About the derivation languages of grammars and machines

Burkhard Monien
Gesamthochschule Paderborn

Fachbereich Mathematik - Informatik

In the same way as for grammars (see f.e. [10]) we define
derivation languages also for machines. We show:

1. For each phrase structure grammar

g = (VN,VT, 3, P) with P« VN* x (Vg v VT)* the language of all left
derivations 1s contained in € . [C is the family of all languages

which are acceptable by deterministic two-way counter automata.]

2. TFor each nondeterministic multi-tape Turing machine the
derivation language is contained in (. Especially to each L € NTIME (n)
there exists a language L1 € ¢ and a length preserving homomorphism
n with L = h(L1>' [TIME (..) and XNTIME (..), respectively, denote
the time complexity classes defined by deterministic and
nondeterministic multi-tape Turing machines.}

3, TFor each nondeterministic successor RAM (we define this
machine in such a way that it can guess in one step the content of an
arbitrary register) the derivation language is contained in TIME
(n - log n) and its complement in NTIME () . Especially for the
time complexity classes NRAM (..) defined by this machine and for the
time complexity classes Nk DIM (..) defined by nondeterministic
k-dimensional Turing machines the following holds:

4. U NRAM (d-n) < NTIME (n-(log n)°)
deN

338

b. NTIME (n) closed under complement = U NRAM (4 - n) = NTIME

(n - log n) dEN

¢. U NkDIM(d-n)cNTIME (n- (log n)2).
d€ N

4. wWith methods which are similar to those used in [6], we

show that NTIME (n -« logn) < U NRAM (4 « n).
deiN

This result and the result from 3. imply:
a. NTIME (n) closed under complement = U NRAM (d 'n) closed under
complement dem

b, There exists a simple string matching problem L such that

L € NTIME (n) implies U NRAM (d+n) = NTIME (n - logn).
deiN

The results out or 1. are proved in section 1., the results out
of 2. in section 2 and the results out of 3. and 4. in section 3.
Some of the proofs can be found in more detail in [9].

1. Left derivations of phrase structure grammars

We use the same notations as in [10]
Definition: A phrase structure grammar (P3SG) is a 4-tuple
G = (VN,VT, S, P} where VN’VT are the alphabets of non-terminal and
terminal symbols, S € VN is the start symbol and
P« ((VN U VT)* - VT*) x (VN 1] VT)* is the set of productions.

A derivation is a sequence ©gsery Oy € VF (V = VN] VT) such
that for all 1 = 1,...,k-1 there exist R, ,R,,Q,,Q, € v* with
©0; = R, Q Ry, 95,4 = By Q; Ry and (Ql’Q2) € P. Now let M be
another set and o: M + P a bijective mapping. Then to each deriva-
tion of G there corresponds a string v € M*¥ in a natural way.
We write: @, *:v w, . The derivation language (Szilard language)
of G is defined by Sz (G) = {v € M* | 3¢ € VT*: s *=v o}

A left derivation is a derivation where 81 € VT* holds in

each step. In this case we write: ¢, *»v left .

left ‘P}'

(@) ={vem | 30€vV;": 8%

SZ1ert v

339

It 1s easy to see that Szleft (@) is a context-free language
for every PSG G. Under the assumption P c VN* x V¥ Y. Igarashi [7]
proved that 8z p¢ (G) € TAPE (log n). (TAPE (log n) is the class of
all languages which are acceptable by a Turing machine operating with
a two-way head on its input tape and with the tape bound log n.) We

will improve this result in this section.

Definition: A two-way counter automaton M = (8, X, &, 545)

consists of a finite memory (S-set of states, 5, € S, F « 8), a counter
and an input tape (X-set of input symbols) with a two-way read only
head. ¢: S x X x {0,1} » 8 x {~1,0,+1} x {~1,0,+1} is the transition
function.

A configuration is a 4-tuple (s,w,i1,z) with s € § (state),
w € X* (input word), i € {1,...,1(w)} (head position) and z € mo
(number stored by the counter). & defines in the usual way a mapping
+ on the set of configurations., *» is the transitive closure of - .
M aceeptsw € X* if there exist t € F, i € {1,...,1(w)} and z € N
such that (s_,w,1,0) *» (t,w,i,z).

Let € denote the class of all languages which are acceptable
by two-way counter automata (nctice that these automata work deter-
ministically). It is easy to show that € < TAPE (logn).

Now we prove the main result of this section.

Theorem 1: Let G = (VN,VT,P,S) be a phrase structure grammar such

* *
that P < VN x V*. Then SZleft (G) € C.

Proof: Again let M be the set of markers and a:M + P the bijective
mapping. Then a string bi"'bn € M* velongs %o Szleft (@) if and only

if Ql = S (we set o (bi) = (Qi’Ri) vi = 1,...,n) and the two follow-
ing condition#s hold.

(1) For all i = 2,...,n there exist +v. € V.* and &. € v*
left 1o T +

such that S *s b b Y; Qi 6;. (This guarantees that u(bi) can
1°+Pig
be applied in the i-th step.)
(2) 3 we VT*: S *= %Ef p, W. (Note that w is determined
geeby

uniguely if it exists.)

340

We will show in I how a counter automaton tests (1) and in II
how it tests (2).

(1) For all i = 2,...,n we will test the correct occurence
of Q; symbol for symbol. We will investigate for all j = {1,...,1(Qi)}
whether in the stringx., gained by the left derivation by...bs 4, (i)
the j~th nonterminal symbol of x; is equal to the j-th symbol of Qi
and (ii) whether for Jj > 1 the symbol preceeding the j~th nonterminal
symbol is also a nonterminal symbol,

? In order to verify these two conditicus we use the following
gsimple relation

s *s 1T Ay with u,v € VE, A ET
bl"'bk N
= 3 xe {1,...,k}, B ¢ VN* and uy,u,,V,,8,,8, € v* with u = Uy uy,
_ . left left
v o= B, vy and S *= bl"‘bx—l u, B vy , B = bx By A s 5
left

B, %= u
T 70, P 2

Since we consider only left derivationes u, € VT*.

Furthermore B, ¥ %eft p U, holds if and only if there exist
A+17 7Tk
* _ - 5 left
LPERRRL o8 € V* such that @, = 845 P T Uy and wu = bu+1 u+l
Y U o= Aye..,k-1.
Now suppose 1 € {2,...,n} and suppose our counter automaton
¥ has tested already that the left derivation by...by 4 can be carried

out. Consider some Jj € {1,...,1(Q;)}. If lei Il 2§ (for arbitrary
v € V¥ || v]l is the number of nonterminals occuring in v) then there
exists a decomposition x; = u A v with |{lull= j-1 and A € V.

Let 1, Bio @yseees®s 4 be determined by the above relation

{(with k = i-1).

In order to determine the j-th nonterminal symbol of x . 3 our
automaton ¥ starts with the number j-1 = 11@3 1!1 and computes
{going to the left with its head) successively }lwl Sl es 3“
and stores them on its counter. Note that for all u € {)+1,...,i-1}

left
wu-i b wp holds and therefore
- - |)
IR0 = oyl ens e, fl = Wyl = IRl + 10, tn the case
w=A B=_ @ AB, and therefore Rl > [l o, 1. In this way

A

341

a counter automaton which moves its head to the left and uses

{lRu{} < |l ¢ |l as interrupt condition can determine the head position
A. Note that the (}{wxﬂi+1)—st nonterminal of R, is the j-th nontermi-
nal symbol of X; .

Now we will write down this algorithm for some fixed
i € {2,...,n} and some fixed j € {1,...,1(Qi)} formally. The algorithm
starts with h = 1 and z = 0 (h denotes the head position and z the

content of the counter).

A1 z = j-1

A2 If h = 1 then STOP

A3 h = h-1

Al If z < |[R,Il then goto A 6

A5 z =2 - |[R|| + 1] Qll, coto a2
A6

If the (z+1)-st nonterminal symbol of Rh is equal to the j-th
symbol of Qi then RETURN else STOP

It should be clear that condition (i) is true if and only if the
above algorithm uses its RETURN exit. Now M moves its head back to the
i-th cell just by reversing the above process. During these operations
ﬁ computes (in order to verify (ii)) for each actual head position
u € {A,...,1i-1} whether the rightmost symbol of wu is a nonterminal.
This can be determined easily in the case y = 1. Now suppose ¢ EV*VN.

Then o,,, € V' 102 10,0l < Loyl or [a,, Il = Ilo, and
Ru+1 € V*VN. Condition (ii) holds for these fixed values 1 and j iff
®;_4 € V.

(11) We now have to show how a counter automaton ¥erifies
that 8 *=bleftb w for some w € V. *. Consider again the strings

; v . left
Yu € VT*, 6u € V¥, u = 1,...,n defined by 8 Qbi...b . YuQusu' Then
left . . B .
3 = b1"'bn w holds for some w € Vg™ iff Q, € Vp* and 5, € VT .

We will define now a counter automaton which decides, starting
from an arbitrary head position k € {2,...,n} whether 8y ¢ VT* or
computes a head position A < k such that 8, € VT* = 4§ € V. *,

A T
In order to do this let A € VN be defined by Qk = QA and let X be the
number which is defined as in I. by S *=ieft Y.Q.8., R, = B,AR
by.oiby_y ATAA? 17P2
left .
and B, *= u, with v, u, = v, Q, 8, 8, = §, .
1 Dyyqe Dyoq 2 y Y2 k Y2 P2 %y k

- ® 2 s * *
Note that 6k € VT if and only ir 52 € VT and SA € VT .

342

We have shown in I how a counter automaton can compute the head
position » and how it computes simultaneously the numver || 8 Il on its
counter., Therefere it can decide whether 8o ¢ VT*. In this case

* 3 * *
8y ¢ Vy*, otherwise §, € V' e 5, € V',
Since §, = ¢ € VT* it is clear that by iterating this process

a counter automaton can decide whether Gn € VT* . o

2. Derivation languages of Turing machines

Now we will define the notion of derivation languages also for
Turing machines. We use notations similar to those in [5].

Definition: A nondeterministic k~tape Turing machine

M = (S,X,T,G,SO,F) consists of a finite memory (S-set of states,

s, € S, Fc 8) and k tapes (T~set of tape symbols, X-set of input
symbols, X « T) which are bounded to the left and on which a read-write
head is moving in both directions. &; S x ok, o Sx (Tx{-1,0,+1})k

is the transition function.

A configuration is a{2k+1)-tuple (S’ui’il""’uk’ik) with
s € S (state); Ugsenesly € T* (tape inscriptions) and il""’ik € N
(head positions). 6 defines in the usual way a relation » on the set

on configurations. *

+ is the transitive closure of - . M accepts
w €X iff there exist t € F; uj,...,u € T* and 1150005y €N

such that (s_,w,1,e,1,...,¢,1) ¥y (t’ul’i1""’uk’ik)'

.U

In order to define a derivation language in analogy to section
1, we set
P o= ((8,y)]6 € SxT, y € Sx(Tx{-1,0,+11¥

and Y € §(8)}.
Again we could consider alsc a set MO of markers and a bijektive
mapping a: MO + P, but because of simplicity we will identify MO with P.

To each computation of M there is associated in a natural way
a v EP*. Let K,,K, be two configurations, let K ¥ K, hold and let
v € P* be the string describing this computation, then we write

<3
Kl 7y K2'

343

The derivation language of M is defined by
Sz(M) = {v € P*{3 ¢t € F; w € ¥*; u

greeeauy € T, 150000l €N

with (so,w,z,a,1,...,e,1) *+v (t,ul,il,...,uk,ik)}

Turing machinés and phrase structure grammars both accept
(generate) just all recursively enumerable sets but nevertheless the
derivation languages of Turing machines are in some sense much simpler.
This is because a Turing machine changes its configuration in each
step only at uniquely determined positions (this i1s similar to the
left derivations in section 1). More over the "local past™ of a cell
(these are the operations performed by M when it reached this cell for
the last time) can be determined guite easily.

Theorem 2: Let M be a nondeterministic k~tape Turing machine. Then
Sz(M) € C.

Proof: Let bi"‘bn € P* be some string and consider some number

i€ {2,...,n}. Let us assume that we already constructed a counter

automaton which verified that bi"'b is a correct string (that

i-1
means that bi"'bi—i describes a computation of M starting from some

configuration (sg,v,1,e,1,...,6,1), v € X*),
In order to verify that also bl"'bi is a correct string we
have to test whether (1) the state given by the first component of bi

is equal to the state given by the second component of bi—l and (2}
whether the tape symbols given by the first component of bi are equal
to the tape symbols which are scanned by the heads of M after M has
performed the operations by...bs 4.

Condition (1) can be tested easily. Condition (2) is tested
for each tape separately. Let Hj(l) be the position of the j-th head
(1 £J < k) after 1 steps. Our counter automaton moves its head
(starting from the i-th cell) back on the input string and computes in
each step the distance]Hj(l) - Hj(i)l on its counter (where 1 is the
actual head position). This is controlled in the same way as in the
proof of Theorem 1 by the input symbols. Let 1 < i be the greatest
number such that |Hj(x) - Hj(i)] = 0, then b, gives us the tape symbol
we looked for. If such a number x does not exist then M scans in its
i-th step on its j-th tape a cell which has never been scanned before.
In this case the corresponding symbol in b; must be the blank symbol
or an input symbol, respectively. It is clear that after performing

344

these operations our counter automaton can put its head in a reverse
process on the position i agein.

In this way our automaton tests for each i € {2,...,n} whether
b,...b; is correct. A more formal proof is given in [91. a

It is not difficult to see that from theorem 2 we get a
homomorphic descpription of NTIME (n). Remember that

NTIME (n) = U NTIME (d.n), [2].
deMN

Corollary 1i: For any L € NTIME (n) there exist L € C and a length
preserving homomorphism h such that L = h (Li).

3. Nondeterministic random access machines

Wewill prove in this section relations between the complexity
classes of nondeterministic random access machines and Turing machines.

Again we will use the notion of a derivation language.

Definition: A random access machine (RAM) consists of a finite

program which operates on an infinite sequence of registers. Each
register can store a natural number. The contents of the registers
are denoted by the sequence X, ,Xq,X5,..- The program consists of
instructions of the type

J i
(4) Goto m if Xj > 0, {(5) Read Xj, (6) Accept

(3) X« X+ 1,

At the begin of a computation all registers store the number
zero. The meaning of the instructions should be clear. The program is
written line by line. At the beginning the program counter points to
the first line, it is increased by one after the execution of the
corresponding instruction unless a jump is caused by instruction (4y.
Because of more details concerning the definitions of RAMs see [3]
or [8].

A configuration is a 3-tuple (m,i,n) with m € N (program
counter), i € N¥ (part of the input sequence which has not been read

345

in to this time) and u € W* (sequence of the contents of the registers).

The program defines a mapping = on the set of configurations .*s is
the transitive closure of -+ . M accepts i € N* iff there exist m € N
and u € N* such that (1,i,¢) *» (m,e,u) and the instruction Accept

stands in the m-th line of the program.

Let X be an alphabet and ot X > IN a bijective mapping. Let
a*: X* > W* pe the corresponding monoid homomorphism. We say that M

accepts w € X* iff M accepts o*(w).

Let T: IN > N be a function. Then we denote by RAM (T(n)) the
class of all languages over finifte alphabets which are acceptable by
a RAM which stops for any input of length n, n € N, after at most
T{nY steps. Here a step is the execution of one of the instructions

(1) - (6).

Since the only arithmetical operation of our RAM is the
operation + 1, a RAM can generate in t steps only numbers which are
bounded by t. Therefore RAM (T(n)) « TIME (T(n)2 * log T(n)) holds
for every "honest" function T, It is not known whether there exists
a faster simulation of deterministic random access machines by Turing

machines.

In analogy to the definition of nondeterministic Turing
machines we can define nondeterministic RAMs by allowing non-
deterministic jumps

(7) Goto m, 5
We will make our machine even more efficient by allowing that this

or Goto m

machine can transfer in one step the content of an arbitrarely chosen
register

(8) X, « v X
ne N

a

Let NRAM (T{(n)) be the complexity classes defined in this way.
Tt was shown in [6] that every L € TIME (n-log n) is accepted in
linear time by a random access machine which can apply the arithmetic
operations x + y and x * y in one step. We will show that this result
holds in the nondeterministic case also for our RAM.

Theorem 3: NTIME (n-log n) € U NRAM (d*n)
deiN

Proof: Consider L € NTIME (n-log n). Then there exists ([2]) a

346

nondeterministic 2-tape Turing machine M = (S,X,T,&,SO,F) which accepts
L with the time bound n-logyn. We split the tapes of M up into segments
of the length x°log2n~with some x € IN which still is to determine. A
nondeterministic RAM M is defined in such a way that after an initial
phase it simulates xologgn steps of M in a bounded number of steps

{see also [5], proof of Theorem 10.3). We use in this proof that a

RAM has direct access to any one-parametric function which has been
precomputed and whose table is stored by the RAM.

We use a relation R which relates two pairs (@1 s @2,w3 s w&),
(b 8% ¥y, ¥g S' by) with s,s' € S and @;,¥; € T*, o), M(yy) =

x-logy,n ¥ i=1,...,4 iff 1(«9i ¢i+1) = l(\pi]) = 3 x-log,n for

i+1
i = 1,3 and M can perform the computation (s,cp1 955 1(@1) + 1,
Oz @ 5 1 (m3) 1) P (s, vy vy, 1(y) + 1, v by l(‘bB) + 1) in

x-log2n steps.

Let us assume first that we are operating on a random access
machine which has multidimensional access. Then we use an injective
encoeding v: T*ST* > N and store the relation R on a Y4-dimensional
array A in such a way that A(Xl,xz,yl,yg) = 1 iff

(T, M) R TR, v THy,)) holas.

Now our machine has only onedimensional access but we can
overcome this difficulty by a trick.

To encode a multidimensional array by a one dimensional array
normally a bijective pairing function P: lN2 + N is used:
Let I,J: N > N be the "inverse functions" of P, that means
I(P(x,y)) = ¥ and J(P(x,y)) =y V¥ X,y € N. Now let x,y € N be
some numbers and suppose our RAM has to compute P(x,y). Then it just
guesses some 2z € N and verifies afterwards that I(z) = x and
J{z}) = y. So we have only to find a pairing function P such that the

corresponding functions I and J can be precomputed guickly on a RAM.

Of course it remains to show that the precomputation can be
performed in linear time by our RAM, provided that x is small enough.
But this involves mainly technical problems. A detailed proof is given
in [9]. o

347

Now we will show that our nondeterministic RAM is not "much
faster" than a nondeterministic Turing machine. We will use again the
notien of a derivation language. Note that the set of markers was
always chosen in such a form that it encodes in a suitable manner all
the information which is necessary in order to perform one step and
the alternations induced by this step. In the case of the RAM we choose
Mo SNU N e X 2m UN°. M is an infinite set because each natural
number may be stored by M in a register during some computation.

The set M Dbelonging to a RAM which uses only numbers x £ p
for some p € N as input numbers is defined in the following way.
(@, ¥ €M

«» There exists exactly one r € WN N ¢ and this r
determines (w,v) according to the following schedule.
(In this schedule x,y € IN are arbitrary numbers and z £ p.)

instruction in the r-th

line of the progranm ® P
Xi‘ “ Xx, {ra(jg}(}: (X,y)} {r+i, (i,y)}
J
X, o+ Xj {r,(i,x), (j,y)} {r+l, (x,y7}
i
X3+ xgtl {r,(i,x)} {r+1, (i,x+1)}
{r+1}, if x = 0
Goto m if X5 > 0 {r,(j,x)} {m} , otherwise
Read x; {r} {r+1, (i,2)}
Accept {r})]
Goto m, or Goto m, {r} {ml} or {mg}
X; « v X {r,(x,yf} {r+1, (i,y)}
ne N
no instruction i{r} {r}

Note that ¢ stores the content of the registers necessary
in order to apply the instruction in the r-th line of the program.
[(x,y) encodes: y is the content of register x.l ¢ stores the
alterations induced by the application of the instruction.

348

It is clear that each {(@,y) € M determines one step of M. If

v € M* is some string and if Kl *a K2 is induced by this string, then
: *

we write K1 *, KZ'

Sz(M) = {v € M¥*|3 i € {0,...,p}*, m € N, u€ IN*:

(1, i, «) *»V {m, ¢, u) and "Accept" is the

instruction in the m~th line of the program}.

wou e, 2
Now let us denote by Q,Z the two projections from (2)
on its first and second component, respectively. Then the following

lemma holds?

Lemma 1: For any nondeterministic RAM M b,..b € Sz (M)
——— n
e 1. b, €M Vi=1,...,n
i

2. 1€ Q<b1) and [r1 € Z(bi-i) A PyE Q(bi) = r.er, Vv i=2,..,n

3. For all i = 1,...,n the following holds: If (x,y) € Q(bi)
and if j = max {j<il3z € N: (x,z) € Z(bi)}
theny = 2z if j > 0 and y = O otherwise ‘

4. Z(bn) =@

The proof of this lemma is straight forward. Note that
condition 3 guarantees that always the correct contents of the
registers are used.

We will construct in the following a Turing machine which
accepts Sz (M). First we have to encode the elements of M over a
finite alphabet. Let us assume that the elements in the sets ¢ and ¥
are ordered in some way (for example take the order used in the
schedule) and let us define a mapping
ar WU, "L LT, T 14400,1,2,3,U1* by: a(n) is the binary
notation of n for all n € W,a ("(") = o (M") =2, o (",") = 3
and o ("{") = o ("}") = 4, It is clear that o induces a mapping
a: M > {0,...,4}* and let o*: M* » {0,...,4}* be the monoid
homomorphism induced by a.

Furthermore let L, be the following "string-matching” problem:

349

s i . *
L, = {d o c..cC chiwl c..cow dlg, r € N and ®;5 V5 € 10,1,2}
for all 1 <1 <q,1< j <r and for every J € {1,...,r}
there exists a 1 € {1,...,9} such that wj = wi}.
Theoren 3: Let M be any nondeterministic RAM. Then

1, a*(8Sz (M)) € NTIME (n)

2. Let T: N > IN Dbe some function sueh that L, € NTIME((TO(HH
Then o (Sz(M)) € NTIME (To(n))

Proof: It is clear that a deterministic Turing machine can decide in
linear time for every input v € {0,...,4}* whether there exists
by...b € M* such that v = a*(bl...bn) and whether the conditions

2. and U4, of lemma 1 hold. Therefore we have to consider in the
following only condition 3.

In order to prove 1. note that a nondeterministic Turing
machine can guess some 1 € {1,..,n} and some (x,y) € Q(bi)’ then it
can compute the number j and afterwards it can test whether y is the

correct value. These operations can be performed in linear time.

In order to prove 2. let a Turing machine transform for each
i€ {1,...,n} each r € (Q(bi) U Z(bi)} NN intd e, each pair
(x,y) € Q(bi) into 2a{x)2a(y)2 and each (x,y) € Z(b;) into
2a(x)220(y)2 and separate the pairs by the symbol c. Let v = WiC .. 0,
be the string generated in this way. Then condition 3 holds if and
only if for all i = 1,...,m such that w; = 2u; 2u, 2 with u, u, €(0,1)*
the following holds:

If j = max {j ¢ 1|3 Uz € {0,1}¥,v € {2,22}: Wy 2uy v us 2}

1

then Uy T Ug if j » 0 and u, = 0 otherwise.

It is clear that this condition can be verified easily if we
have a copy of v = Wy c,..cC W which is ordered according to the first
component in such a way that the order of succession for pairs with

equal first component is the same as in v. To get this copy we use the
language Lo'

First set wi = Wy a(i) vi = 1,...,n. Now our nondeterministic

350

Turing machine operates in the following way: 1. It computes the
string wi' c...cwm'; 2. it guesses some string ¢ € {0,1,2,c}*

and verifies that d wl' C...C wm‘ d o d¢€ Lo holds; 3. it verifies

that ¢ = u; c...c u, is lexicographically ordered according to the

1

first and third component (Note that w'. 3 wj' for i 4 j and therefore
3 - o - 3

u1 c...cou 18 just a copy wl' C...C wm‘ in a different arrangement)

and 4. it verifies that the modification of condition 3 holds.

It is clear that all these operations (with the exception of

the membership problem in 2.) can be performed in linear time. o]
Corollary:
1. U NRAM (d -n) < NTIME (n - (log n)?)
dEN
2. LO € NTIME (n) =2 U NRAM (4 - n) = NTIME (n ° log n)
de N
3. If NTIME {(n) is closed under complement then U NRAM (d'n) =
d€emN
NTIME (n.log n) and U NRAM (d:n) is closed under complement
den

Proof: Let L € NRAM (d-n) be some language and let M be a RAM
which accepts L with the time bound d-n. Let T1 : N > N be some
function such that o*(Sz(M) € NTIME (Ti(n)).

Then L € NTIME (‘I‘1 (d'n*log, n)).[A nondeterministic Turing machine
can guess a derivation string (this string has the length d'n'log2 n)
and afterwards it has only to verify that this string describes a

computation of M with the given input.]

If NTIME (n) is closed under complement then Tl(n) = n

and therefore U NRAM (d°'n) = NTIME (n-log, n) follows from Theorem 3.
denN
The second statement in %. follows immediately by using transformational

methods.

TFurthermore we have proved in Theorem 4 that Ti(n) < To(n).
Therefore 2. follows immediately. In order to prove 1. we have to
show that Tl(n) <n - log2 n. Remember that we can sort any seguence

351

0 @1,...,qu, 1w1,...,1¢r € {0,1,2}* in O (m~log2 m) steps where m =

z l(Owi) + = l(le) [see f.e. Mergesort, [1], page 661. If the

i J

sequence is sorted then we can test easily whether
d@l Cova C @qdwi CensC wrd € LO . o

With just the same methods used in the proof of theorem 4 we
can relate also the complexity classes of multidimensional and one-
dimensional Turing machines.

Theorem 5: U Nk DIM (2n) « NTIME (n.(log n)2).
keN

This is considerably different from the deterministic case where we
know only [11] that

2-1/k.

k DIM (2n) <« TIME (n log n).

References

1. Aho, A.V., Hoperoft, J.E. and Ullman, J.D.: The Design and
Analysis of Computer Algorithms, Addison-Wesley Publ. Comp.,
Reading - Massachusetts, 1974

2. Bock, R.V. and Greibach, S.A.: Quasi - Realtime Languages, Math.
Systems Theory 4, 97-111 (1970).

3. Cook, S.A. and Reckhow, R.A.: Time Bounded Random Access Machines,
J. Comp. Syst. Sciences 7, 354-375 (1973).

L., Gray, J.N., Harrison, M.A. and Ibarra, 0.H.: Two-Way Push¥down
Automata, Information and Control 11, 30-70 (1967).

5. Hoperoft, J.E., and Ullman, J.D.: Formal Languages and their
Relation to Automata, Addison-Wesley Publ. Comp., Reading -
Massachusetts (1969).

6. Hoperoft, J.E., Paul, W. and Valiant, L.: On time versus space
and related problems, 8-th Ann.Symp. Th. Computing, 57-64 {1967).

7. Igarashi, Y.: The Tape~Complexity of Some Classes of Szilard
Languages, Report Nr. 81, University of Leeds, England.

8. Monien, B.: Characterizations of time-bounded computations by
limited primitive recursion, 2nd colloguium, Automata Languages
and Programming, 280-293 (1974).

9. Monien, B.: Uber die Komplexitit der Ableitungssprachen von
Grammatiken und Maschinen, Bericht Nr. 35, Abtl. Informatik,
Universitdt Dortmund (1976).

10. Salomaa, A.: Formal Languages, Academic Press, New York and
London, 1973.

11. Stohk, H.J.: Zwei-Band Simulation von Turingmaschinen. Computing 7,
222-235 (1971).

