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ABOUT THE LINDEBERG METHOD

FOR STRONGLY MIXING SEQUENCES

EMMANUEL RIO

Abstract� We extend the Lindeberg method for the central limit
theorem to strongly mixing sequences� Here we obtain a generalization

of the central limit theorem of Doukhan� Massart and Rio to nonsta�

tionary strongly mixing triangular arrays� The method also provides

estimates of the L�evy distance between the distribution of the normal�
ized sum and the standard normal�

Introduction

In this paper� we are interested in the central limit theorem for strongly
mixing and possibly nonstationary sequences of real�valued random vari�
ables� First let us recall some recent results for strongly mixing sequences�
improving on the classical results of Ibragimov ����	
� In order to state
these results� we need some more notation�

Definition �� Let �Xi
i�ZZ be a sequence of real�valued random variables
with mean zero� For any nonincreasing cadlag function H � IR� � IR�� let
H�� denote the cadlag inverse function of H � which is de�ned by

H���u
  supft � IR� � H�t
 � ug�

with the convention that sup �  �� For any real�valued random variable X
with distribution function F � we denote by QX or QF the inverse function
of t� IP�jX j � t
� We set Qi  QXi

�
If �un
n�� is a nonincreasing sequence of nonnegative real numbers�

we denote by u��
 the cadlag rate function which is de�ned by u�t
  u�t��
Throughout the sequel� u�� denotes the inverse function of this rate function
u��
�

It comes from Doukhan� Massart and Rio �����
 that the central limit
theorem for strictly stationary sequences with strong mixing coe�cients
��n
n�� holds under the integral condition

Z �

�

����x
Q�
��x
dx ��� �I��
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�� EMMANUEL RIO

When X� satis�es the moment assumption IE�jX�jr
 � �� condition
�I��
 holds as soon as X

n��

n���r��	�n ��� �I�	


�I�	
 improves on Ibragimov�s condition
P

n�� �
r��r��	
n � �� Moreover�

from a paper of Bolthausen �����
 dealing with rates of convergence in the
central limit theorem for Markov chains on a countable space� we believe
that �I�	
 cannot be improved for strongly mixing Markov chains�

The aim of this paper is� �rst to extend the central limit theorem for
strongly mixing sequences to a central limit theorem for triangular arrays�
and second to obtain rates of convergence in the central limit theorem� We
refer the reader to Bergstr�om ����	
� Krieger �����
 and Samur �����
 for
the central limit theorem for ��mixing triangular arrays with stationary
rows and to Tikhomirov �����
 and G�otze and Hipp �����
 for rates of con�
vergence and asymptotic expansions in the central limit theorem for mixing
sequences� Let us also mention the recent works of Peligrad and Utev �����

and Peligrad �����
� which improve the previous results for triangular ar�
rays�

The proofs of central limit theorems for mixing sequences often are
based either on Gordin�s theorem �����
 �see Hall and Heyde �����
� or on
the Bernstein�s method �see Ibragimov and Linnik �����
�� Unfortunately
the extension of these techniques to nonstationary sequences is quite deli�
cate� So� in order to obtain central limit theorems for triangular arrays� we
will adapt the Lindeberg method �see Lindeberg ��		� to strongly mixing
sequences� Up to our knowledge� the Lindeberg method was �rst used in
the setting of strongly mixing processes by Doukhan and Portal �����a
 �see
also Doukhan and Portal �����
�� They studied the rates of convergence
in the multidimensional central limit theorem and extended some estimates
of Yurinskii �����
 to mixing sequences� Next Doukhan� Le�on and Portal
������
 and �����
� obtained some related results for Hilbert space valued
stationary mixing random variables� This method has two main advantages�
it leads to optimal conditions concerning the tail ditributions of the random
variables and it gives precise estimates of the L�evy distance between the
distribution of the normalized sum and the standard normal distribution for
stationary and strongly mixing sequences�

Let us now recall the Lindeberg central limit theorem for independent
summands� Let �Xin
i����n� be a triangular array of independent square�
integrable random variables with mean zero� normalized in such a way that
Var�X�n� � � ��Xnn
  �� Let Snn  X�n� � � ��Xnn� Then Snn converges
in distribution to a standard normal distribution if� for any positive ��

nX
i
�

IE�X�
in�IjXinj��
� � as n���

which is equivalent to

nX
i
�

Z �

�

Q�
Xin

�x
�QXin
�x
 � �
dx� � as n��� �I��
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In a recent note concerning moment inequalities for stationary strongly mix�
ing sequences �see Rio �����
�� we prove that� for any p � 	� the moment
condition

Mp���Q�
 

Z ���

�

�����x		
Q��x


p dx

����x		

��

is su�cient to imply a Rosenthal type inequality of order p �see Rosen�
thal �����
 for these inequalities in the independent setting�� Hence we
obtain a generalization of the classical moment inequalities by replacing
Q� by �

���x		
Q��x
 and the Lebesgue measure by the weighted measure
dx	����x		
� Exactly in the same way� we will obtain a generalization of
the Lindeberg condition to strongly mixing sequences by replacing QXin

by
����x		
QXin

and dx by dx	����x		
 in �I��
� Since the Lindeberg method
provides estimates of the error between the characteristic function of the nor�
malized sum and the characteristic function of the standard normal� we also
obtain upper bounds on the L�evy distance between the distributions func�
tions in the stationary case� via Esseen�s inequality �����
� In particular� if
M������Q�
 is �nite for some 
 � �

p
� 	 �
		� we obain an upper bound of

the order of n�����

�� The main results

Definition �� For any two ��algebras A and B in ��� T � IP
� let
��A�B
  sup

�A�B	�A�B
jIP�A 
B
 	 IP�A
IP�B
j ����


denote the strong mixing coe�cient introduced by Rosenblatt �����
� The
strong mixing coe�cients ��n
n�� of the sequence �Xi
i�ZZ are de�ned by

�n  sup
k�ZZ

��Fk�n�Gk
� ���	


where Fl  ��Xi � i � l
 and Gl  ��Xi � i � l
� We make the convention
that ��  �	��

Throughout the section� Q is any nonincreasing function from ��� �� into
IR� such that Q � supi�� Qi�

Let us recall some basic covariance inequalities for strongly mixing se�
quences� improving on the covariance inequalities of Davydov �����
� By
Theorems ��� and ��	 in Rio �����
� the following upper bounds on the
variance of the partial sums of strongly mixing sequences hold�

Proposition �� Let �Xi
i�ZZ be a sequence of real�valued random vari�
ables with �nite variance and mean zero� Let the strong mixing coe�cients
��n
n�� be de�ned by ��  �	� and

�n  sup
k�ZZ

��Fk�n� ��Xk
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for any positive n� Then� for any integers s and t such that s � t�

jCov�Xs� Xt
j � 	

Z ��t�s

�

Qt�x
Qs�x
dx� �a


Let Sn  X� � � � ��Xn� Then

VarSn �
X

�s�t	����n��
jCov�Xs� Xt
j � �

nX
i
�

Z ���

�

�����x		
� n�Q�
i �x
dx� �b


where ��� denotes the inverse of the mixing rate function associated with
the strong mixing coe�cients ��n
n���

Suppose that

M����Q
 

Z ���

�

����x		
Q��x
dx � ��� ����


Then
n��VarSn � �M����Q
� ����


Hence� if �Xi
i�ZZ is strictly stationary� the series
P

t�ZZCov�X�� Xt
 is ab�
solutely convergent to some nonnegative number ���

lim
n��� n��VarSn  �� and �� �

X
t�ZZ

jCov�X�� Xt
j � �M����Q
� �c


The main results are the following estimates of the nearness of the charac�
teristic function of the normalized sum and of the characteristic function of
the standard normal�

Theorem �� Let �Xi
i�ZZ be a strongly mixing sequence of real�valued
random variables with �nite variance and mean zero� Suppose that Xi  �
a�s� for any i 	� ��� n�� Let �k�t
  IE�exp�itSk

�

V�  �� Vk  VarSk and V �n  sup
k����n�

Vk� ����


�i� For any nonnegative quantile function Q and any positive t� let

M����Q� t
 

Z �

�

����x		
Q��x
�t����x		
Q�x
� �
dx�

Then� for any real t�

j exp�Vnt�		
�n�t
	 �j � ��t� exp�V �n t
�		


nX
k
�

M����Qk� jtj
�

�ii� Suppose furthermore that �Xi
i�ZZ ful�lls condition �	�
�� Then� for
any real t�

j exp�Vnt�		
�n�t
	 �j � ��
p
	 � �
t�M����Q� jtj


nX
k
�

exp�Vkt
�		
�
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Remark �� It comes from Proposition 	 in section 	 that Theorem � and
Corollary � may be obtained under the following weaker de�nition of the
strong mixing coe�cients�

�n  sup
k�ZZ

sup
�p��p�	�IN�

��Fk�n� ��Xk�p�� Xk�p�

� ����


Consequently some upper bounds on these mixing coe�cients would be of
interest�

�i
 is a result generalizing Lindeberg�s one �see Lindeberg ���		
� to
strongly mixing sequences� So� our main application of �i
 is the following
central limit theorem for strongly mixing triangular arrays�

Corollary �� Let �Xin
n���i����n� be a double array of real�valued random
variables with �nite variance and mean zero� Let ��k�n
k�� be the sequence
of strong mixing coe�cients of the sequence �Xin
i����n� and ����n	 be the

inverse function of the the associated mixing rate function� We set

Sin  X�n � � � ��Xin and Vi�n  VarSin�

Suppose furthermore that

lim sup
n��

max
i����n�

�Vi�n	Vn�n
 ��� �a


Let Qi�n  QXin
� Then Snn converges to the standard normal distribution

if

V ����n�n

nX
i
�

Z �

�

����n	�x		
Q
�
i�n�x
 inf��

��
�n	�x		
Qi�n�x
�

p
Vn�n
dx 	� � �b


as n tends to ��

Remark �� Note that �k�n  � for amy k � n� which implies that
����n	�x		
 � n for any positive x�

Application �� Let �i
i�ZZ be a strictly stationary and strongly mixing
sequence of real�valued random variables with mean zero� satisfying the
condition M����Q��
 � �� Let �ain
i����n� be a triangular array of real
numbers such that

nX
i
�

a�in  � and lim
n��

max
i����n�

jainj  ��

We set Xin  aini� Then� by �b
 of Proposition ��

VarSkn � �
nX
i
�

a�inM����Q�i
 � �M����Q��
�
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This inequality ensures that Corollary ��a
 is equivalent to lim infn Vn�n � ��
Consequently� if �a
 holds� condition �b
 of Corollary � is ensured by the
mixing condition

nX
k
�

a�kn

Z �

�

����x		
Q�
��
�x
�jaknj����x		
Q���x
� �
dx 	� ��

as n � �� where ��� stands for the inverse function of the strong mixing
rate function of �i
i�ZZ� Since maxi����n� jainj tends to zero as n � ��
Lebesgue dominated convergence theorem lets us prove that the above ex�
pression converges to zero� Hence the CLT for Snn holds� which generalizes
�c
 of Theorem 	�	 of Peligrad and Utev �����
�

Let us now give some applications of Theorem ��ii
 to Berry�Esseen
type estimates� Let the class � of two times di�erentiable Orlicz functions
be de�ned by �

� 
�
� � IR� � IR�� � convex� ���
  ����
  ��

��� nondecreasing� concave
�
� ����a


For any � in �� we de�ne the weighted moments M	���Q
 by

M	���Q
 

Z ���

�

������x		
Q�x


����x		


dx ����b


If ��x
  xr � we set M	���Q
 Mr���Q
�
When �Xi
i�ZZ is a strictly stationary sequence verifying ����
 and the

additional condition

�� 
X
t�ZZ

Cov�X�� Xt
 � �� ����


the central limit theorem holds �see Doukhan� Massart and Rio �����
��
More precisely Sn	�

p
n converges to a standard normal distribution� We

then get the following estimates of the L�evy distance for partial sums of a
stationary sequence as a by�product of Theorem ��ii
�

Theorem �� Let �Xi
i�ZZ be a strictly stationary sequence of real�valued
random variables with mean zero and �nite variance satisfying �	�
� and
�	���� Let the sequence of strong mixing coe�cients be de�ned by �	���� Let
� denote the d�f� of a standard normal�
�i� For any 
 in ��� �� such that

 ������Q
  sup
x��������

x

����x

�����x
Q�x

��� ��� ����


we have 

!n  sup
x�IR

jIP�Sn � x�
p
n 
	��x
j  O�n���� � n�����	������	
�
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�ii� Suppose that M����Q
 ��� Then

sup
x�IR

jIP�Sn � x�
p
n 
	 ��x
j  O�n����
�

�iii� Suppose that M	���Q
 �� for some function � in � verifying ��x
 
x��log x
p for some positive p as x� ��� Then

sup
x�IR

jIP�Sn � x�
p
n 
	 ��x
j  O

�
�logn
�p

�
�

Remark �� Note that the moment condition M������Q
 � � is stronger
than ����
� Moreover it comes from the lower bouds of Tikhomirov �����

that �i
 of Theorem 	 is nearly optimal when 
 � �	� �p

�
		�

Application ��

�a� Bounded random variables� Assume that kX�k� ��� Then ����

holds if and only if �n  O�n����
� In that case� Theorem 	�i
 yields
!n  O�n����
 if 
 � �	� �p

�
		 and !n  O�n�����	������	
 otherwise�
which improves on Theorem � of Tikhomirov �����
� Now M����Q
 is �nite
if and only if

P
n�� n�n ��� Then� by �ii
 of Theorem 	� !n  O�n����
�

Under the weaker condition M	���Q
 � � for some � in � such that
��x
  x��log x
p� Theorem 	�iii
 yields !n  O��logn
�p
 under the con�
dition

P
n���logn


p�n � �� Note that the loss between this condition
and Ibragimov�s condition for the central limit theorem

P
n�� �n � � �see

Ibragimov and Linnik �����
 for the CLT� is logarithmic�

�b� Conditions on the tail function� Suppose that� for some � � 	�
IP�jX�j � u
  O�u�

� Then

 
�Q
  sup
u������

u��
Q�u
 ���

and  ������Q
 is �nite for 
 � � 	 	 if �n  O�n�
����	��
����	
� while
the condition M����Q
 � � needs � � � and the summability conditionP

n�� n�
����

n ���

�c� Moment conditions� Suppose that� for some r � �� IE�jX�jr
 � ��
Then� by the H�older inequality applied on ��� ���M����Q
 is �nite if

X
n��

n�r��	��r��	�n ���

Under this mixing condition� Theorem 	�ii
 yields !n  O�n����
� However�
Bolthausen ����� and ���	
 obtains !n  O�n����
 for Harris recurrent
Markov chains under the same mixing condition�

�d� Exponential mixing rates� Assume that the mixing coe�cients sat�
isfy �n  O�an
 for some a in ��� ��� Then Theorem 	 in Tikhomirov �����

yields

!n  O�n�����logn
���


ESAIM � P�S December ����� Vol��� pp���	
�



�	 EMMANUEL RIO

under the moment assumption IE�jX�j���
 ��� for any 
 ���� ��� If 
 � ��
one can use the Stein�Tikhomirov method to obtain !n  O�n����
 under
the moment condition

IE�jX�j����log� jX�j
���
 ��� �����


For geometric rates of mixing� �����
 is equivalent toM������Q
 ��� Since
this condition is stronger than ����
� �i
 of Theorem 	 slightly improves on
the Stein�Tikhomirov method if 
 � �

p
� 	 �
		� However� Theorem 	 of

Tikhomirov �����
 yields much more better rates if 
 � �
p
�	 �
		�

For geometric rates of mixing� the condition IE�X��log� jX j
p
 � � is
equivalent to the condition M	���Q
 �� of �iii
 with ��x
  x��log x
p���
Thus �iii
 of Theorem 	 yields !n  O��logn
��p
� which improves on Corol�
laire � of Bulinskii and Doukhan �����
 in the special case of sequences�

�� The Lindeberg method for strongly mixing sequences�

In this section� we generalize the Lindeberg method to strongly mixing
sequences� The main step of this extension is Proposition 	 below� This
proposition is applied to obtain estimates of the characteristic function of a
sum of mixing random variables� In section �� we give an application of this
proposition to moment inequalities for sums of non identically distributed
random variables�

Definition �� Let F�b�� b�
 be the class of real�valued two times continu�
ously di�erentiable functions f such that kf ��	k� � b� and kf ��	kL � b��
where kf �i	k�  supx�IR jf �i	�x
j and

kf �i	kL  sup
�x�y	�IR�

x	
y

jf�x
	 f�y
j
jx	 yj �

Let

vk  Vk 	 Vk��  IE�X�
k
 � 	

k��X
i
�

IE�XkXi
�

�In the weak dependence setting� vk may fail to be nonnegative
� We set

"��k  sup
f�F�b��b�	

jIE�f�Sk�� �Xk
	 f�Sk��
	 vk
	
f ���Sk��

j�

The main step of the proof of Theorem � is the following upper bound for
"��k�

Proposition �� Let �Xi
i�ZZ be a sequence of real�valued random variables
with �nite variance and mean zero� Suppose that Xi  � a�s� for any i � ��
Let the sequence ��n
n�� of strong mixing coe�cients of �Xi
i�ZZ be de�ned
by �	���� Let u be any real in ��� �		� and p  ����u		
� We set

Mk�x
 
k��X
i
�

Qk�i�x
�Ix���i
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and

M �
k�x� u

 

p��X
i
�

p��X
l
�

Qk�i�x
Qk�i�l�x
�Ix����i
�l	�

Then

"��k � �b�

Z u

�

Mk�x
Qk�x
dx� �b�

Z �

�

M �
k�x� u
Qk�x � u
dx �a


and

nX
k
�

"��k � 	�
nX

k
�

Z �

�

�����x		
� n�Q�
k�x
 inf�b�� b���

���x		
� n�Qk�x

dx�

�b

Proof� Throughout the proof� we make the convention that Si  � for any
i � �� We set

Mk�x� u
 

p��X
i
�

Qk�i�x
�Ix���i and #Xk  �Xk�Qk�u

��	Qk�u

� �	�	


We start by the proof of �a
� By the Taylor integral formula�

f�Sk
	 f�Sk��
	 f ��Sk��
Xk  Xk

Z �

�

�f ��Sk�� � vXk
	 f ��Sk��

dv

 Xk

Z �

�

�f ��Sk�� � vXk
	 f ��Sk�� � v #Xk

dv

�Xk
#Xk

Z �

�

Z �

�

vf ���Sk�� � vv� #Xk
dvdv
�� �	��


The �rst term on right hand is bounded up by b�jXk�Xk	 #Xk
j		� Moreover
���
Z �

�

Z �

�

vf ���Sk�� � vv� #Xk
dvdv
� 	 �

	
f ���Sk��


��� � b�
�
j #Xkj�

Since

IEjXk�Xk 	 #Xk
j 
Z u

�

Qk�x
�Qk�x
	Qk�u

dx� �	��


it follows that

jIE�f�Sk
	 f�Sk��
	 f ��Sk��
Xk 	 �

	
f ���Sk��
Xk

#Xk
j �
b�
	

Z u

�

Qk�x
�Qk�x
	 Qk�u

dx�
b�
�

Z ���

�

Q�
k�x
Qk�x � u
dx� �	��


Now we control the second order term� Let $k�i  f ���Sk�i
 	 f ���Sk�i��
�
Clearly

f ���Sk��
Xk
#Xk 

p��X
i
�

$k�iXk
#Xk � f ���Sk�p
Xk

#Xk�
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Since j$k�ij � b�jXk�ij� it follows from Proposition ��a
 applied to X  $k�i
and Y  Xk

#Xk that

jCov�$k�i� Xk
#Xk
j � 	b�

Z ��i

�

Qk�i�x
Qk�x
Qk�x� u
dx�

Noting that 	�p � u� we also get that

jCov�f ���Sk�p
� Xk
#Xk
j � 	b�

Z u

�

Qk�x
Qk�x � u
dx�

Hence

�

	
jCov�f ���Sk��
� Xk

#Xk
j �
Z ���

�

�b��Mk�x� u
	Qk�x

 � b��Ix�u
Qk�x
Qk�x � u
dx� �	��


which together with �	��
 and �	��
 implies that

jIE�f�Sk�� �Xk
	 f�Sk��
	 f ��Sk��
Xk
	 �

	
IE�f ���Sk��

IE�X�

k
j �

b�

Z u

�

Q�
k�x
dx� b�

Z �

�

Mk�x� u
Qk�x
Qk�x � u
dx� �	��


It remains to give an estimate of the expectation of f ��Sk��
Xk� Clearly

IE�f ��Sk��
Xk
 
k��X
i
�

Cov�f ��Sk�i
	 f ��Sk�i��
� Xk
� �	��


In order to estimate the terms in �	��
� we need the following general prin�
ciple� due to Fr�echet ������ ����
 and Bass �����
�

Lemma �� Let Z�� ��� Zm be nonnegative random variables with respective
quantile functions QZ�

� ��� � QZm � Then

IE�Z����Zm
 �
Z �

�

QZ�
�x
���QZm�x
dx�

Remark �� Actually Fr�echet gives a complete proof in the case m  	�
However� the proof uses the same arguments in the general case�

Let us also state the following by�products of Lemma �� which will be
used later on � with the same notations as in Lemma ��

Z �

�

QZ�Z�
�x
QZ�

�x
���QZm�x
dx �
Z �

�

QZ�
�x
QZ�

�x
���QZm�x
dx �	��a
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and
Z �

�

QZ��Z�
�x
QZ�

�x
���QZm�x
dx �
Z �

�

�QZ�
�x
 �QZ�

�x

QZ�
�x
���QZm�x
dx� �	��b


Proof of ������ Let U be a random variable uniformly distributed on ��� ���
Then� for any nonnegative r�v� T � QT �U
 has the same distribution as
T � Consequently� by Lemma A� of Berkes and Philipp �����
� one can
construct random variables T�� ���� Tm on another probability space such that�
�T�T�� T�� � � � � Tm
 has the same distribution as �QZ�Z�

�U
� QZ�
�U
� � � �
 and

�T�� T�
 has the same law as �Z�� Z�
� So� by Lemma �� we have

Z �

�

QZ�Z�
�x
QZ�

�x
���QZm�x
dx  IE�T�T����Tm


�
Z �

�

QZ�
�x
QZ�

�x
���QZm�x
dx�

The proof of �	��b
 is omitted� tu
For any i � p� 	�i � u� So� noting that

jf ��Sk�i
	 f ��Sk�i��
j � b�jXk�ij�
we have� by Proposition ��a
�

�	���
 jCov�f ��Sk�i
	f ��Sk�i��
� Xk
j � 	b�

Z u

�

�Ix���iQk�i�x
Qk�x
dx�

From now on� we assume that i � p� Let us replace Xk by #Xk� Applying
Proposition ��a
� we get that

jCov�f ��Sk�i
	f ��Sk�i��
� Xk 	 #Xk
j �
	b�

Z u

�

�Ix���iQk�i�x
�Qk�x
	 Qk�u

dx� �	���


Now
f ��Sk�i
	 f ��Sk�i��
	 f ���Sk�i��
Xk�i  Rk�i�

where Rk�i is Fk�i�measurable and jRk�ij � b�X
�
k�i		� Consequently� by

Proposition ��a
� we have�

jCov�Rk�i� #Xk
j � b�

Z ��i

�

Q�
k�i�x
Qk�x � u
dx� �	��	


In order to estimate the term Cov�f ���Sk�i��
Xk�i� #Xk
� we introduce the
decomposition below�

f ���Sk�i��
 
i��X
l
�

�f ���Sk�i�l
	 f ���Sk�i�l��

 � f ���Sk��i
�
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By Proposition ��a
 applied with X  $k�l�iXk�i and Y  Xk together
with Lemma � and �	��a
�

jCov�$k�l�iXk�i� #Xk
j � 	b�

Z ��i

�

Qk�i�l�x
Qk�i�x
Qk�x � u
dx� �	���


Next� by Lemma � applied to independent r�v��s�

jIE�f ���Sk��i
Xk�i
IE� #Xk
j � b�

Z u

�

�Ix���iQk�i�x
�Qk�x
	Qk�u

dx

�	���

�because IE� #Xk
  IE� #Xk 	Xk
 and u � 	�i
�

As a second step� we bound up jCov�f ���Sk��i
� Xk�i #Xk
j� Clearly

f ���Sk��i
 
p��X
l
i

$k�l�i � f ���Sk�i�p
�

Now� by Proposition ��a
 applied with X  $k�l�i� Y  Xk�i #Xk and �	��a


jCov�$k�l�i� Xk�i #Xk
j � 	b�

Z ��l

�

Qk�i�l�x
Qk�i�x
Qk�x � u
dx� �	���


Noting that 	�p � u � 	�i� applying both �a
 of Proposition � with X 
f ���Sk�i�p
� Y  Xk�i #Xk and �	��a
� we also get that

jCov�f ���Sk�i�p
� Xk�i #Xk
j � 	b�

Z u

�

�Ix���iQk�i�x
Qk�u
dx� �	���


Adding the inequalities �	���
� �	���
� �	��	
� �	���
� �	���
� �	���
 and �	���

and summing on i and l� we then get �

jIE�f ��Sk��
Xk
	
p��X
i
�

IE�f ���Sk��i

IE�Xk�i #Xk
j �

�b�

Z u

�

�Mk�x
	Qk�x

Qk�x
dx�

	b�

Z �

�

�M �
k�x� u
	Mk�x� u
Qk�x

Qk�x� u
dx� �	���


It remains to bound up

Dk 

p��X
i
�

IE�f ���Sk��i

IE�Xk�i #Xk
	
k��X
i
�

IE�f ���Sk��

IE�Xk�iXk
�

We �rst note that� by Proposition ��a
�

X
i�p

jIE�f ���Sk��

IE�Xk�iXk
j � b�
X
i�p

jIE�Xk�iXk
j

� b�

Z u

�

X
i�p

�Ix���iQk�i�x
Qk�x
dx� �	���
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Next� noting that u � 	�i for all i � p and applying Lemma �� we get that

p��X
i
�

jIE�f ���Sk��

IE�Xk�i�Xk 	 #Xk

j �

b�

Z u

�

p��X
i
�

�Ix���iQk�i�x
�Qk�x
	Qk�u

dx� �	���


In order to bound up the last term� we still write

IE�f ���Sk��
	 f ���Sk��i

IE�Xk�i #Xk
 
�i��X
l
�

IE�$k�l
IE�Xk�i #Xk
�

Both this decomposition� Lemma � and �	��a
 then yield �

p��X
i
�

jIE�f ���Sk��
	f ���Sk��i

IE�Xk�i #Xk
j

� b�

p��X
i
�

�i��X
l
�

Z ��i

�

Qk�l�x
Qk�i�x
Qk�x � u
dx

� 	b�

Z �

�

M �
k�x� u
Qk�x � u
dx� �	�	�


Hence

jIE�Dk
j � 	b�

Z �

�

M �
k�x� u
Qk�x�u
dx� b�

Z u

�

Mk�x
Qk�x�u
dx� �	�	�


�	�	�
 and �	���
 together with �	��
 then yield �a
�

tu
Starting from Proposition 	�a
� we now prove �b
� This will be done via a
more tractable upper bound for M �

k�x� u
� By the Minkowski inequality�

Qk�i�x
Qk�i�l�x
 � �

	
�Q�

k�i�x
 � Q�
k�i�l�x

�

Hence

	M �
k�x� u
 �

p��X
i
�

Q�
k�i�x
�Ix���i

p��X
l
�

�Ix���l�

�p��X
m
�

Q�
k�m�x


p��X
i
�

�Ix����i
�m�i	�

Let q�m
  m 	 �m		�� square brackets designating the integer part� as
usual� The inequality �i � �m�i � �q�m	 lets us show that

p��X
i
�

�Ix����i
�m�i	 � �����x		
� p��q�m	�
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Hence

M �
k�x� u
 � �����x � u
		


k��X
m
�

Q�
k�m�x
�Ix���q�m�

�

Let ��x
  inf�b�� b�x
� Let the real u be de�ned in such a way that

b��
���u�		
Qk�u

�
 � b� � b��
���u		
Qk�u
� �	�		


With the above choice of u�

b�M
�
k�x� u
Qk�x � u
 �

k��X
m
�

Q�
k�m�x
�Ix���q�m�

������x		
Qk�x

� �	�	�


Since � is a nondecreasing function�

Q�
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���x		
Qk�x

 �
Q�
k�x
���

���x		
Qk�x

 �Q�
k�m�x
���
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Consequently the inequality �	�	�
 lets us show that

b�M
�
k�x� u
Qk�x � u
 � 	����x		
Q�

k�x
���
���x		
Qk�x



�
k��X
m
�

Q�
k�m�x
���

���x		
Qk�m�x

�Ix���q�m�
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In the same way� one can prove that

Mk�x
Qk�x
 � ����x		
Q�
k�x
 �

k��X
m
�

Q�
k�m�x
�Ix���m � �	�	�


Hence� combining Proposition 	�a
 with �	�	�
� �	�	�
 and �	�		
� we get
Proposition 	�b
� tu

We now �nish the proof of Theorem �� Let �k denote the characteristic
function of Sk and t be some positive real� We now apply Proposition 	�b

to the functions x� cos tx and x� sin tx� yielding

nX
k
�

j�k�t
	 ��	 vkt
�

	

�k���t
j �

��t�
nX

k
�

Z �

�

����x		
Q�
k�x
�t�

���x		
Qk�x
 � �
dx� �	�	�


In order to introduce the characteristic function of the normal distri�
bution� we need to control j exp�	vkt�		
 	 �� 	 vkt

�		
j� By Proposition
��a
�

jvkj � �
k��X
i
�

Z �

�

Qk�x
Qk�i�x
dx � ��xk � yk
� �	�	�
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where

xk 

Z uk

�

Qk�x
Mk�x
dx� yk 

Z �

�

Qk�x � uk

pk��X
i
�

Qk�i�x
�Ix���idx�

pk  ����uk		
 and uk is the positive real such that

t����uk		
Qk�uk
 � � � t����u�k 		
Qk�u
�
k 
�

Let v be any real and x� y be positive numbers such that jvj � x� y� It is
not di�cult to check that

exp�v
	 �	 v � �x� y�		
 sup��� exp�v

� �	�	�


Applying �	�	�
 to v  	v�kt�		� x  	xkt� and y  	ykt
�� we obtain �

j exp�	vkt�		
	��	vkt�		
j � 	t� sup��� exp�	vkt�		

�xk�ykt�
� �	���

Now� by �	��a
�

ykt
� �

Z �

�

t�Q�
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pk��X
i
�

pk��X
j
�

Qk�i�x
Qk�j�x
�Ix����i
�j	dx

� 	

Z �

�

t�Q�
k�x � uk
M �

k�x� uk
dx

� 	

Z �

�

tQk�x � uk
M �
k�x� uk
dx �	���


�because tQk�x � uk
 � �	�����x � uk
		
 � �
� Hence� arguing as in the
proof of of Proposition 	�b
� we get that

	t�
nX

k
�

�xk � ykt
�
 � 	�t�

nX
k
�

M����Qk� t
� �	��	


The relations �	�	�
� �	���
 and �	��	
 show that

nX
k
�

��� exp�Vkt�
	

�
�k�t
	 exp

�Vk��t�
	

�
�k���t


���

� ��t� sup
k����n�

exp
�Vkt�
	

� nX
k
�

M����Qk� t


� ��t� exp
�V �n t�

	

� nX
k
�

M����Qk� t
� �	���


which concludes the proof of Theorem ��i
�

Now� under the assumption ����
� by Proposition 	 �a
�

j�k�t
	 ��	 vkt
�

	

�k���t
j � �

p
	t�M����Q� t
�
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Now� appying �	���
 and arguing as in the proof of �	��	
� we get�

j exp�	vkt�		
	 ��	 vkt
�		
j � �t�M����Q� t
��� exp�	vkt�		

�

Hence
��� exp�Vkt�

	

�
�k�t
	 exp

�Vk��t�
	

�
�k���t


��� �
�t�M����Q� t


�
�� � 	

p
	 
 exp

�Vkt�
	

�
� exp

�Vk��t�
	

��
�

therefore completing the proof of �ii
 tu

�� Berry�Esseen type estimates�

Throughout� the letter C is used to denote a constant �depending on
the parameters
 whose value may change from line to line�

Proof of Theorem �� We start by replacing the initial random variables by
three independent blocks each of length n	�� In order to give an estimate
of the nearness of the characteristic functions� we will prove the following
lemma�

Lemma �� Let �Xi
i�ZZ be a sequence of real�valued random variables sat�
isfying the assumptions of Theorem � and Q  �� supi��Qi� Then� for any
integer l in ��� n� and any positive t�

jIE�exp�itSn

	 IE�exp�itSl

IE�exp�it�Sn 	 Sl

j � ��tM����Q� jtj
�

Proof� We may w�l�o�g� assume t � �� Set

"  IE�exp�itSn

	 IE�exp�itSl

IE�exp�it�Sn 	 Sl


�

Let u be de�ned by

t����u		
Q�u
 � � � t����u�		
Q�u�
� ����


Let p  ����u
� We have �

" 
lX

k
�

pX
j
�

Cov
�
eitSk 	 eitSk�� � eit�Sn�Sl�j 	��	 eitXl�j 


�

�
lX

k
�

Cov
�
eitSk 	 eitSk�� � eit�Sn�Sl�p	

�
� ���	


where Cov�X� Y 
  IE�XY 
 	 IE�X
IE�Y 
� Now it follows from proposi�
tion � that� if X and Y are complex�valued random variables such that
����X
� ��Y 

 � ��

jIE�XY 
	 IE�X
IE�Y 
j � �

Z ��

�

QX�x
QY �x
dx� ����
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where QX is de�ned exactly as in Proposition � �to prove this fact� note
that the quantile functions of the imaginary part and the real part of X
are less than QX and apply Proposition ��a
 to each of the components of
the product
� The above inequality and ����
 together with the elementary
inequality j exp�itXm
	 �j � jtXmj yield

" � �t�
lX

k
�

pX
j
�

Z ��j�k

�

Q��x
dx� �t
lX

k
�

Z ��p�k

�

Q�x
dx

� �t

Z �

�

�t�����x � u
		
Q�x� u
 � �Ix�u
����x		
Q��x
dx� ����


Together with ����
� it implies Lemma 	� tu
Now let us divide n by � � n  �m� r for some r in f�� �� 	g� Set

�n��  �m� �n���t
  IE
�
eit�S�m�Sm	

�
� �n���t
  IE

�
eit�Sn�S�m	

�
� ����


By Lemma 	 applied twice�

j�n�t
	
�Y

i
�

�n�i�t
j � �	tM����Q� jtj
� ����


Since �Xi
i�ZZ is a weakly stationary sequence verifying ����
�

lim
k��

vk  �� � �� ����


It follows that there exists some positive integer n� such that� for any n � n�
and any k in ��� n��

�

	
�Vn 	 Vk
t

� � �n	 k

��t�

�
� ����


Hence� by Theorem ��ii
�

j�n�t
	 exp�	Vnt�		
j � ��
p
	 � �
�nt� � ����
M����Q� jtj
� ����


Let �n�i  	���	n�i��
� It follows from ����
 and ����
 that

j�n�i�t
	 exp�	�n�it�		
j � C�nt� � ���
M����Q� jtj
 �����


for any n � �n� � �� For sake of brevity� we set M����Q� jtj
  M����t
�
Both �����
 and ����
 applied with k  � imply that

���
�Y

i
�

�n�i�t
	
�Y
i
�

exp�	�n�it�		

��� �

C�nt� � �
�M�
����t
 �M����t
 exp�	m��t�	�

� �����
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where C is some positive constant depending only on �� Let V 
P�

i
� �n�i
�note that V � n��		 for n large enough
� ����
 and �����
 let us show that

j�n�t
	 exp�	V t�		
j �
CM����t
�inf��� nt

�
�exp�	m��t�	�
 �M�
����t

 � t
� ����	


Let Fn denote the distribution function of Sn� By ����	
 and Theorem 	� p�
��� in Petrov �����
�

sup
x�IR

jFn�x
	��x	
p
V 
j � C

� �

T
p
V
� TM����T 
�

Z T

�

�nt� � �
�M����t
 exp�	m��t�	�
 �M�
����t



dt

t

�
� �����


Now� if M����Q
 ��� M����t
 � tM����Q
� Hence� by �����
�

sup
x�IR

jFn�x
	 ��x	
p
V 
j � C

� �

T
p
V
� T � � T � �

�

�
p
n

�
� �����


�����
 applied with T  n��� then yields �

sup
x�IR

jFn�x
	��x	
p
V 
j  O�n����
� �����


In order to prove �i
� we note that M����t
  O�t�
 under assumption
����
 �see Appendix�� Hence� by �����
�

sup
x�IR

jFn�x
	 ��x	
p
V 
j � C

� �

T
p
V
� T ��
����	 � �n��
����

�
� �����


First� if 
 � �		� �
 � � � 
� and applying �����
 with TM���  n�������	�
we get �

sup
x�IR

jFn�x
	 ��x	
p
V 
j  O�n���� � n��������	
  O�n����
� �����


Secondly� if 
 � �		� �
 � � � 
� and applying �����
 with TM��� 
n��������	� we get �

sup
x�IR

jFn�x
	 ��x	
p
V 
j  O�n���� � n�����	������	
� �����


To prove �iii
� we note that� since M����t
 is a nondecreasing function
of t� �����
 yields

sup
x�IR

jFn�x
	 ��x	
p
V 
j � C

� �

T
p
V
� TM����T 
 �M����n

����


�

Z T

��
p
n

�M����t
 exp
�
	m��

t�

�

�
�M�

����t


dt

t

�
�����
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for any T � n����� Under the assumptions of �iii
� some elementary calcula�
tions let us show thatM����t
  O�j log tj�p
 �see Appendix�� which together
with �����
 and the elementary inequality

Z T

n����

M����t
 exp
�
	m��

t�

�

�dt
t
� C�logn
�p ���	�


ensures that

sup
x�IR

jFn�x
	 ��x	
p
V 
j �

C
� �

T
p
V
� TM����T 
 � j logT j��p log�nT �
 � j lognj�p

�
� ���	�


Setting T  n�����logn
p in ���	�
� we then get �

sup
x�IR

jFn�x
	��x	
p
V 
j  O��logn
�p
� ���		


Taking into accounts �����
� �����
 and ���		
� it only remains to prove
that

sup
x�IR

j��x�pn
	 ��x
p
V 
j  O�M����n

����

� ���	�


To prove ���	�
� it is su�cient to use the estimate

���
r

V

n��
	 �
���  O�M����n

����

 ���	�


and standard calculations on the Gaussian distribution function� Now

���
r

V

n��
	 �
��� � �

n��
jV 	 n��j � �

n��

X
i�ZZ

�jij � n
jCov�X�� Xi
j� ���	�


Since Q � �� we have� by Proposition ��a
�

�

n

X
i�ZZ

�jij � n
jCov�X�� Xi
j � �

n

Z �

�

����x		
Q��x
�����x		
Q�x
� n�dx

� �M�����	n
�

which� together with ���	�
� implies ���	�
� tu

�� Moment inequalities for strongly mixing sequences�

In this section� we derive Rosenthal type inequalities for moments of
partial sums from Proposition 	� These inequalities generalize the mo�
ment inequalities of Rio �����
 to nonstationary sequences or stationary
sequences in the degenerate case� The main interest of these inequalities
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is that they give the right bound for integrated moments of nonparamet�
ric estimations �see for example Doukhan and Portal �����b
 and Doukhan
�����

� These inequalities improve the previous inequalities of Doukhan
and Portal �����b
� Utev �����
 and Yokoyama �����
� We refer the reader
to Doukhan �����
 for a detailed survey of the previous moment inequalities�
In order to state these moment inequalities� we need some notations�

Definition �� For any nondecreasing function � � IR� � IR�� we set

M	���n�Q
 

Z ���

�

�������x		
� n�Q�x


�����x		
� n� dx�

If ��x
  xr � we set M	���n�Q
 Mr���n�Q
�

Theorem �� Let �Xi
i�ZZ be a strongly mixing sequence of real�valued ran�
dom variables with �nite variance and mean zero� Let sn be the nonnegative
real de�ned by

s�n 
nX
i
�

nX
j
�

jCov�Xi� Xj
j�

Then� for any � in �

IE���jSnj

 � �

	
s�n�

���sn
 � 	�
nX

k
�

Mx�	�����Qk


� ���sn
 � ���
nX
k
�

M	���n�Qk
� �a


Suppose that �Xi
i�ZZ is a stationary sequence� Let �n be the nonnegative
real de�ned by ��n  VarSn� Then

IE���jSnj

 � �
p
	���n
 � ���nM	���n�Q�
� �b


Suppose furthermore that �Xi
i�ZZ satis�es �	�
�� Let �� 
P

t�ZZCov�X�� Xt
�
Then

IE���jSnj

 � �
p
	���

p
n
 � ���nM	���Q�
� �c


Application �� Let us compare Theorem ��a
 with the inequalities of Rio
�����
 and Yokoyama �����
� Clearly we may assume that Xi  � for any
i 	� ��� n�� Consequently we can take �k  � for any k � n in Theorem ��a
�
When ��x
  xr for some r ��	� �� �note that Theorem � does not cover the
case r � �
� Theorem ��a
 yields�

IE�jSnjr
 � �sr��n � ���
nX

k
�

Z �

�

�����x		
� n�r��Qr
k�x
dx�

By contrast Theorem � in Rio �����
 holds for any r � 	� However� this
theorem needs the stationarity and the more restrictive de�nition ���	
 of
the strong mixing coe�cients�

ESAIM � P�S December ����� Vol��� pp���	
�



LINDEBERG METHOD FOR MIXING SEQUENCES 



Let us compare Theorem � and Theorem � in Rio �����
 with the
Marcinkiewicz�Zygmund type inequalities of Yokohama �����
� Some ele�
mentary calculations show that

Z �

�

�����x		
 � n�r��Qr
k�x
dx �

n��X
l
�

�l� �
r��
Z ��l

�

Qr
k�x
dx�

Hence� by Proposition ��b
 and Theorem ��a
� the Marcinkiewicz�Zygmund
inequality IE�jSnjr
  O�nr��
 holds if there exists some positive constant
C such that

�

n

nX
k
�

Z ��l

�

Qr
k�x
dx � C�l� �
�r�� for any l � ��� n��

Consequently� in the stationary case �b
 of Theorem � �	 � r � �
 or
Theorem � in Rio �����
 �with the de�nition ���	
 of the mixing coe�cients

yield IE�jSnjr
  O�nr��
 under the mixing condition

Z ��l

�

Qr
��x
dx  O�l�r��
 as l���

Hence IE�jSnjr
  O�nr��
 in the bounded case if �l  O�l�r��
� while
Theorem 	 of Yokoyama �����
 needs the stronger summability conditionP

l�� l
r�����l ���

In the unbounded case� the Marcinkiewicz�Zygmund inequality holds
under the tail condition

IP�jX�j � u
  O�u�r��
 for some 
 � �

�this condition is weaker than the moment condition of Yokoyama
 as soon as
�l  O�l�r���r	����	
� which is a weaker condition than Yokohama�s mixing
condition

P
l�� l

r��������r��	l ���
Proof� We start by proving Theorem � in the case �����
  �� Suppose
furthermore that � satis�es the additional condition

lim
x������	�x
  �� ����


Let � be the Stieltjes measure of 	���	 � i�e� �  	d���	� Let the function
g � IR� � IR � IR� be de�ned by�

�g�t� x
  x��Ix�t � ��t�x	 t
� � �t��x	 t
 � t�
�Ix�t ���	


for any x � � and g�t�	x
  g�t� x
� Clearly the following equality holds�

��x
 

Z �

�

g�t� x
��dt
� ����
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Hence� by the Fubini�Tonelli Theorem

IE���jSnj
 
Z �

�

IE�g�t� Sn

��dt
� ����


Now x� g�t� x
 is a two times continuously di�erentiable even function and
g��xx�t� x
  jxj � t� Hence we may apply Proposition 	�b
 with b�  t and
b�  �� yielding �

IE�g�t� Sn

 �
nX

k
�

�vk
	
IE�t � jSk��j
�

	�

Z �

�

���n �x		
Q�
k�x
��

��
n �x		
Qk�x
� t
dx

�
� ����


where ���n �y
  ����y
 � n� By the Lebesgue derivation theorem�

����x
 
Z �

�

�t � jxj
��dt
�

Hence� integrating ����
 with respect to the measure �� we get that

IE���jSnj

 �
nX

k
�

vk
	
IE�����jSk��j

 � 	�

nX
k
�

Mx�	�����n�Qk
� ����


Noting then that x � ����
p
x
 is a nondecreasing concave function� we

obtain�

nX
k
�

vkIE��
���jSk��j

 �

nX
k
�

jvkj����
p
Vk��
 �

nX
k
�

jvkj���� max
k����n�

p
Vk
� ����


To prove �a
� we note that Vk � s�n and jv�j� � � �� jvnj � s�n� It follows that

nX
k
�

vkIE��
���jSk��j

 � s�n�

���sn
� ����


Now� by the Taylor integral formula�

��x
  x�
Z �

�

��	 t
����tx
dt � x�����x

Z �

�

t��	 t
dt 
�

�
x�����x
� ����


Together with ����
 and ����
� it implies Theorem ��a
�

Let us prove �b
� In the stationary case� some elementary calculations
show that

vk  n����n � 	
n��X
t
�

Cov�X�� Xt
 � 	
n��X
t
k

Cov�X�� Xt
�
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It follows that

jvkj � n����n � 	n
��

n��X
t
�

tjCov�X�� Xt
j� 	
n��X
t
k

jCov�X�� Xt
j� �����


Hence� summing on k and applying Proposition ��a
� we get that

max
k����n�

jVkj �
nX

k
�

jvkj � ��n � �
n��X
t
�

tjCov�X�� Xt
j

� ��n � �

Z �

�

�����x		
� n��Q�
��x
dx� �����


Let

Rn�x
  	�����x		
� n�Q��x
 and In 

Z �

�

R�
n�x
dx�

Using the concavity of ���� one can prove that

y����y
 � 	���y
� ����	


Hence� by ����
 and �����


nX
k
�

vkIE��
���jSk��j

 � �In � ��n
�

���
p
In � ��n
 � 	

p
In � ��n�

��
p
In � ��n
�

�����

Since ��� is nondecreasing� the function x� p

x��
p
x
 is convex� It follows

that

	
p
In � ��n�

��
p
In � ��n
 �

p
	In�

��
p
	In
 � �n

p
	����n

p
	
� �����


Now� by Jensen�s inequality�

p
	In�

��
p
	In
 �

p
	

Z �

�

Rn�x
�
��Rn�x


p
	
dx� �����


Now� from ����	
 the function x� x�����x
 is nonincreasing� Furthermore�
integrating ����	
� we get that x���x
 � ���x
� Hence

p
	In�

��
p
	In
 � ��

p
	

Z �

�

�������x		
� n�Q��x

dx �����


and
�n
p
	����n

p
	
 � �

p
	���n
� �����


Together with �����
� it implies that

nX
k
�

vkIE��
���jSk��j

 � �

p
	���n
 � ��n

p
	M	���n�Q�
� �����
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The relations ����
� ����
 and �����
 imply then Theorem ��b
�

To prove �c
� we note that

jvkj � �� � 	
X
t�k

jCov�X�� Xt
j�

which implies that

max
k����n�

jVkj �
nX

k
�

jvk j � n�� � 	
X
t��

�t � n
jCov�X�� Xt
j

� n�� � 	

Z �

�

�����x		
� n�����x		
Q�
��x
dx� �����


Now� arguing as in the proof of �b
�

nX
k
�

vkIE��
���jSk��j

 � �

p
	���

p
n
�

	�

Z �

�

�
�p

�����x		
� n�����x		
Q��x

�
dx� ���	�


Noting that the function x� x����x
 is nondecreasing� we obtain�

�
�p

�����x		
 � n�����x		
Q��x

�
� �����x		
� n�

����x		

������x		
Q��x

�

Hence

nX
k
�

vkIE��
���jSk��j

 � �

p
	���

p
n
 � 	�nM	���Q�
� ���	�


and from now on� the end of the proof uses the same arguments as in the
proof of �b
�

Next we can get rid of the additional condition ����
 by noting that�
for any function � satisfying �����
  � and the assumptions of Theorem ��
there exists a nondecreasing sequence of functions ��n
n�� satisfying ����

and the same conditions� such that �  limn � �n� Hence the Beppo�Levi
lemma yields the result� Finally� if �����
 � �� one can write

��x
  ���x
	 x������
		
� x������
		�

It is then su�cient to apply the above result to ���x
  ��x
	 x������
		�
tu
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Appendix � Upper bounds on the truncated moments�

In this appendix� we use the notations of section ��

Lemma A��� Let � be some element of � such that M	���Q
 ��� Then

M����Q� jtj
 M����t
 � M	���Q


t����	t

� �A��


Assume now that  ������Q
 � �� for some 
 in ��� ��� Then

M����t
  O�t�
 as t� �� �A�	


Proof� For any � in � and any x � �	t�

tx � ��x


t�x����	t

�

Applying this inequality to x  ����y		
Q�y
� ��	t
 and noting that x�
x����x
 is nondecreasing� we get that

�����y		
Q�y

��t����y		
Q�y
� �
 � ������y		
Q�y


t����	t


�

which implies �A��
�

Now� let � be the positive measure on ��� �		� de�ned by

�  �I��������x

dx

����x		

�

With the above notations�

M����t
 

Z �

�

M��x
�tM�x
� �
��dx
�

Consequently �A�	
 holds if

lim sup
t���

t����fx � � �M�x
 � tg ���

Setting t  ����u		
Q�u
� we get that this inequality holds if

lim sup
u���

�����u
Q�u

���
Z u

�

dx

����x

���

which is a weaker condition than  ������Q
 � ��� tu
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