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Summary. In this paper we examine the influence of the state of stress in the
equilibrium configuration of the Earth (i.e. the pre-stress) upon its adiabatic
perturbations. The equations governing these perturbations to the first order
(Woodhouse & Dahlen; Dahlen) are re-derived using a Lagrangian approach.
Different expressions of the sesquilinear form associated to the elastic-
gravitational operator are given. One of these provides a way to extend to
hydrostatically pre-stressed solids the criterion of local stability given by
Friedman & Schutz for uniformly rotating fluids. Then the propagation in
the Earth of seismic wavefronts is considered. It is shown that the nature of
these different wavefronts is entirely determined by the quadratic coefficients
of the development of the specific internal energy variation, corresponding to
isentropic evolution, with respect to the Lagrangian finite deformation
tensor. Expressions for the velocities of the various waves are given as
functions of incidence angle and pre-stress for orthotropic elastic material. In
the particular case where the elastic parameters depend only on one
coordinate of a curvilinear system and the axis of orthotropy of the material
coincides with the corresponding natural base vector, the elastodynamic
equations are reduced to a simple system for a displacement stress vector,
using surface operators. In particular for spherical geometry, equations are
obtained which generalize to orthotropic pre-stress those given by Alterman
et al. and Takeuchi & Saito.

Key words: anisotropy, gravito-elastodynamics, normal modes, perturbation,
pre-stress

1 Introduction

Since at least Love (1911) it has been common to establish the first-order equations
governing the adiabatic perturbations of the Earth by considering the Eulerian perturbations
of the equilibrium configuration (see, e.g. Pekeris & Jarosh 1958; Dahlen 1972). Sections 2
and 3 review how these equations may be derived using a Lagrangian approach. Equation
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180 B. Valette

(36) of the sesquilinear form associated with the elastic-gravitational operator may be used
as a starting point for the mathematical definition and study of this operator. Equations (38)
and (39) are perhaps less well known. In the hydrostatic case they allow the energy to be
expressed as a quadratic form of the Eulerian perturbations of the various physical
quantities, and thus local stability to be considered in a similar way to that used for perfect
fluids (Friedman & Schutz 1978b). 4

It seems of some importance to introduce the tensor ¢¥”** which arises naturally in the
development of the specific internal energy variation. Section 4 shows indeed that this
tensor determines the nature of the different seismic wavefronts.

Following Alterman, Jarosh & Pekeris (1959) and Takeuchi & Saito (1972), we show in
Sections 5, 6 and 7 how the elastic-gravitational equations can be separated in the case of
lateral invariance of the mechanical properties of the material. The hypothesis of orthotropy
made by Takeuchi & Saito (1972) in spherical geometry is extended here to the pre-stress
for more general stratifications. It is the broadest hypothesis which may be adopted in a
global approach. Indeed the assumption of lateral invariance implies that the different elastic
tensors are invariant under paralle! displacements over the constitutive surfaces of the
stratification. Thus, considering closed surfaces in a global approach, we are led to assume
that these different tensors are at each point invariant under rotation around the direction
normal to the stratification.

ikl

2 Preliminaries

Let us consider a deformable body which is in equilibrium in a Euclidean space £ in which
we introduce a convenient curvilinear coordinate system (x‘) with metric tensor g”7. A
deformation of this body from this reference configuration is defined at each instant by a
map f:

VY a€V,a~frla)=x(a 1)=a+ ula HEV,,

where u(a, t) is the Lagrangian displacement of the material point g, defined in the volume
V, from its initial position to the corresponding one at ¢ in the deformed volume V4.

Let us denote F the linear tangent application of f; at @, Du the Euclidian derivative
mapping of u at (a, 1), € the Lagrangian finite deformation tensor and e the Eulerian one. Ff
is an isomorphism of E, which is naturally defined from the tangent space T,(F) at point a
on to the tangent space at the deformed point x(g, 1), T(FE); € and e may be considered as
bilinear symmetrical forms on F (¢ is naturally defined on 7,(F) and e on T,(£)). In the
local frame (e;);=; 3 at point a, these different tensors are expressed by:

Du(eg) = DguPe,, FP,=gP, +Dgu”,
€pq = Dpttq + Daup + Dput* Dauy, e, = (F™)P(F )% €pg. (1)

At each time the different expressions of virtual work result in an evaluation of
(differential) linear forms on the field space of u. The virtual strain work is usually expressed
as follows (see, e.g. Bamberger 1981; Malvern 1969; Truesdell 1972):

5Ws =f Tse;dVi = f oP98epqdV, ()
Vi 14
where:

Seij=D;buj+ Djdu;, Sepg = F')Fi Sey.

This defines the Cauchy stress tensor T and the (second) Piola—Kirchhoff stress tensor o,
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Pre-stress influence on Earth’s perturbations 181

linked to each other by:
daP 09a? .
0P9=(1+0)— —TV=(1+0) {(F' xF1)M)P? (3)
oxt ox/
where x denotes the tensorial product and 8 = det(F)—1 the volumetric dilatation which
may be expressed up to the second order in Du as:
0 =Dy’ + {(D;u")? - Dyu/Dju’} /2. (4)

The Cauchy stress tensor is indeed directly related to the state of stress at each given
point of the Euclidean space. The actual density force acting at the point considered on the
element of surface of unit normal # is precisely 7(n). The state of stress in the equilibrium
configuration is represented by T, (= 0¢). This initial state of stress is called the pre-stress
when considering the stress evolution during the perturbation of the equilibrium. In order to
describe the perturbation of the different physical quantities, two approaches are usually
adopted.

The first one corresponds to a Lagrangian description which consists of evaluating the
perturbation from a given point in the reference configuration by following the considered
material particle. One way to evaluate this Lagrangian perturbation is to follow the evolution
in the frame strained by the field u (i.e. in considering co-moving coordinates, see Taub 1969
and Friedman & Schutz 1978a). In the case of the Cauchy stress tensor, one obtains in the
local frame at reference point a:

8§ TP ={F ' x F L (T))P9 — TP,
Taking into account (3) and (4), this yields to the first order in Du:
8, TP = (0 — 04)P9 — div(u)oP9. &)

A more common way simply considers the evolution by following the particle in the
embedding Euclidean space:

§T=Ty, ~ To.-

In the local frame at initial point a, this yields, taking into account (3):

§ TP = {Fx F(o)}??/(1 + 0) — TPI.

Thus one deduces from (1) and (4) that to the first order in Du:

§TP9 = (0 — 60)P7 — 0P div(u) + 0P*Dy u? + 09* Dy u”. (6)

The second point of view is the Eulerian one which consists of considering the evolution of
the physical quantities in the local frame at a given point of the space. In the hypothesis of
small displacement, that is to the first order in u, the Eulerian perturbation may be related
to the Lagrangian ones as follows:

§,TP9=5,TP9 _ y*pD, TP9, (7a)
and (Taub 1969; Friedman & Schutz 1978a):
8, TP1=5/TP L, TP9, (7b)

where L, is the Lie derivative with respect to u (see, e.g. Choquet-Bruhat et al. 1982;
Doubrovine et al. 1982):

L,TP9=u*D,TP9 _ TP*D,u? — TI*D,uP, — L,gP% = gP*Dyu? + g7*DyuP.

The mechanical equation of motion (or virtual works principle, i.e. the stationarity of the
total energy with respect to field u«, at each instant) is usually written in Lagrangian form as
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follows (see, e.g. Bamberger 1981; Malvern 1969; Marsden & Hughes 1978; Truesdell 1972):

Dy {(1x FY(@)}P + p¥/{x(a, 1)}=0 inV, (8a)
Flyo%n,=(+x) & on 3V as well as on each interface, (8b)

where {(1 x F)(0)? = oqu{I is the (first or Piola—Lagrange) Piola—Kirchhoff tensor, p
the density in the reference configuration, ¥ the body force density, ® the surface density
of force acting on the actual deformed boundary and x the surface dilatation of this
boundary with respect to the initial configuration with outward unit normal ».

Equation (8a) has the disadvantage of being hybrid; this is due to the fact that the (first)
Piola—Kirchhoff tensor works naturally on the product of the spaces tangent at ¢ and at
x: T;(E) x To(E). In the coordinate point of view this means that the index j in (8) refers to
T,(F) and the index p to T,(£). In order to obtain a purely Lagrangian formulation (i.e. on
T,(E') exclusively) one may multiply (8a) by (F'l)lj. Indeed summing up j indices leads to:

DpoP'+ 0P (F 1D, F)y +pF ™" () =0,
which to the first order in Du, D?u and with the help of (1) yields:
D,oP! + 69D, Dau’ + p{(¥ — Du(¥))' =0.
Taking into account the equilibrium of the initial configuration, that is:
Dy o2+ p¥l =0 in ¥ (0o(n) = @, on 2V), 9)
one finally deduces:
Dp{(6 —00)P' + 629Dqu'} + (0 — 00)P9D,D u’
+ p{(¥ —¥o) —Du(¥ —¥)}'=0 inV, (10)

which constitutes the Lagrangian formulation of the equation governing to the first order
the perturbation inside the body.

Taking into account (3) and the expression of the outward unit vector n; normal to the
deformed boundary as a function of its analogue # in the reference configuration:

. 1+0 s
nfz*(F )(n),
1+ x

where the asterisk denotes the adjoint operator with respect to the Euclidean structure, it is
clear that equation (8b) is equivalent to the Eulerian formulation:

T(ny) = @. (11)

Anyway, denoting by a dot the Euclidean scalar product in E, one obtains to the first order
in Du:

x = div{u) — Du(n) * n (12a)
n, =n — Du*(n) + {Du(n) - nyn (12b)
and from (3), (4) and (8b) or (11):

T(n,) = {1 — divu) + Du(n) * n} o(n) + Du{o(n)}= ®. (12¢)
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Pre-stress influence on Earth’s perturbations 183

3 The different forms of the equations governing to the first-order adiabatic perturbations
of the Earth

Let us suppose that the Earth is in equilibrium under uniform rotation with instantaneous
rotation vector §2 about its centre of mass G. As usual, we take this rotating space, centred at
G, as the Lagrangian reference space. The fact that this reference configuration does not
correspond to a physical state, because of the existence of tidal forces, needs to be pointed
out. However, such an abstract configuration has the advantage of representing a mean
thermodynamical state of the Earth which should not differ much from the real one.

3.1 CONSTITUTIVE EQUATIONS AND INTERNAL ENERGY

Adopting a purely elastic behaviour for the solid parts of the Earth Vg and a perfectly fluid
rheology for the external core Py leads, to the first order in Du for any adiabatic
perturbations of the equilibrium, to the following expressions in the local frame attached to
the reference point a (see Appendix 1):

(O’ — Oo)ij= cijleku, in Vs, (133)
§;T%=(T—To)7=~g"8,p=povdiviw)g”  inVy, (13b)

where y{=p/po(0p/dp)g} is the adiabatic index of the fluid and cTMp are the quadratic
coefficients in the development of the specific internal energy variation, corresponding to
an isentropic evolution, with respect to the finite deformation tensor. Thus the tensor cliM
has the following symmetries:

Cx}ki - Ck!z; = C;zkl - C:;Ik. (14)

It may be of interest to note that whereas an Eulerian description seems well suited to the
fluid case, it is the second Piola—Kirchhoff tensor which naturally appears from the thermo-
dynamical principles in the case of a solid (see Bamberger 1981; Malvern 1969). But, as a
matter of fact, the constitutive equation of a perfect fluid may be regarded as a particular
form of that of a solid. Indeed, from (13a), (5), (6) and (7) it is deduced to the first order in
Du:

8/ TY = c™¥'Dyuy — ol div(w) (15a)
8, T4 =d*!'p, u, (15b)
8T =d"'Dyu; — u*Dy 0¥ (15¢)
with:

dijkl = Cijkl _ O(t;jgkl T o(t)kgjl + oﬁkg”. (16)

It is then clear, by comparison with (13b), that in the case of a perfect fluid:

0d = —pog’, ¥ =po(y—1)g"g" + po(g™ e’ + g’* g").

The tensor d”/*¥! contains the symmetries (14) in the case of an hydrostatic pre-stress. This
tensor has been adopted by Takeuchi & Saito (1972) in order to represent elasticity. The
tensor d¥¥!, however, no longer has these symmetries in the case of anisotropic pre-stress.
Dahlen (1972) and Woodhouse & Dahlen (1978) have adopted as reference tensor the

orthogonal projection of d'T*" (with respect to the usual scalar product: ¢« ' = rikt t}jk,)
on to the space of tensors characterized by the symmetries (14).
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184 B. Valette

As the evolution is supposed adiabatic, the variation 8/ of the internal energy is nothing
else but the opposite of the work of the interior forces. That is, the strain work minus the
mutual work Wy due to slipping at interfaces or to non-local actions as gravitational effects
(the variation of gravitational potential energy may be also considered separately); thus (see
Appendix 1):

81 = f b4 dm— Wy (172)
1%

where 8;i is the Lagrangian perturbation of the specific internal energy whicn is expressed up
to the second order in Du as:

p8;i =0 Dju; + 5(c”"’+ o(’)kg’l)D;ujDku,. (17b)

If we consider a free evolution in the neighbourhood of the reference state of the Earth,
considered as a closed system, the forces reduce to inertia and gravitation:
8, =W(x) — Wo(@)=g'(x) —go@) — 28 x d,u — },u (18)
where g’ is the gravity field:
g'(x) —go(a) = gl(x) — go(a) — 2 x (X u),

’ [
X —X a —a

g(X)~go(a)=Gf { } dm', dm=pdV,
14

x'—xP  la'—af?
and G the universal gravitational constant.

In the hypothesis that the domain ¥} remains contractible (i.e. without hole), we deduce
to the first order in u:

f R B L i "‘)} dm’, (192)

val3 la' —al®

where u' represents u(a ).
This yields the usual expression:

g~ go=grad (Y +u- go) ~ Du*(go) = Dgo(u) + 8.8 = Dgo(u) + grad ¢, (19b)
where:

a'—a)y-u' div(p'u’ , p'lu’+n'
-_G %dm =ﬂGf———(,€—)dV—GJ‘ oluin o
v la —ali v la —al > la” —al

Here Z, consists of all the surfaces of discontinuity of p and [p] denotes the jump of p
through Z, in the direction of n. { is the potential of mass redistribution which verifies (in
the sense of distribution over E):

Ay = 4nG div(pu). (20)

Thus the traces of (grad ¢ — 4w Gpu) - n on both sides of each interface are identical, as well
as that of Y.
The variation of gravitational potential energy is:

G 1 1 ,
§P=— — y - - — dmdm’,
2 Jyxy Ux' —xi  la’" —al
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Pre-stress influence on Earth’s perturbations 185

and a second-order development yields:

G lu' —ul? a' —a)y- (u -uwp
5P=—fu-godm+—J {———3{( ) ( )}} dmdm’
v 128%

la' ~-al® la’ —g}|®

+
=—fu-g 20 im. Q21
L 2

3.2 LAGRANGIAN AND EULERIAN FORMULATIONS OF ELASTODYNAMIC
EQUATIONS OF THE EARTH

Making use of (13a), equation (10) may be rewritten to the first order in Du, D?u:

u+20x du+Aw)=0 inV, (22)
where the operator 4 is defined by:
. 1 . .
AwY =~—Dit" —{g—go —~ Qx 2 x w)}! (23a)
P
with:
= (7% ¢ 0¥ gDy
D;o¥ + p{ge — 2 x (x a)}) =0, (23b)

and where g — g, is given by (19), to the first order in u.
These equations correspond to those given by Woodhouse & Dahlen (1978) and
constitute the Lagrangian formulation of the elastodynamic equations inside the Earth.
Taking into account expressions (15¢, 16) of the Eulerian perturbation of the Cauchy
stress tensor, we may deduce from (23):

. 1 L .
Aw)’ = — ;{DizseT'f — g div(pu) + p(grad ¢ )'}, (24a)
that is:
, 1 .. .
Aw) = — =8, (D;T7 + pg). (24b)
1Y

This shows that equation (22) may be obtained to the first order in u, Du, D?u at each inner
point of the reference configuration V, as the Eulerian perturbation of the equilibrium
equation. This approach, which has been adopted by Takeuchi & Saito (1972) in the hydro-
static case and by Dahlen (1972) in the general case, leads to:

pd2u’ + 20( x d,u)’ — Di(d"* Dy u; — u*Dy 0¥ + div(pu)g,’

—p(grad¢)/ =0in ¥, (25)
where the expression of d7¥! is given in (16), and constitutes the Eulerian form of the
elastodynamic equations inside the Earth. It may be of some interest to note that this
Eulerian interpretation of the elastodynamic equations in the reference configuration fails at
boundaries, unless they are assumed undeformable.
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186 B. Valette

3.3 BOUNDARY CONDITIONS

The usual hypothesis that the domain V; remains contractible implies that at each inner
interface, assumed to be closed and regular, the different parts V;,, V,_ remain in contact.
This yields, to the first order, u * n continuous across the reference interface:

Ul n=u, n-u_+n=90, (26)

where # is the unit normal in the reference configuration, oriented in the direction of the
jump (i.e. from V_toward V).

Taking into account (13a) it is deduced from boundary conditions (9), (12c) that to the
first order in u, Du, (Dahlen 1972):

[T(n)] = [6,{T(n)}] = D{oo(n)}u],
and thus:
[(0 — 60) (n) + Du{oe(n)} —{div(t) — Du(n) - n}ao(n)] = Dioo(n)}{u] . (27)

Apart from eventual source areas, the solid interfaces are usually considered as welded.
Therefore, the boundary conditions on these interfaces are:

ful =0, [(0 —0¢) (n)+ Dufoo(n)} — {div(s) — Du(n) * njoe(n)] = 0. (28)
Let us consider 7*(n), (see 23b):

7*(n) = (0 — 09)(n) + Du {og(n)} (29)
and 7'* (n) defined by:

7' *(n) = (0 — a¢)(n) + Du{oo (n)} + Du *{0o(n)} — div(u)oo(n). (30)

From (12) and (13a) and to the first order in Du, it is clear that:
77 (n) = (1 + )T (1) — 00 (n). (31)

Considering expressions (15b) and (16) one deduces that 7'*(n) coincides with (§,7) (n) if
the pre-stress is hydrostatic. In the general case, however:

7' (n) = (8,T) (n) — 0o {Du " (m}} + Du {00 (m)},

that is:

T’*(n)/—_- 7'Vn;, (32a)
with:

7 = 1 4 gilg I Dy — div(u) o (325)

In terms of these vectors, (28) may be rewritten:
[l =0, [+ W] =0 or [r' ()] ={0o(n) * [Du(n)]}n —{n + [Du(n)]} oo (n). (33)

(Note that the latter term is null if # is an eigendirection of g .)
At the external boundary 9V, neglecting atmospheric pressure, it is easily deduced from
{9) and (12c¢) that:

oo(n)=7 (n)=1""(n)=0, (34)

where # represents the unit outward normal to 0V
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Pre-stress influence on Earth’s perturbations 187
At an inner interface £ where a fluid is involved:
0o (n) = —pon.

From (26), (27), (29), (30) it is deduced in Appendix 2 that the boundary conditions may
take the following forms (equivalent to the one given by Woodhouse & Dahlen 1978):

[u] ~n=0, [7*(n)] =—ndivs(po[u]) —poWlu]

=~ ndivy(po [u]) + po [Du* (n) —{Du(n) - nin], (35a)
[u] -n=0, [ *()] = —([u] - grads po)n. (35b)
Here divy and grads are the usual surface operators, with:
divu =divg{u — (u - n)n)+ Du(n) - n+ (¢, + cx)u - n,
grad py = grads po + (grad po * n)n,

where ¢; and ¢, are the principal curvatures of Z at the considered point, i.e. the eigenvalues
of the Weingarten operator W which is the self-adjoint operator defined on the space tangent
at Z, T,(Z), by:

YuveET,(Z) Wu)=D,(n)eT,(Z).

Note that when pre-stress is hydrostatic on both sides of the interface and p is discontinuous
across it, the equilibrium of the reference configuration yields easily that the right side of
(35b) vanishes.

3.4 SESQUILINEAR FORM ASSOCIATED TO OPERATOR 4 AND LOCAL STABILITY
From these boundary conditions it may be deduced that A4 is a symmetric unbounded
operator in LZ(V, dm). Indeed, from Appendix 3:

A@w)lv) = f (™ + o gMDuiDy v+ p{(Q - w) (- v) — Q%u - v} aV
12

b+ o—

Gf {(u'~u)-(6'—5)_3{(a’—a)-(u’—u)}{(a’-a)-(i’—z?)}
2 Jyxv

+ dmdm’
la' —al? a" - al’ }

+ fpo [1u) - grady(v - n)+ [v) - grady(u - n)
z

— [Wu — (u+ m)n}+ {v—(v-mn}]1dz, (36)
where (|) denotes the inner product of L%(V, dm):

()= fv' ~dm,

Y consists of all interfaces where a fluid is involved and = denotes complex conjugation.
The integration over ¥V x V involved in the second term of (36) is due to the non-local
character of mass redistribution effects. In order to avoid this term, the potential of mass
redistribution ¥ is usually introduced via (19b) (Pekeris & Jarosh 1958). However { must
then be constrained by equation (20). Adopting a variational approach, one may (Backus
& Gilbert 1967; Johnson & Smylie 1977; Woodhouse & Dahlen 1978) use the method of
Lagrange multipliers in order to derive an unconstrained stationary problem related to
the operator 4.
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188 B. Valette

The integration over T corresponds to the mutual work caused by slipping at interfaces
3. More precisely, considering a real evolution u, expressions (17) and (21) yield:

lu' —ul? ;5 {@" -a)- (' —u)?

ja' —aj’ la' - al®

y G
6l = f (a(’)’Diui ~ pgo *u)dV+ — { } dmdm’
v VXV

1
+l f (ci’“+o(’;kgj’)DiujDku,dV+f dzf [(1+x,) T(n)- d,ul dZ,
2 v 0 X

with the unit normal n to £ oriented in accordance with the jump.
From relation (31) and Appendix 3, we deduce:

t t
fdt f [(M+x,) T(ny-ou]l dZ = f dt J‘ [{oa(n) + 'r*(n)}'atu] dz
0 b3 o )

= J po [ lul-n+ [u)-gradgu-n)— [Wu—(u- -mn}-{u—(u- mn}l /2] dz,
bS5
and finally, taking into account the equilibrium of the reference state (23b):
1
51 = 5{{A(u)|u}+ f (1Qx @+ w)l* —|Qxa Iz}dm}- GB7
Vv

But other expressions of (4 (u) |v) may be obtained for which the surface integral term is
very simple or cancels. Indeed, as derived in Appendix 4:

(A@u)|v) = f 1™ — ongg® + 6iFgl + ong'e’®) DiuiDy vy + S {— pDgou * v
4

+ {Dv(u) —u div(U)} - grad oy )] dV - f grad Y(u) - grad Y(v) v
E nGG

- f S{(u * n) [v] - grady po}dZ, (38a)
3

and also:
(A@)|v) = f [ —ongTg" + ok g/ + ong"g"®) DjuiDyv;+ S {2 pgo . u div(v)
Vv
+(go - u) (v - grad p) + (grad oy + pgo) (D) — u div(v)} ] dV

J‘ grad d/(u)'_grad xp(U) d
o8 4nG

V+ f S{-n){u - (pgo — grady po)}dX
T

o [ st w G myaz, Gsb)

where T is comprised as in (36) of all interfaces where a fluid is involved and T’ of all
welded interfaces. S { } denotes the symmetric part:

S{a(u, v)} ={a(u, v) + av, u)} /2,
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Pre-stress influence on Earth’s perturbations 189

and here o, is any regular scalar function the value of which is —pg in Vg and O on 9V.
Under the common assumption that the interfaces belong to a regular family of surfaces we
may choose oy = go(n) * 1, where n is here the unit normal to the surface of the family at
the considered point.

In the hydrostatic case with the choice oy = — po, (38a) yields:

(A(u)lv)=f d7*' D Dy vy + pS{u - go div(v) — v - grad (u * go)} dV
4

rad Y(u) - grad Y(v

~-fg V) grad Y)
E 4nG

Also, with the use of (15c) it is easy to see that (38b) reduces to:

- f S{(u-n)] - grady poldX. (39a)
b3

1= !
i U Lol * &o o
()= f{(seru),-,(d DG T = 5 (ad p 7@ ',-"kgo}.gé}dv
vV

Lo

_f w—@gi) dv+ f [p] (g0 * ) (u - n) (V- n)dZ. (39b)
E dn G z3p

The latter expression provides a way to extend the criterion of local stability (Friedman &
Schutz 1978b) to hydrostatically pre-stressed solids. Indeed relation (15b) shows that it is
possible to select the Cauchy stress tensor T and the specific entropy h as state variables
in order to describe to the first order the elastic evolution around an hydrostatic configura-
tion. Then, supposing the evolution is isentropic (8,4 = 0) leads to:

8,0 =~ p div(u) = — per{d " (5, T)},

so that, for an arbitrary evolution:

ap
Sip=—ptr(d 8, N+ {— ) §&h.
anl

Applying this relation to Eulerian perturbations, we deduce:

0
8ep = —div(pu)=—ptr(d 8. T) + (*B) 8.h,
onl,

and finally, with (15¢) in the case of an isentropic evolution:

Seh=— " tgrad p — p*(d™)'"x8o} ~u=—gradh-u.
T

This shows that:

oh 20 3-1Ni k! ] ’
grad h=| —| {grad p — p*(d@™")'/ k £} /g0 (grad p / go),
op/ 1
and therefore that the second term of the right side of (39b) is proportional to the product
of Eulerian perturbations of specific entropy.
If we consider now an evolution with viscosity, say Newtonian, instead of (22) the real
displacement verifies:

0%,u + 2Qx03,u+ A(u)= — B(0,u) (40)
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190 B. Valette

where B is a positive self-adjoint operator. (B(d,u)|0,u) represents the power of viscous
irreversibility, i.e. the rate of entropy increase.

Let us now introduce, after Friedman & Schutz (1978b), the canonical energy E¢ g
(canonical with respect to the symplectic structure related to equation (22)):

Ecr= {(A)lu)+ (Q,u|d,u)) (2.
Then, formally, it is straightforward from (40) that:
0,Ec. =" (B(B,u)l0,u) < 0. 41

So that, in order to ensure stability, it must necessarily be assumed that A4 is positive in the
space of displacements orthogonal to uniform translations. That is the space of kinematically
admissible displacements satisfying the constraint that the reference space is centred at G:
Judm = 0. (The fact that in the presence of other celestial bodies, the trajectory of G is not
uniform contributes simply to tidal forces in the reference space, see Wahr (1981).) Indeed,
let us suppose that A4 is not positive in this space. Then it would be possible to find a
kinematically admissible displacement uy such that: (4(up ) 110) < 0. Adopting this displace-
ment with (3,u); = 0 as initial conditions of the evolution problem (40), it would follow by
integration of (41):

—(A@)u) > — (Aug) ug) > 0.
But (40) yields also:

—(AW)lu)= @2 ulu)+2Q. f ux dudm+(BOu)lu).
v

Thus it would be impossible that 4 converges and that 0,4 and 9,,u vanish for the topology
of H'(VqU V). Indeed, since the form (B.]|.) is continuous for this topology in the case of
Newtonian viscosity, —(A(u)|u) would tend to zero. This clearly contradicts asymptotic
stability.

Consider now local conditions and thus displacements with support in the vicinity of a
given point. In the case of a fluid, the independence of 8.p and §.4 leads us to assume
(see expression (39b) for (4 (u) |u)) that:

go-grad p = p2(d ™) ¥ g (42)

This is the generalized Schwarzschild criterion for uniformly rotating fluids (Friedman &
Schutz 1978b). In the case of a solid, 8,7 and 8,2 may no longer be fixed independently
in the neighbourhood of a point. However, for a negative value of gy - (grad p — p*
(d™) ., gh) instability arises if the tensor d** is sufficiently close to the direction of
gg*". For instance, in the isotropic case, given a value of the bulk modulus (k = A + 2y/3)
and a negative value of:

grad p—p(d 'YX g6 *g0= {grad p?go/k }*go.

there is a critical value of the rigidity () under which local instability appears.

4 Pre-stress and seismic wavefronts

The influence of pre-stress upon plane wave propagation in homogeneous media has been
already investigated in geophysical literature (see, e.g. Nikitin & Chesnokov 1981). Here we
will examine a related problem: how the pre-stress affects seismic wavefront propagation,
and thus travel-time analysis. Following Hadamard (1903) (see also Bamberger 1981;
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Pre-stress influence on Earth’s perturbations 161

Truesdell 1972; Vlaar 1968) let us consider an acceleration wavefront, that is a travelling
surface S; across which the relative acceleration admits a jump: s = [9,,u] . Then it may be
deduced (Hadamard lemma) that the second-order spatial derivative of u also admits a
discontinuity across the front: [D;D;u] = n,-njs/Uz, where n is the unit normal vector to the
surface S, representing the wavefront with normal velocity U in the reference configuration.

In order to obtain the eigenvalue problem which governs the polarization and the velocity
of these fronts at a given point of the reference configuration, the jump operator has to be
applied to equations (23) or (25). Taking into account the regularity of u, Du and g — g,
this yields at a point where the different elastic parameters are regular:

M's! = pUPs’, with M7 = ¥ nyny + g0k ngn, = d*ingn,. (43)

Thus it is clear that the polarization of the different acceleration waves corresponds to the
different eigendirections of the symmetrical tensor cki’inkn,. Therefore it is in fact ¢7%!
which determines the nature of the seismic fronts in the Earth. If ¢/*! is isotropic only P-
and S-wavefronts exist and the influence of pre-stress anisotropy manifests itself only in the
eigenvalues of (43), i.e. is confined to the dependence of the velocity of the wavefronts on
their incidence. The importance of this anisotropy is thus related to the ratio between the
usual Lamé parameters and the pre-stress deviator. Considering the maximum order of
magnitude -generally adopted for the latter in the lithosphere, a major effect is not to be
expected (probably less than 1 per cent in velocity anisotropy).

In the case where ¢¥/*! is anisotropic, the velocities corresponding to the three kinds of
fronts are affected by both ¢7¥! and oéf. More precisely, let us assume that the anisotropy of
¢k is sufficiently weak to permit a (mathematical) perturbation approach (see Backus
1970), to the eigenvalue problem (43). Denoting A’ and u’ the Lamé coefficients of the
orthogonal projection of ¢/% on to the isotropic tensors space:

kL= )\ glighl . | (gikgll 4 gikgily . siKI
it follows, in the case of quasi-compressional wavefronts:

”klnln ey

pUsp =N+ 2u"+ ofnn; + & ;

= a(’;jninj + cifkln‘-ninkn, (= difk’ninjnkn,). (44)
Thus only a weak inference upon the deviatoric part of the state of stress may be expected
from the knowledge of quasi-compressional wavefront velocity as a function of incidence.
The problem of determining ‘inherent’ anisotropy of the material, i.e. that which is
related to the inner structure of material, independently of the state of stress, has been
investigated by Nikitin & Chesnokov (1981). They have proposed an evaluation of the
change of the quadratic adiabatic elastic parameters ¢ /¥’ related to the deviatoric part of the

pre-stress.

5 The orthotropic material case

Let us now consider in more detail the case where at each solid point the material is ortho-
tropic (or transversely isotropic), that is its mechanical properties are invariant under
rotation around a given axis. This results in supposing that ¢/ ! and oéj are both orthotropic
with respect to the same axis (the hypothesis for o(’;j is not essential in this section).
Moreover let us suppose that it is possible to choose, at least locally, a curvilinear coordinate
system such that at each point the vector of the natural basis e, associated to the first
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192 B. Valette

coordinate, corresponds to this axis of orthotropy and is orthogonal to the other two vectors
of the basis which will be referred to by a Greek index: (eg)a =2, 3.

Let n;; be the linearized deformation tensor: Ny = (D,-u]. + Dju,.)/2. For any rotation of

axis e, , n has five linearly independant invariants of second order. It is usual to choose:
3
M2+ 7% () 0% +nPs), n'anti v atsny, nhands —ntan’s.

Thus supposing ¢ /%! orthotropic yields:

cijklnijnkt =AM + 0% + ') +2F (Pt mPs)
+4L' (M n? s +n' P ) AN (P - nPans). (45)

Considering an adiabatic evolution and taking into account (13a) we deduce from (45) to
the first order in Du:

0P =03F + (A" —2N")n", + F'n')} g*F+ 2N 0,

o®t =g +2L'0%Y, oM =gl + F Y, g + Ot (46)
Substituting these expressions into (23b) leads to:

0= {(4' —2NYD,u" + F'Dyu'} g** + N'g® Dyu®+ (\N' + 01)g*" DyuP,

' =(L'+ (JT)g"‘ﬁDﬁu1 +L'g'D u®, 71® =L'g°‘ﬁDﬁu1 + (L' +oy)g't Dyu®,

' =g {F'Dou” + (C'+ on)Dyu'}, (47)
where o = 00!y, 07= 002 = 0g’3.

Thus it may be deduced that the eigenvalue problem (43) takes the form:

Misl=pU?",  with MY = P% + @blngn)) g’ and (48)
C'n'ny+ L'(n*ny + n®ny) (F' + LYn'n, (F'+ L"Yn"n,

P=|(F'+ LYyn*n, L'n'n, + A'n*ny + N'nPn; (A" — N'Yyn’n,
(F'+ L"hn®n, A' - NYn’n, L'ntn, + N'n*ny + A'n®ny

The eigenvalues of P are:
N'(n*ny + n®n3)+ L'ntny, {A'(nPny + n®n3)+ C'ntny + L' £ AY)2,
with:
A ={A"'(n*ny + n’n3)+ C'n'ny —L'}7?
+antny(mPny + P {(F' + L' —(4' = L")(C' - L")}.
The expression of the different acceleration wave velocities follows:

pU§ =Nsin® 8 + L cos® 6,

P 1
pU? {i =3 {Asin? 0+ Ccos® 6+ L — (o —ayp)sin? 8} A}, (49)
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where 0 is here the angle between the unit normal to the front » and e, , and:

A? ={A4sin® 0+ Ccos® 8 — L + (on — 07)sin®8} % + sin® (20) [(F+ L)
—{(A4 - L+ (o —op)}(C-1)],

A=A+ or=pUlpp, C=C"+ oy =pUlpy,

F=F'—oy, L=L"+ay= pUqSN,N N'+op= pU (502)

These latter coefficients permit the definition of an orthotropic tensor b"7*! containing the

symmetries (14) by a relation analogous to (45). Thus:

b7 * ik = ¢ Mg + on Qi — 040" + (or — on) 2n%n"P — n%n'%).  (50b)

Note that in the hydrostatic case this tensor is equal to d”*¥' and then corresponds to
Takeuchi & Saito’s (1972) choice.

The consideration of the case where:
(F'+ LY =(4'-L"(C'-L",
and where:
pUgs, =Nsin? 8 + Lcos® 8, pUss ={L ~ (o5 — 07)}sin’ 6 + L cos® 6,
pUqP=A sin? 8 + Ccos? 9,

also illustrates the weak resolving power of the knowledge of velocity anisotropy upon the
deviatoric part of the stress. (The approximative approach (44) yields the same result for gP
fronts when: 4’ + C'=4L"+ 2F’)

6 Equations of the ‘displacement stress vector’
Let us now suppose that the tensors 0/ and ¢7*/ are invariant under any parallel displace-
ment over surfaces defined, at least locally, by x' = ¢’. This means that the medium is
generally stratified and that A4, C, F, L, N, oy and o7 are functions only of the first
coordinate. We will make the same assumption for p.

In order to reduce the equation of elastodynamic and avoid derivatives of the different

elastic parameters, it is natural from (23) to introduce the vector (29):
1=1"(e1)=(0 — o) (e1) + Dufoo(er)}, (7 =cy*Duy+ayD,u). (51)

Unfortunately this vector does not allow boundary conditions at the solid—fluid interfaces
(see 35a) as simply as that of the vector (§;7) (e;) (see 15b, 16, 25) used by Alterman ez al.
(1959) and by Takeuchi & Saito (1972) in hydrostatic situations. In order to generalize the
choice adopted by these authors while keeping simple boundary conditions and avoiding
derivatives of the deviator (o) — 67) of the pre-stress, we also have to introduce the vector
(see 30, 32, 35b):

s=1""(ex) = (5,T)(er) — 0o{Du"(e1)} + Du"{ 0 (1)},
(sztj-!— oNgkakul —OOIkauk=b1ik’Dku,). (52)
From (47) it is straightforward that:

Dy = (1t = F'Du®I(C' + on), DyuP = -L'g**Dyu )L+ op). (53)
7
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194 B. Valette
Taking into account (50) and (52), this yields:

Dyu' =(1)" - FDuu*)/C, Diuf =—g*Dgu; + 1\/L. (54)

Let V denote the Levi—Civita covariant derivation (see Choquet-Bruhat, Dewitt-Morette
& Dilliard-Bleick 1982; Doubrovine, Novikov & Fomenko 1982) over surfaces defined
locally by x! =¢? and F?k the Christoffel symbols related to the Euclidean derivation D for
the system of curvilinear coordinates (x?). Since it is assumed that the first coordinate is
orthogonal to the other two, the symbols related to V are equal to those corresponding to
D. So that, for instance:

Dyuf=Vuf+TE u', D P =9 A7+ T8 7Y 1 AP

and it may be deduced (Appendix 5) from (23) and (47):

12 '

F , F
g''Dy(r %)= p8 ¥+ ( ; +N -4 I) gﬁaVaV7u7 - ghov,r?
’ C +oy C + oy

+ N (T8 Ty ~ T8’ - V' + 0708 v,v ,uf

L' L’ aNn ;
‘g“(ffatﬁ + T t“) — (0T+ ; ) ré g7 (v, u' + Tub)
L + oy

L + On
F'?
A (ul {(2N' + 078" TS, +(A' —2N' — ) ghry }) : (552)
C + On v
L' F
Dl(Tll)szI\I/l_ ’ (Vata_F{ata)'*’F(l!a ] —1} ¢!
L +opn C + oy

"7

+ (N + o) (v, uf + TF u' )+ le(A' —2N' - ) (V,u” + T u')

T
C+UN

Ll On
—( . + UT) g, (g% v, Vgt + g°P Vo (Lgyt + Tlgut)
L+ ONn

+g°P0)  (Vgu' + Tu))). (55b)

where (18): 8, W = 0%,u + 2 x 3,u — Dgo(u) — grad ¢.

Let us now suppose that the surfaces x' = ¢* are parallel (or may be considered parallel,
for at least a limited range of x'). This results in ', = 0, or equivalently I'{, = 0. The first
lines of coordinate are straight lines, g,; is a function only of the first coordinate and
possibly by means of a change of coordinate we may suppose that g;; = 1. Let us then
introduce the scalar field uy, 15, sy and the tangent vector fields u7, ¢, s such that:
U=uye  +uyr, t=tyeg+itr, $=$ye; +Ssr1.

Let W, Ar, divy, gradr denote respectively the Weingaten operator, the Beltrami operator,
the divergence and the gradient over surfaces x' = ¢':

Wur)? =T u® (Apup)P =g v, v uf, Arp=2*"v,v.9,

divT(”r)z Vaua’ (gradT ¢)ﬁ =gBaVa o. (56)
The equilibrium of the reference configuration (9) yields:
8 =—1gle,, Dioy + t(W) (oy —o7) —pigg 1=0, (57)

where tr denotes the trace operator.
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Furthermore, introducing x = D1y — 47 G puyy;, and taking into account:
Ay =Ary +tr(W)Dyy + Dy,
we deduce from (20):
Dix=4nGp divpur — Apy — tr(W)x
Dy =x+4nGpuy

¥ and x continuous at each interface (p = 0 outside V).
Therefore, with the help of:

div(ge) = — Dy lgo | — te(W)1go | = — 4nGp + 2|1Q21%,

it follows that:

5, Wy = (0%u+ 20 x d,u)y —tr(W)lgo luy — 218212 uy — x
8,0 =(0%u+ 29 % d,u) 7 + lgo | Wug) — grad 1.

195

(58)

(59)

(60)

Then, taking into account (56), (60), the hypothesis: I'; , = 0 and the relations:

W2 —t(W)W + det(W) =0,
V,"T$.,) = v, (87T¢,) = {gradp(tr(W)*,
(VI8 =9, + T, 1}, —T5 Iy =3,T8),

equations (53), (55) may be rewritten:
Dyuy = (—F' {tr(W)uy + div pug} + t3)/(C'+ ap),
Diup= (L' {~ grad puy + Wup)t + tp)/(L" + oy)

L

leN={(2N’+ UT)tI(Wz)— ( P + 2N,*A’)tl'(W)2
C + On

(61)

Ll
- (—ON— + OT) Ar+ p{0F; — g | tH(W) ‘2|Q‘2}}VN+ 20{Qx dutn

L7+ oN

!

LIUN 1 F’z ’ ! .
+ + 207+ 2N divpW ~— c + 2N — A" tr(W) divp

’
L+ oy + oN

’

F L
—~(2N' + o) gradr (tr'W) } up — (1 - — )tr(W)tN - =
C +on L+

!

” '

oN

divy iy — pXs

Lo ,
Dytyp= (C' +2N' -4 ') gradp (tr(Wyuy) — (L' N 207 + 2N ) W gradruy
+

+ Oy an
F'?

~1

—~(2N'" + op)uy gradptr(W) + { ( +N' -4 ') grad pdivy
oNn

’

(N’ ’ L On 2 2 '
- + 0p)Ar — N det(W) + I + op) W + p(8%, + lgo | W)

+ 0N
FI !
+20(2 X Oy — ——— gradpty — {tr(W) +
C + oy

'
L-I-UN

|

J4r

W} ty —p gradpy. (62)
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Furthermore, from (52), (54), (57) and (61) we may deduce:
Dysy =Dty +{(0y ~ op)te(W) — plgo |} {divpur + tr(W)uy}
+ oy {Aqruy — up - gradpte(W) — divpsp/L} + onte(WH)uy
—ontr(W)(sy/C — Fdiv pup + tr(W) uy} [C),
Dysp=Dyip+{plgo| — (on — op)tr(W)} (gradpuy — Wur)
— oy (Fgrad ¢ {t(W)uy +div pup)/C +grad psy/C+ W(st)/L).

Substituting (62) into these latter relations and taking into account (50), (52), (54) and (58)
we finally deduce:

Dyuy = (—F{tr(W)uy +div pur} +s5)/C, Dyup= — grad guy + Wur +sp/L,
Disy= QN (W) —(F2/C+ 2N — (W) + (o — o7){Ap + tr(W?)}
+ p{0%, — 2tt(W)|go | — 21213 upy + 20 (2 x 3,u)y + (2N div o W
—(F?/C+ 2N — A)tr(W) divy — plgo | divy — 2N + o — o) gradp{tr(W)} - Yur
—tr(W) (1 — F/C)sy — divpsy — px,
Dysg = (F*/C+ 2N — A)grad p {tr(W)up} + (o180 | — 2NW) grad ruy
— 2Nup gradp tr(W) + {(F?/C+ N — A)gradpdivy — N{Ap + det(W)}
+ P37 Yup+ 2p(Qx d,u) 1 — (F/C) gradgsy — {te(W) + Wis — p gradr ¥,
D\W=x+4nGpuy, Dix= 4nGp divpur —Apy — tr(W)x. (63a)
In the fluid areas (15), (50), (52):
A=C=F=pyy, L=N=0, oy =07p=—po, s=poydiv(u)e, =— (§;p)e; .
Thus equations (63a) reduce to:
sp=0, Dyuy = — tt(Wuy — divpur + sy/(Po7)s
Dysy = p({d% —21go| tr(W) — 2I121%}uy — 22X du)y — 1£0 | div pug — X),
Fpur + 2AQx du)r = gradp{sy/p + Y — 180 lun}.
This result may be also directly derived from the usual equation:
grad { poy div(u)/p + + u * go} — div(u) {go + Doy grad(1/p)} = 0%u + 2 x d,u,

corresponding to (25) for a perfect fluid.
From (52), (26), (33), (34), (35b) and (58), it is straightforward that the boundary:
conditions are:

Sy, 7, U, X continuous at each interface (o = 0 outside V if necessary),
uy continuous at each inner interface,

ur continuous at each solid—solid interface. (63b)

As far as the variational approach is concerned under these hypotheses of orthotropy and
lateral invariance over parallel stratification, expression (38a) for (4(u)|v) becomes (see

220z 1snBny |z uo 1senb Aq G011 L9/6.1/1/G8/BI01ME/B/W00"dno olwspese//:Sdiy Woly papeojumoq



Pre-stress influence on Earth’s perturbations 197
Appendix 6):

A@w) | v)= f bY*'D,u;Dy vy + pS{u . g4 div(v) — v . grad(u . g¢) }
12

+(oy — op)(tr(WHupyvy — grad puy * grad poy — S{uyvp . gradpte(W)}) dv

?f grad  (u) - grad w@dV
E

64a
4dnG (642)

and thus:

(4G0) 1) = f [l V2 (W) — t(W)?) = 2p 121% =2 I g | e (W)
14

+ (o — o) tt(W?)— (on — op)| graduy |* — N|divyuri|?

— Nup .{Ap + gradp divy + det(W)ur
+ (A =N-F*O) | tr(Wuy + divpurl® + syl?/C

+1sp 12/L —R{plgo |+ 2N tt(W)up div pup + (ANW — pl g up - grad puy
+(oy — 07+ 4N)uyuy . gradp tr(W) — pxun — pur - grad 7 ¢ }]1dV.  (64b)

Neglecting rotation, it is well known that in the case of plane and spherical stratification the
solution of (63) may be decoupled as SH- and PSV-waves. More precisely, let us define the
subspaces Egy and Epgy (mutually orthogonal in L&(V, dm)) by:

Eggy={u:u, =0, div(u) =0}, Epgy = {u : Curl (), =0}.

It follows then from (63) that Egy and Epgy reduce A in the case of parallel stratification
only when the two curvatures of x! surfaces are equal at each point, i.e. only in the case of
plane and spherical stratification (see Jobert 1976). The case of cylindrical stratification is
also interesting to consider. There PSV- and SH-waves propagating in a direction
perpendicular to the cylindrical axis are decoupled whatever the stratification (assumed here
to be parallel). (For such SH-waves it is clear indeed that: up - gradr{tr(W)}=0 and
divp(Wu7) = 0.) However the subspaces Egg and Epgy do not reduce A in this case, and so
the corresponding waves are generally coupled.

7 Pre-stress and spherically symmetrical earth models

Adopting a spherically symmetrical earth configuration in order to draw an average global
model of the Earth, we have to assume that the material properties are invariant under any
rotation about the centre of mass. This implies that the material will be considered as ortho-
tropic with the radial direction as the axis of symmetry at each point.

In the case of spherical geometry the Weingarten operator is simply W =1I/r, where r
denotes the radial distance of the considered point. Therefore, neglecting rotation, it follows
from (63a) that:

Dyuy = {— FQup/[r+ divpur) + sy}/C, D,ur=—gradpuy + urp/r+ sr/L,

Dysy={4A - N - F*|O)[r* + (o5 — o) (A + 2/r*) + p(3%; — 4180 1/7) }un
+{2(4 =N = F*/O)r — plgo Ydivpup — 2(1 — F/C)sy Jr — divpst — pX,

D,s7={2F*/C+ N — A)r+ plgol}gradguy + {(F*/C+ N — A) graddivy

~ MAr+ 1/r*) + pd%jur — (F/C) gradrsy — 3s/r ~ p gradpy,
D,y =x+4nGouy, D,x=4nGp divrur — Apy — 2x/r (65)
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198 B. Valette

We may thus deduce the equations governing the radial dependence of the free modes of
the model (i.e. the eigenfunctions of the operator 4). Indeed these free oscillations may be
expressed as (see Alterman et al. 1959):

u
} =y{”;1 (r) Curl (Y™} re,) (toroidal oscillation of the subspace Egy),
s 8

u
} =y (r) Y7 e, +y!m (r)gradp (Y r) (spheroidal oscillation of the subspace Epgy).

{2 {3
(66)
Here the Y (Im| <) denote the usual orthonormal spherical harmonic functions:
QI+ 1)U -m)! )

YT0,8)=(—1)" | ———————P7 (cos 0) exp(im ¢),

4n(l + m)!
P the associated Legendre functions,  and ¢ colatitudinal and longitudinal angles.

For a toroidal oscillation with eigenfrequency w/2n, taking into account:
Ap(Y)=— 11+ D)Y/r*, Ap{Curl (Y"re,)}={1 —1(I+ 1)}Curl (Y"re,)/r?,
it is straightforward from (64) that:
dyq dys
it LR (USRI O DNfr? —pw?} y; = 3ys/r, (67a)
r

with yg = 0 (63b) at each boundary of the solid part.
For spheroidal oscillation with eigenfrequency w/2 7, adopting:

=y Y®, x=rm ) Y
and taking into account:
Ap(Y'y= 10+ DY /r*, Ap{grad, (Y["r)}={1 —I(I+ 1)} grad . (Y;" r)/r?

it follows easily from (64) that:

dy, dy,
O ={=2Fy,[r+y, +1(I+ 1)Fy3/r}/C, e == —y3)ir+ ya/L,

% = {44 - N - F[O)r* + (1 - 1) U+ 2) (o7 — on)lr — p(4lgol/r + @)}y,
’

S 21 = F[Cyyafr = K1+ 1) {24 ~ N — F?[C)[r - plgotys/r
+ 11+ D yafr— pys,

dys 2
== U =N FOlr — plgelyi[r /O yar

—({II+1)(F?C ~ A)+ 2N}r? + pw?) ys — 3yalr — pyslr,

dys dye _ 3
- =4n7Gpyy + Ve, P AnGpl(l+ Dys/r+ 11+ V)ys/r? = 2ye/r. (67b)
¥ r
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From (63b) it may be deduced that the boundary conditions take the form:
V2=ya=ye+ (I+ 1)ys/b=0,at the free surface r = b,
Y1,¥2,¥3, Ya,Vs, Ve continuous at each welded interface,
Y4 =0and y,,y,,¥s, ¥¢ continuous at each solid—fluid interface,
Y1,¥2,Vs, Ye continuous at each fluid—fluid interface.

At the pole r = 0, the regularity of the solution has to be imposed (see Crossley 1975; Denis
1970 and also Dunford & Schwartz 1963).

Recall that the coefficients A, C, F, L, N are those of the tensor »7%! {see 50) which is
equal to dY*" in the hydrostatic case. Thus, in this case, equations (64) correspond to those
obtained by Takeuchi & Saito (1972). In the case of an” orthotropic pre-stress, the
coefficients A, C, L, N are still related to wavefront velocity (49, 50) and taking into
account orthotropy of the pre-stress practically amounts to the introduction of the term
(I — 1)+ 2) (o7 — on)/r in the coefficient of y; in the second equation of (65b).

Let u represent a displacement field and s the associated ‘stress vector’ (52). Expanding u
and s on the spherical harmonic vector basis as in (66) and taking into account the ortho-
gonality properties of this basis, (64b) easily yields:

b
(A(u)lu)=f [y (44 ~ N - F2[C) — 4pigolr — (I — 1) (I + 2) (o5 — 07)}
Q

+ 1 2/C+ I+ 1) 1ys12 {1+ 1) (A4 — F*/C) — 2N} + (1 + 1) {ryq|?/L
+ 02— DI+ 2Ny, 12+ 11+ 1) | rysl?/L
FRQU+1)(plgo |7 =204 =N~ F2[C)y1y3 —py1yer® — W+ 1) pysys ril dr.
(68)
where R { } denotes the real part.
This provides the means to estimate to the first order the effect of the deviatoric part of
pre-stress upon the spheroidal eigenfrequencies. Indeed, with the help of the so-called
‘Rayleigh Principle’ (see, e.g. Woodhouse & Dahlen 1978), it is easily derived from (68) that

the relative perturbation of a spheroidal eigenfrequency with angular order / due to the
deviatoric part of pre-stress may be expressed as:

Sw (I-1DU+2) [? b
— = (—2)057—) f (o7 —on)¥i dr/ i+ 1)y3}pr? dr, (69)
0 0

w

where y; and y; are the components (66) of the corresponding eigenfunction for the
reference hydrostatic model.

Let K(r) denote the kernel of expression (69), that is the kernel related to the logarithmic
derivative of w with respect to (o1 — opy):

I-1)d+2
K(r) = L——zli—)yl(r)/f (4 10+ 193) pr* (10)

Figs 1 and 2 show the kernel K(r) as a function of depth, corresponding respectively to the
fundamental spheroidal mode and the first overtone for / = 20, 50 and 100. They have been
obtained with the use of Wiggins’s (1976) computational algorithm and earth model 1066 B
(Gilbert & Dziewonski 1975).
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Figure 1. Kernel K(r) as a function of depth, corresponding to the fundamental spheroidal mode for
1=20, 50 and 100, obtained with the use of Wiggins’s (1976) computational algorithm and earth modei
1066 B (Gilbert & Dziewonski 1975).
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Figure 2. Same as Pig. 1 except tfor the first overtone.
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Considering these graphs and the poorness of our knowledge of the state of the stress
inside the Earth, it is believed that there is no reason to ignore, a priori, the deviatoric part
of pre-stress in global or regional earth models.
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Appendix

(1) Let , h and ¢ be respectively the specific internal energy, entropy and free energy and T
the temperature field of the considered material. Using normal state variables, the following
expressions stand:

3
h=— ——¢i i=¢+ Th.

v
The first two principles of thermodynamics, the virtual power principle and expression (2)
yield for any reversible virtual evolutions around the reference state (for more details about
the subject of this appendix see, e.g. Bamberger 1981; Malvern 1969; Truesdell 1972 or
Marsden & Hugues 1978):

1 I .
5T¢ =8i — T6h = 8WS = ;Opqﬁépq = - Tllﬁeij.
t

Then one can see that the knowledge of the stress-strain relation results in the knowledge of
specific free energy.

In the case of solid elasticity, the normal variables are the temperature T and the
Lagrangian finite deformation tensor €; thus:

P 39
o quae_ . (Al.l)
P4

Developing ¢ to the second order around the equilibrium state leads to:
" 1 i, ..
po=pda — pho(T = Ta)+ o€+ - {A(T = Mo}’ + AT — To)o"ey; + NVej; e}

where hy = — (3¢/dT), is the specific entropy in the reference state, o{;j the pre-stress
tensor, and where from the symmetry of ¢;; the tensors A/ k! and o/ may be chosen with the
following symmetries:

ol = ot \IKE = Nkl < K (A1.2)
Then (A1.1) may be rewritten:
0¥ =0 + (T —To)a” + NT¥ ¢y,

Furthermore, assuming that the evolution is adiabatic, and thus isentropic (k& = hg):

| R
T—Te=— 20!” €, (8)r ¢ =841,
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where §, 7 is the Lagrangian variation of specific internal energy. Thus:

Vi ik
o =0 + ¢ ey,
where the tensor ¢7/%! = \¥*! __(a’/ a*%)/4, which contains the same symmetries as X given

by (A1.2), corresponds to the quadratic coefficients in the development of p§;i, with respect
to €, related to isentropic evolution:

. 1 ..
p81i=p (@ — o)+ ho(T —To)} = o €+ 3 T ey €.

Restricting now the development of ¢ to the first order in Du and that of §;i to the second
order leads to:

Oijz O’éj + CijkIDk uy,
T 1 ikl ik I
p811 =0y D,-uj + E(C + 0y & )D,-ujDkul, (A13)

where the presence of 04 in the quadratic terms comes from the quadratic ones in €.
In the case of a perfect fluid, the normal state variables reduce to the temperature T and
the density p. Then taking into account mass conservation:

if : 2 ¢
pér¢p=—pglde; withp=p; ,
ap¢
and thus:
TV = _ pgif.

If we consider an isentropic evolution, and then suppose that p is locally a function of the
density, we obtain to the first order:

) )
p—po= (—p) (pt—p)=—p(—p) 8/(1+8),
0P/, op/),

where 8 is the volumetric dilatation: 8 = p/p, — 1.
Taking into account expression (4) of 6 yields to the first order:

P —po = — pov div(u), (A1.4)

where

y= P (a_p)
pO ap h

is the adiabatic index of the fluid.
The Lagrangian variation of the specific internal energy corresponding to an isentropic
evolution may be expressed as:

t 3 3 T
6,i=(6,)T¢=f —¢—pfdr=——fpa,edz.
o O0p; Of P %

Thus taking into account expressions (4) and (A1.4), we obtain to the second order:

1 . .
p81i=p, {— div(u) + 5 {(y = D div(u)* + Diu’DI»u’}}. (A1.5)
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Let us now recall that the internal energy is not additive. Indeed, if we consider the
evolution of two systems S, S, the variation of internal energy of the whole system
S1 USg is:

61=511 + 812 — WM’
where Wy is the mutual work caused by the action of §; upon S, and vice versa.
In the case of the Earth, we deduce:
8= f p6,thA WM,
v

and here W) is the work due to non-local gravitational effects and possible slipping at inner
interface.

(2) Let W denote the Weingarten operator, that is the self-adjoint operator defined at each
point of the surface X, assumed to be sufficiently regular, on the space tangent T,(Z), by:

VUuET,(Z), Wu)=D,(n)ET,(Z),
divy and grady the usual divergence and gradient surface operators:
divu=divg{u — (@ - n)n}+ Du(n) * n+ (c; + co)u * n

grad po = gradspo + (grad po * n)n

where ¢, and ¢, are the principal curvatures of 2 at the considered point, i.e. the eigenvalues
of W.
Taking into account (26), it is deduced from (27):

[7°()] = — (po divy [u] + gradzps - [u])n — po W[u]
= — divs (po [u])n — po W[u].
From (26) and the definition of W, one may also deduce:
[Du(n) - nln = [Du" ()] + W[u],
so that:
(7" (0] =~ n divy(po [ul) + po [Du" (1) ~{Du(n) - n}n].
From (30) it is then straightforward that:
[t ()] = [r"(m)] — po [Du" (n) — div(u)n]
={—divg(po [u]) + po divs [u]} n

= —([u] - gradg po)n.
(3) From the definition (23) of the operator 4, it is first reduced:

(A@w)|v) = f— DA™ + off g™ )Drcu} v + plg — g0 — Qx (Qxw)}- v dv.
14
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With the help of Stoke’s formula and taking into account expressions (19a) and (23b) it
follows:

(A(u)lv)=f (" + 65 gMDu Dy vy + p{(Q2 - ) (2 - V) — 12+ v} dV
|4

+§f {(u —'f)‘(v —-v) 3 {(@ —a)- (u —u)'}{(a —a) (v —v)}} dradm’

2 Jyxy la’ —al? la" —al®

+ f [r"(n) - v] 42 (A3.1)
=

where £ comprises (33, 34) all solid—fluid (or fluid—fluid) interfaces, with unit normal n
oriented following the jump through Z.

The surface integral in (A3.1) is now to be evaluated. With the convention that the minus
sign refers always to a fluid side, we deduce with the use of (35a) and (23b):

[ () - o) = [7" () - v+ 7-(n) - [0,
[7°(0) - 0] = = (v n) dive(polu]) +po (n - {Dus(vs) — Du-(v,)}
— (v n){Dus(n) * n — Du_(n) * n}+ n +{Du_(v,) — Du_(v)})
= —divg{po[ul(v * m)}+ po [[u] -gradg (v - n)+ n+ [Du(v — (v - Wn}]l.
Taking into account the following relation:
[v] - gradz(u * )= [v— (v * ) n] - grads (u - n)
=n- [Dufv—(v-mn}} + [Wpo—(v+n)n}-ul

and the fact that the inner interfaces are closed surfaces, by Stoke’s formula it is finally
deduced:

f (7 (n) - v] d = f polllu] - grads(v - n) + [v] * gradg (u - n) —
=z z

[Wi — (u - myn}+ {v— v+ mn}]] 4%,
which substituted in (A3.1) leads to (36).

(4) Let oy be any regular scalar function the value of which is —pg in Vi and O on 9V. Let
Z denote all the interfaces where a fluid is involved and S {} the symmetric part:

S{a(u, v)} ={aly,v) + a(v, w)}/2.

Then:
f [S {div (on (Dv(u) —u div (v)})}] dV
|4
= f [on{Diu’D;v" — (D;u') (D,Ef)} +S{(Dv(u) — u div(v)) - grad op}} dV
.
= fpoS{[Dﬁ*(n)-u — (- n)div(v)]} d=
z

f pol[v].grads (. n)+ [u] .grads(v. n) — [Wu — (u. n)n} . {v—(v. n)n}]
)

+8{(u.n)[v] .gradgp,} d=. (A4.1)
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Furthermore, let us recall that:

- f {Dgd(u) + grad Y (u)} - v dm
.

=§_ {(u'—u)’(sl ~v) 3 @ - @ -u){@ - @' -v)
2 Jyxv

_ dmam’'
la' —a|? ld' —al® }

+ f{nx(szxu)}.ﬁdm

Yv

. J.Dg(;(u)‘adm~ fgrad Ve ead b f [pa grad ¥ v )] ny(u)dz
1% 14 An G E,O

- ng,; ). vdm - f grad Y () prad o ., (A4.2)
v E an G

where 2, consists of all the interfaces where p has a discontinuity and where the boundary
conditions (20) have been taken into account.

With the help of these relations (A4.1, A4.2), expression (36) for (A4 (u) | v) yields (38a).
Then, in order to obtain (38b) we just have to observe that:

div{p(u . g0) v} = p(u . &) div(v) + (. go)v . grad p + pDgg(u) . v + pgq . Du(v).
(5) First of all recall that since the first coordinate is orthogonal to the other two:
gPorY =gk, (A5.1)
g#ry = —g"' T, (A5.2)

(A5.1 may be easily obtained from the expression of the Christoffel symbols:
1
Fi’; = Egkl (0:8j; + 9,81 — 1845), and (AS.2) comes from: D;g'* = 9,g'*=0))

It is convenient to rewrite equations (22, 23):

D;Y =p6,‘l'i, where (18):
§; ¥ =0%u+ 2Qx0d,u — Dgy(u) — grad .

This yields:
gDy 7P =p8, VP — g r* 1% P rot (AS.3a)
Dy7i' = p8; ¥, g1 Dot (A5.3b)

Taking into account (53), (47) may be rewritten:

72

708 = gob {(A'~—2N'~ - ) (v, u¥+ Y u')+ ,F 71‘}
C + Opn v v C + On

+ N'g‘ﬁk’(vﬂru‘I + F‘,"7u1 Y+ (N + ar)g“7(v7uﬂ + F§37u1).
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Thus:

2

1
C'+o VaTi
N

C'+ oy
+N'gBY VoV, u® + I“,"yul)+ (N'+ op)g®” VQ(V7uB + I‘fvu’), (A5.4)

(Note that since the first coordinate is orthogonal to the other two Ff‘ﬁ is a tensor of second
order over the surfaces x* = c?.)

Furthermore (see Choquet-Bruhat et al. 1982; Doubrovine et al. 1982):
VoV, u*= v, v u’ —RMu‘S, (AS5.5)
where Ry, = R%,, is the Ricci tensor obtained by contraction of the Riemann tensor.
From the expression of the Riemann tensor:

ifki _ i i i P _1mi D
R _a,ij akr‘].,+ Fp,I‘jk pk[‘ﬂ,

and the flatness of Euclidian space one deduces:

R, =TiuTsy =TT, T (AS.6)
Substituting (A5.4) into (AS5.3a) and taking into account (A5.1, 5.2, 5.5 and 5.6) leads to
(55a).

Expressions (47) lead to:

L' L'o
¥ = ™%+ Nofor| Dt
7 1 8
L + Oyn L + 0N

This equality is not tensorial. But taking into account:

DaTm — 3a‘r°‘1 + ng{ﬁ,rﬁl + F{aTO‘I + Fil 14 F(EBT“B,

and:

3,(Dgu' )+ Ty Dgu' —~TYsD u' = v, Vu' + V(L + Thu')
+Ta(vgu' + Thub),

permits us to obtain (55b), via (A5.3b).

(6) Taking into account equilibrium of the reference configuration (57), it is not difficuit to
deduce:

S{— pDgy(u) . v+ {Du(u) — u div(v)} . grad oy}
S {~ pDgy () . v — pgs - Dv(u) + pgly - u div(v))
— (o — o7) ti(MS{D; v u’ —u'D;v'}
= pS{go . udiv(v) — v.grad (4. gg)} — (o — o) tr(W)S {Dv'u’ — u'Dp’).  (A6.1)

Using this relation and (50b), expression (38a) yields:

(A@)iv) = f bY*I DU Dy vy + pS{u. go div(v) — v . grad (u . £0)}
v
+ (UN — O'T) (Da uﬁDﬁ 50( — go‘ﬁDaulDﬁ 51 - DQUO‘DB ljﬁ

= rad Y (u) - grad Y (v
(WS {u'Dy 0° — Dgu' 58} dV - fg V@) gad y©)
E 4n GG

(A6.2)
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Furthermore from (AS.1, 5.2, 5.5, 5.6) and (61) it may be deduced that:
DouPDyv® ~ g Dou Dgvy — Dou®DyvP + tr(W)S {u' Dgv® — Dyu v
= ValuPv50* — u®V50%) + I‘{ng‘f‘ﬂu1 o' - g*V,ul v,
+5 (Va2 Fgufvt — TPu%u') —u! VP 9T )}

Thus, making use of Stoke’s formula and taking into account the lateral invariance of
{on — o) it follows that:

f (on — 07) [ DouPDgv® — g*fpu' Dgv, — Dou®Dgv®
v
+tr(W)S{u' Dgv? — Dgut VY] av
= f (6, — 0, Itr(Wuy vy — gradyuy . gradpuy — S{uyvp . grady tr(W)} ] dV.
y

Taking into account this latter relation, (A6.2) yields (64a).
Let us now consider the tensor: 7'¥ = b¥¥ D, u;. From (50) and by analogy with (46) it is
clear that:

9P = (A - 2N, Pty gPe NP, 1 = 2Ly,
S = FTI%g“ +Cn't, (A6.3)
where the tensor ;; is defined by n;; = (D;u; + D;u,)/2 and (see 52) s/ = 77 1t follows that:
biileiujDki‘_l = 7% s + 27" + 7
=(4 —2N - F*/O)| divpug + trt(W)uy|? + sy l?/C
+splP/L + 2N *P 1y, (A6.4)

Furthermore:
20 ag = v, {(€%7uP + £P7u®) (Vyuy — Thgtn)}+ V(28T u' ug)

~ulg Y Yy~ uty T+ (g%TuP 4 gPru) v, (Taptt1)

~ 2upV,(g*TTf u' )+ 2TF T gu'u,.
With the help of (A5.1, 5.2, 5.5, 5.6), (61) and Stoke’s formula we deduce that:

f 2N77°‘577aﬁ dV=— fN lur* A qur+ up . gradpdivpur + det(W)up - up
14 14

=2t (WHuytuy + 4R {uyur . gradp{te(W)} + Wuyp) . gradpu, (] dv, (A6.5)

where R { } denotes the real part.
Taking into account that:

|grad y |2

dV:j rady cu dV
s 4nG VPg Y

(see Appendix 4), and with the help of (A6.4, 6.5) and (59), (64b) may now be derived
from (64a).
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