l,...,a,l), v £ X~). 

In order to verify that also bl...b i is a correct string we 

have to test whether (I) the state given by the first component of b. 
l 

is equal to the state given by the second component of bi_ 1 and (2) 

whether the tape symbols given by the first component of b i are equal 

to the tape symbols which are scanned by the heads of M after M has 

performed the operations bl...bi_ 1. 

Condition (1) can be tested easily. Condition (2) is tested 

for each tape separately. Let H.(1) be the position of the j-th head 
J 

(1 S j ~ k) after i steps. Our counter automaton moves its head 

(starting from the i-th cell) back on the input string and computes in 

each step the distance IHj(1) - Hj(i)l on its counter (where I is the 

actual head position). This is controlled in the same way as in the 

proof of Theorem i by the input symbols. Let ~ ~ i be the greatest 

number such that IHj(~) - Hj(i) I = O, then b~ gives us the tape symbol 

we looked for. If such a number ~ does not exist then M sca~ in its 

i-th step on its j-th tape a cell which has never been scanned before. 

In this case the corresponding symbol in b i must be the blank symbol 

or an input symbol, respectively. It is clear that after performing 
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the~e operations our counter automaton can put its head in a reverse 

process on the position i again. 

In this way our automaton tests for each i E {2,...,n} whether 

b1...b i is correct. A more formal proof is given in [9]7 O 

It is not difficult to see that from theorem 2 we get a 

homomorphic descpription of NTIME (n). Remember that 

NTIME (n) : U NTIME (d.n), [2]. 
dEIN 

CorollarY i: For any L E NTIME (n) there exist L E C and a length 

preserving homomorphism h such that L = h (LI). 

3. Nondeterministic random access machines 

We will prove in this section relations between the complexity 

classes of nondeterministic random access machines and Turing machines. 

Again we will use the notion of a derivation language. 

Definition: A random access machine (RAM) consists of a finite 

program which operates on an infinite sequence of registers. Each 

register can store a natural number. The contents of the registers 

are denoted by the sequence Xo,Xl,X2,... The program consists of 

instructions of the type 

(i) ~ ÷ XX. , (2) XXi + Xj, (3) X i + X i + i, 
J 

(4) Goto m if Xj > O, (5) Read Xi, (6) Accept 

At the begin of a computation all registers store the number 

zero. The meaning of the instructions should be clear. The program is 

written line by line. At the beginning the program counter points to 

the first line, it is increased by one after the execution of the 

corresponding instruction unless a jump is caused by instruction (4). 

Because of more details concerning the definitions of RAMs see [3] 

or [8]. 

A configuration is a 3-tuple (m,i,n) with m E IN (program 
counter), i E ~ (part of the input sequence which has not been read 
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in to this time) and u E IN ~ (sequence of the contents of the registers). 

The program defines a mapping ÷ on the set of configurations . ~÷ is 

the transitive closure of + . M accepts i E ~ iff there exist m E IN 

and u £ IN ~ such that (l,i,~) ~+ (m,¢,u) and the instruction Accept 

stands in the m-th line of the program. 

Let X be an alphabet and ~: X + IN a bijective mapping. Let 

~: X* ÷ IN ~ be the corresponding monoid homomorphism. We say that M 

accepts w E X* iff M accepts ~(w). 

Let T: IN ÷ IN be a function. Then we denote by RAM (T(n)) the 

class of all languages over finite alphabets which are acceptable by 

a RAM which stops for any input of length n, n E ~, after at most 

T(n9 steps. Here a step is the execution of one of the instructions 

(I) - (6). 

Since the only arithmetical operation of our RAM is the 

operation + i, a RAM can generate in t steps only numbers which are 

bounded by t. Therefore RAM (T(n)) c TIME (T(n) 2 log T(n)) holds 

for every "honest" function T. It is not known whether there exists 

a faster simulation of deterministic random access machines by Turing 

machines. 

In analogy to the definition of nondeterministic Turing 

machines we can define nondeterministic RAMs by allowing non- 

deterministic jumps 

(7) Goto m I or Goto m 2 

We will make our machine even more efficient by allowing that this 

machine can transfer in one step the content of an arbitrarely chosen 

register 

( 8 )  X. + v x 
w n 

n£1N 

L e t  NRAM ( T ( n ~  be  t h e  c o m p l e x i t y  c l a s s e s  d e f i n e d  i n  t h i s  way.  

I t  was shown  i n  [ 6 ]  t h a t  e v e r y  L E TIME ( n ' l o g  n )  i s  a c c e p t e d  i n  

linear time by a random access machine which can apply the arithmetic 

operations x + y and x ~ y in one step. We will show that this result 

holds in the nondeterministic case also for our RAM. 

Theorem 3: NTIME (n.log n) ~ U NRAM (d'n) 
dEIN 

Proof: Consider L E NTIME (n.log n). Then there exists ([2]) a 
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no ndeterministic 2-tape Turing machine M = (S,X,T,~,So,F) which accepts 

L with the time bound n'log2n. We split the tapes of M up into segments 

of the length x.log2n with some x 6 IN which still is to determine. A 

nondeterministic RAM M is defined in such a way that after an initial 

phase it simulates x.log2n steps of M in a bounded number of steps 

(see also [5], proof of Theorem 10.3). We use in this proof that a 

RAM has direct access to any one-parametric function which has been 

precomputed and whose table is stored by the RAM. 

We use a relation R which relates two pairs (~i s ~2,~3 s ~4 ), 

(~i st ~2' ~3 s' ~4 ) with s,s' 6 S and ~i,~i 6 T ~, l(~i) , i(~ i) 

x.log2n V i = I,...,4 iff i(~9 i ~i+I) = i(4 i 4i+ ~) = 3 x'log2n for 

i = I~3 and M can perform the computation (s,~ I ~2' I(~i) + I, 

~3 ~4 ' I (~3) + i) ~÷ (s', ~ 42, i(~ i) + i, 4 3 ~4' 1(43) + i) in 

x.log2n steps. 

Let us assume first that we are operating on a random access 

machine which has multidimensional access. Then we use an injective 

encoding ¥: T~ST ~ ÷ IN and store the relation R on a 4-dimensional 

array A in such a way that A(xl,x2,yl,y 2) = i iff 

(~-i(xI), y-1(x2)) R (y-1(yl), ¥-I(y2)) holds. 

Now our machine has only onedimensional access but we can 

overcome this difficulty by a trick. 

To encode a multidimensional array by a one dimensional array 

normally a bijective pairing function P: IN 2 ÷ IN is used: 

Let l,J: IN ÷ IN be the "inverse functions" of P, that means 

!(P(x,y)) = ~ and J(P(x,y)) = y V x,y £ IN. Now let x,y E IN be 

some numbers and suppose our RAM has to compute P(x,y). Then it just 

guesses some z E IN and verifies afterwards that l(z) = x and 

J(z) = y. So we have only to find a pairing function P such that the 

corresponding functions I and J can be precomputed quickly on a RAM. 

Of course it remains to show that the precomputation can be 

performed in linear time by our RAM, provided that x is small enough. 

But this involves mainly technical problems. A detailed proof is given 

in [9]. o 
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Now we will show that our nondeterministie RAM is not "much 

faster" than a nondeterministic Turing machine. We will use again the 

notion of a derivation language. Note that the set of markers was 

always chosen in such a form that it encodes in a suitable manner all 

the information which is necessary in order to perform one step and 

the alternations induced by this step. In the case of the RAM we choose 

M ~ 2 IN U IN 2 × 21N U IN 2. M is an infinite set because each natural 

number may be stored by M in a register during some computation. 

The set M belonging to a RAM which uses only numbers x ~ p 
s 

for some p E IN as input numbers is defined in the following way. 

~* There exists exactly one r E IN N ~ and this r 

determines (~) according to the following schedule. 

(In this schedule x,y E IN are arbitrary numbers and z N p~) 

instruction in the r-th 
line of the program 

x i ÷ x x . 

J 

X ~- X, 
X. J 
1 

x i + xi÷ i 

Goto m if x. > 0 

{r,(j,x), (x,y)} 

{r, i,x), (j,y)} 

{r, i,x)} 

{r,(j,x)} 

{r+l, (i,y)} 

{r+l, (x,y)} 

{r+l, (i,x+l)} 

{r+l}, if x = 0 

{m} , otherwise J 

Read x. 
1 

Accept 

Goto m I or Goto 

x~ ÷ V x 
n~IN n 

no instruction 

m 2 

{r} 

{r} 

{r} 

{r,(x,yi} 

{r} 

{r+l, (i,z)} 

@ 

{m 1} or {m 2} 

{r+l, (i,y)} 

{r) 

Note that ~ stores the content of the registers necessary 

in order to apply the instruction in the r-th line of the program. 

[(x~y) encodes: y is the content of register x.] ~ stores the 

alterations induced by the application of the instruction. 
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It is clear that each (~,¢) E M determines one step of M. If 

v £ M ~ is some string and if K I ~+ K 2 is induced by this string, then 

we write K 1 ~÷ K 2. 

Sz(M) = {~ c M~I~ i c {0, .,p}* .. , m E IN, u E IN ~ 

(1 i, ~) ~ (m, ~, u) and "Accept" is the 

instruction in the m-th line of the program}. 

Now let us denote by Q,Z the two projections from (2 IN U IN 2) 
2 

on its first and second component, respectively. Then the following 

lemma holds: 

Lemma 1: 

1. 

2. 

3. 

For any nondeterministic RAM M bl..bn C Sz (M) 

b. E M ¥ i = 1,...,n 
i 

1 £ Q(b 1) and [r I E Z(bi_ 1) ^ ~2CQ(b i) ~ rl=r 2 ¥ i:2,..,n] 

For all i : 1,...,n the following holds: If (x,y) £ Q(b i) 

and if j = max {j < i!3 z E IN: (x,z) E Z(bj)} 

then y = z if j > 0 and y = 0 otherwise 

4. Z (b n) = 

The proof of this lemma is straight forward. Note that 

condition 3 guarantees that always the correct contents of the 

registers are used. 

We will construct in the followiag a Turing machine which 

accepts Sz (M). First we have to encode the elements of ~ over a 

finite alphabet. Let us assume that the elements in the sets ~p and 

are ordered in some way (for example take the order used in the 

schedule) and let ~s define a mapping 

~: IN U{(,), "," ,"(", "}" }÷{0,i,2~3,4} ~ by: ~(n) is the binary 

notation of n for all n E IN, ~ ("(") = ~ (")") = 2, ~ (,, i,) = 3 

and a ("{") = ~ ("}") = 4. It is clear that ~ induces a mapping 

~: M ÷ {0,...,4} ~ and let ~: M ~ ÷ {0,...,4} ~ be the monoid 

homomorphism induced by ~. 

Furthermore let L o be the following "string-matching" problem: 
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L 
O 

: {d ~I c..c ~qd@l c..c ~r dlq' r E IN and ~i' @j C {0,1,2} ~ 

for all 1 S i ~ q, iS j ~ r and for every j E {1,...,r} 

there exists a i E {l~..~q} such that ¢j : ~i }. 

Theorem 4: Let M be any nondeterministic RAM. Then 

1. e~(Sz (M)) E NTIME (n) 

2. Let To: IN ÷ }N be some function such that L ° E NTIME I(To(n)] 

Then ~ (Sz(M)) E NTIME (To(n)) 

Proof: It is clear that a deterministic Turing machine can decide in 

linear time for every input v C {0,...,4} ~ whether there exists 

bl...b n E M s such that v : ~(bl...b n) and whether the conditions 

2. and 4. of lemma 1 hold. Therefore we have to consider in the 

following only condition 3. 

In order to prove 1. note that a nondeterministic Turing 

machine can guess some i E {l~..,n} and some (x,y) E Q(bi), then it 

can compute the number j and afterwards it can test whether y is the 

correct value. These operations can be performed in linear time. 

In order to prove 2. let a Turing machine transform for each 

i £ {l,...,n} each r 6 (Q(b i) U Z(bi)) N IN into ~, each pair 

(x,y) 6 q(b i) into 2~(x)2~(y)2 and each (x,y) 6 Z(b i) into 

2~(x)22~(y)2 and separate the pairs by the symbol c. Let v = wlc..cw m 

be the string generated in this way. Then condition 3 holds if and 

only if for all i = l,...,m such that w i : 2u I 2u 2 2 with u I u 2 6(0,i) ~ 

the following holds: 

If j = max {j ~ if3 u 3 6 {0,1}~,v 6 {2,22}: wj = 2u I v u 3 2} 

then u 2 : u 3 if j ~ O and u 2 = O otherwise. 

It is clear that this condition can be verified easily if we 

have a copy of v = w I c...c Wm which is ordered according to the first 

component in such a way that the order of succession for pairs with 

equal first component is the same as in v. To ~et this copy we use the 

language L o . 

First set w! = w~ ~(i) Vi = 1,...,n. Now our nondeterministic 
i l 
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Turing machine operates in the following way: ~. It computes the 

string w 1' c...CWm'; 2. it guesses some string ~ E (0,1,2,c)* 

' d ~ d £ L holds; 3. it verifies and verifies that d w 1' c...c w m o 

that ~ = u I c...c u m is lexicographically ordered according to the 

first and third component (Note that w' @ wj' for i @ j and therefore i 
u I c...c u m is just a copy w I' c...c w m' in a different arrangement) 

and 4. it verifies that the modification of condition 3 holds. 

It is clear that all these operations (with the exception of 

the membership problem in 2.) can be performed in linear time. m 

Corollary! 

i. U 

2. 

. 

NRAM (d. n) ~ NTIME (n - (log n) 2) 
d~N 

L E NTIME (n) ==) U NRAM (d • n) = NTIME (n • log n) 
o dE IN 

If NTIME (n) is closed under complement then U NRAM (d.n) = 
dE~ 

NTIME (n.log n) and U NRAM (d.n) is closed under complement 
d£1N 

Proof: Let L £ NRAM (d'n) be some language and let M be a RAM 

which accepts L with the time bound d.n. Let T 1 : IN ~ IN be some 

function such that a*(Sz(M) E NTIME (T1(n)). 

Then L E NT!ME (T 1 (d'n'log 2 n)).[A nondeterministic Turing machine 

can guess a derivation string (this string has the length d-~'log 2 n) 

and afterwards it has only to verify that this string describes a 

computation of M with the given input.] 

If NTIME (n) is closed under complement then Tl(n) = n 

and therefore U NRAM (d'n) = NTIME (n.log 2 n) follows from Theorem 3. 
dCIN 

The second statement in 3. follows immediately by using transformational 

methods. 

Furthermore we have proved in Theorem 4 that Tl(n) S To(n). 

Therefore 2. follows immediately. In order to prove 1. we have to 

show that Tl(n) ~ n • log 2 n. Remember that we can sort any sequence 
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0 ~l,...,O~q, I@1,...,1@r E (O,1,2)* 

i l(O~i) + ~ l(l@j~) [see f.e. Mergesort, [i], page 66]. If the 
J 

sequence is sorted then we can test easily whether 

d~ 1 c...c ~qd~ 1 c...c @r d E L o 

With just the same methods used in the proof of theorem 4 we 

can relate also the complexity classes of multidimensional and one- 

dimensional Turing machines. 

Theorem 5: U Nk DIM (2n) ~ NTIME (n.(log n)2). 
kE~ 

This is considerably different from the deterministic case where we 

know only [11] that 

k DIM (2n) c TIME (n 2-1/k. log n). 

in 0 (m.log 2 m) steps where m = 
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