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Abstract
Aim: The	spectral	variability	hypothesis	(SVH)	suggests	a	link	between	spectral	varia-
tion and plant biodiversity. The underlying assumptions are that higher spectral vari-
ation in canopy reflectance (depending on scale) is caused by either (1) variation in 
habitats or linked vegetation types or plant communities with their specific optical 
community traits or (2) variation in the species themselves and their specific optical 
traits.
Methods: The	SVH	was	examined	in	several	empirical	remote-	sensing	case	studies,	
which	 often	 report	 some	 correlation	 between	 spectral	 variation	 and	 biodiversity-	
related	variables	(mostly	plant	species	counts);	however,	the	strength	of	the	observed	
correlations	varies	between	studies.	In	contrast,	studies	focussing	on	understanding	
the causal relationship between (plant) species counts and spectral variation remain 
scarce.	 Here,	 we	 discuss	 these	 causal	 relationships	 and	 support	 our	 perspectives	
through	simulations	and	experimental	data.
Results: We reveal that in many situations the spectral variation caused by species 
or functional traits is subtle in comparison to other factors such as seasonality and 
physiological	status.	Moreover,	the	degree	of	contrast	in	reflectance	has	little	to	do	
with the number but rather with the identity of the species or communities involved. 
Hence,	 spectral	 variability	 should	 not	 be	 expressed	 based	 on	 contrast	 but	 rather	
based	on	metrics	expressing	manifoldness.	While	we	describe	cases	where	a	certain	
link	between	spectral	variation	and	plant	species	diversity	can	be	expected,	we	be-
lieve that as a scientific hypothesis (which suggests a general validity of this assumed 
relationship)	the	SVH	is	flawed	and	requires	refinement.
Conclusions: To	this	end	we	call	for	more	research	examining	the	drivers	of	spectral	
variation in vegetation canopies and their link to plant species diversity and biodiver-
sity in general. Such research will allow critically assessing under which conditions 
spectral variation is a useful indicator for biodiversity monitoring and how it could be 
integrated into monitoring networks.
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1  |  INTRODUC TION

Biodiversity conservation has become a matter of international con-
cern over the last decades. One challenge in the current efforts to 
conserve the remaining biodiversity is the development of a global 
biodiversity	 monitoring	 and	 early-	warning	 system.	 This	 challenge	
is	 being	 addressed	 by	 the	 activities	 of,	 among	 others,	 the	 Group	
on	 Earth	 Observation's	 Biodiversity	 Observation	 Network	 (GEO	
BON)	(Scholes	et	al.,	2008;	Walters	&	Scholes,	2017).	A	central	task	
of	GEO	BON	is	to	develop	a	set	of	essential	biodiversity	variables	
(EBV)	 that	 includes	 variables	 describing	 community	 composition,	
ecosystem	structure,	ecosystem	function,	genetic	composition,	spe-
cies	populations	and	species	traits	 (Pereira	et	al.,	2013).	Given	the	
global	scale	of	the	task,	remote	sensing	(RS)	is	expected	to	make	an	
important	contribution	to	monitor	some	of	these	EBVs,	particularly	
those describing species traits and ecosystem structure (Skidmore 
et	al.,	2015,	2021).

Besides this globally concerted effort to develop metrics and 
variables	suitable	for	a	global	monitoring	system,	RS	has	also	been	
invoked	 to	 describe	 and	 monitor	 local	 biodiversity	 patterns	 ex-
pressed	for	example	by	the	number	of	plant	species	per	unit	area,	
also called (plant) species density or species count (Schmidtlein & 
Fassnacht,	2017).	However,	studies	attempting	to	establish	relation-
ships between RS data and species counts are always of a correla-
tive	nature	because	 it	 is	not	 the	 taxonomic	assignment	but	 rather	
the	traits	of	the	species	that	affect	the	RS	signal.	Additionally,	since	
RS of terrestrial biodiversity is mostly able to capture information 
about	plant	traits,	most	of	the	studies	are	uniquely	addressing	floris-
tic diversity. This is a shortcoming because plant species diversity is 
not	always	a	good	proxy	for	the	diversity	of	other	taxonomic	groups	
(Ritter	et	al.,	2019).

Despite	this,	recent	years	have	witnessed	the	emergence	of	sev-
eral	approaches	to	assess	plant	biodiversity	via	RS.	In	their	review,	
Wang and Gamon (2019) differentiate between four approaches: 
(1) habitat mapping; (2) direct species mapping; (3) mapping func-
tional	diversity	via	functional	plant	traits;	and	(4)	spectral	diversity-	
based	approaches.	Here,	we	focus	on	 the	spectral	diversity-	based	
approaches and discuss conceptual and technical challenges related 
to	the	underlying	spectral	variability	hypothesis	(SVH)	(Palmer	et	al.,	
2002).	However,	to	provide	some	context,	we	briefly	introduce	the	
other approaches as well. 

1.	 Habitat	 mapping	—		 Inferring	 species	 counts	 from	 the	mapping	
of habitats or linked vegetation types is a straightforward ap-
proach. It assumes that each type can be directly related to 
a	 number	 of	 species	 (e.g.,	 Braun	 &	 Koch,	 2016).	 For	 example,	
the	 approximate	 plant	 species	 numbers	 of	 particularly	 species-	
rich	 or	 species-	poor	 forest	 or	 grassland	 types	 are	 often	 well	
known from field surveys. By mapping these types using RS 
(which	 essentially	 is	 the	 same	 task	 as	 creating	 a	 land-	cover	
map	with	 a	 quite	 detailed	 thematic	 differentiation)	 and	option-
ally	 also	 considering	 spatial	 context	 (size	 of	 habitat	 patches,	
and	 composition	 of	 habitats),	 reasonable	 estimates	 of	 plant	

species	 numbers	 can	 be	 obtained.	 To	 obtain	 reliable	 results,	
profound knowledge of the plant species richness of the sam-
pled	 habitats	 and	 their	 precise	 classification	 is	 required.	 The	
most important drawback is that this approach is based on 
categorical	 types.	 Hence	 gradients	 of	 species	 richness	 within	
a	 habitat	 or	 vegetation	 type	 are	 difficult	 to	 capture.	 Further,	
subtle degradations may be missed because only a categorical 
shift from one type to another would result in a change of 
the	 estimated	 species	 numbers	 (see	 also	 Schmidtlein	 &	 Sassin,	
2004	 and	 Feilhauer	 et	 al.,	 2020).

2.	 Direct	species	mapping	—		The	feasibility	to	map	individual	plant	
species (particularly the classification of larger trees and shrubs or 
mono-	specific	stands)	from	RS	data	has	been	proven	(e.g.,	review	
by	Fassnacht	et	 al.,	 2016).	Particularly	high	 spectral	 and	 spatial	
resolution	data	(e.g.,	airborne	hyperspectral	data	or	data	from	un-
manned aerial systems) were found to accomplish this task with 
good	accuracy	 (e.g.,	Modzelewska	et	al.,	2021;	Müllerová	et	al.,	
2017).	However,	the	direct	mapping	of	species	over	wider	areas	is	
typically	limited	by	the	trade-	off	between	spatial	resolution	and	
coverage	 in	most	RS	systems.	Furthermore,	the	number	of	spe-
cies that can be identified within a given data set may also be lim-
ited	due	to	the	lack	of	clear	species-	specific	spectral	signatures,	
or	 other	 characteristics	 (shape,	 texture)	 enabling	 distinguishing	
the	species	from	their	surroundings.	Currently,	most	existing	RS	
data sets seem to be unable to reliably separate more than 10– 
15 dominating species based on their optical traits as mirrored in 
the amount of target species typically considered (see Figure 3 
in	Fassnacht	et	al.,	2016).	However,	given	the	fast	development	
of	methodical	advances	in	the	field	of	deep	learning,	these	num-
bers	may	 increase	 in	 the	 future,	particularly	 if	 very	high	 spatial	
resolution	 and/or	 time-	series	 data	 are	 available	 (e.g.,	 review	by	
Kattenborn	et	al.,	2021).

3.	 Mapping	 functional	 diversity	 —		 One	 approach	 to	 bypass	 cur-
rent limitations of discriminating large numbers of plant spe-
cies from RS data is to focus on plant functional types instead 
of individual species. This also takes into account the fact that 
the occurrence of such types can be of more direct relevance 
to ecosystem function. It is known that certain biochemical 
and structural plant traits have a clear effect on the reflected 
electromagnetic	 radiation	 (e.g.,	 Jacquemoud	 et	 al.,	 2009;	
Kattenborn	et	al.,	2019;	Ollinger,	2010).	Hence,	 the	range	and	
variation of these traits can be captured and mapped by RS data. 
Because areas with higher trait diversity tend to harbour more 
species	(Biswas	&	Mallik,	2011),	it	is	assumed	that	it	is	possible	
to	indirectly	quantify	species	counts	based	on	the	functional	di-
versity patterns obtained by RS. The suitability of this approach 
has	 been	demonstrated	 in	 a	 few	 case	 studies	 (e.g.,	 Schweiger	
et	al.,	2018)	but	the	verification	across	ecosystems	is	still	miss-
ing.	Furthermore,	 the	mapping	of	 trait	diversity	has	a	value	 in	
itself (and many applications) as functional traits are not only 
related to biodiversity but also to ecosystem functions and ser-
vices,	which	ultimately	constitute	a	conservation	priority	(Díaz	
&	Cabido,	2001).
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4.	 Spectral	 diversity-	based	 approaches	 —		 Finally,	 the	 spectral	
variability	 hypothesis	 (SVH)	 suggests	 a	 more	 generic	 relation-
ship between biodiversity and remotely sensed spectral infor-
mation which can be used to estimate species counts or other 
biodiversity-	related	metrics	from	RS	data.	The	SVH	as	originally	
suggested	by	Palmer	et	al.	(2000,	2002)	states	that	the	biodiver-
sity of a given area is positively related to the spectral variation 
of the same area captured by an RS image. The underlying as-
sumption is that a higher spectral variation can be interpreted 
as a higher variation in (number of) habitats or linked vegetation 
types and hence a larger number of species (referred to as ‘origi-
nal	SVH’	hereafter).	In	the	case	of	very	fine	spatial	resolution,	an	
increased spectral variation may also directly relate to a higher 
number of species with a higher diversity in the corresponding 
species-	specific	optical	traits	(hereafter,	‘species	SVH’).	Both	are	
closely related and sometimes difficult to untangle because opti-
cal	community	traits,	which	allow	for	differentiating	habitats	or	
vegetation	types,	can	be	traced	back	to	optical	species	traits.	 It	
is hence rather a matter of scale which of both drives variation 
across	pixels	in	a	place.	The	intriguing	simplicity	of	the	SVH	hy-
pothesis	may,	however,	suggest	at	first	glance	that	this	relation-
ship can hold true across ecosystems and scales.

The	 SVH	 has	 been	 extensively	 tested	 in	 case	 studies	 sum-
marized	 for	 example	 in	 Rocchini	 et	 al.	 (2010),	 Schmidtlein	 and	
Fassnacht (2017) and Wang and Gammon (2019). The strength of 
the observed correlations between spectral variation and plant 
species	 counts	 (the	 most	 frequently	 applied	 biodiversity	 metric)	
varied strongly in these studies which raises doubts about the gen-
eral	validity	of	the	SVH.	Schmidtlein	and	Fassnacht	(2017)	pointed	
out	 several	 situations	 where	 the	 original	 SVH	 did	 not	 hold	 true	
and	even	found	areas	with	the	opposite	relation,	that	is,	increased	
plant species counts with lower spectral variation. These inverse 
relationships between spectral variation and plant species counts 
could	 be	 explained	 by	 the	 landscape	 composition	 of	 the	 region,	
proving	 that	 the	 original	 SVH	 does	 not	 hold	 true	 across	 all	 spa-
tial	scales	and	ecosystems.	 In	 this	 regard,	earlier	studies	mention	
several more factors that potentially complicate the relationship 
between	spectral	variation	and	plant	species	counts,	including	for	
example	seasonality,	spatial	resolution	and	the	applied	metrics	to	
describe	spectral	variation	(Rocchini	et	al.,	2010,	2018;	Schmidtlein	
&	Fassnacht,	2017).	Despite	the	controversy	on	the	validity	or	ap-
plicability	of	the	SVH,	it	still	constitutes	an	intriguing	idea,	particu-
larly	due	to	its	generic	approach	which	in	theory	does	not	require	
a	priori	knowledge	on	the	examined	area.	And	even	if	it	is	clear	by	
now	that	the	SVH	will	not	hold	across	all	scales	and	ecosystems,	it	
might still work well in selected environments and under certain 
pre-	conditions	(Schmidtlein	&	Fassnacht,	2017).

The	 aim	 of	 this	 study	 is	 to	 conceptually	 discuss	 and	 question	
causal relationships between spectral variation and species diversity 
(mainly plant species counts) considering the most important factors 
influencing spectral variation and hence this relationship. These fac-
tors include: (1) considered scale; (2) effects of reflectance changes 

over	time;	(3)	effects	of	the	method	chosen	to	quantify	spectral	di-
versity; and (4) the weak link between habitat or ecosystem numbers 
and	species	counts.	We	support	our	perspectives	by	presenting	ex-
amples	including	some	data	simulations	and	experimental	data.	With	
this,	we	seek	to	clearly	point	out	the	limitations	of	the	SVH	but	at	the	
same time also carve out the conditions under which spectral varia-
tion	can	make	meaningful	contributions	to	the	RS-	based	monitoring	
of biodiversity.

The	paper	 is	 structured	as	 follows:	we	will	 first	discuss	 scale-	,	
phenology-		and	habitat-	identity-	related	factors	influencing	the	rela-
tionship between spectral diversity and plant species counts. Then 
we will briefly address some technical aspects related to the calcula-
tion	of	spectral-	variation	metrics	and	finally	discuss	and	summarize	
our	findings	in	a	wider	context.

2  |  SC ALE EFFEC TS

With	‘scale	effects’	we	here	refer	to	effects	related	to	spatial	extent	
(size	of	the	study	area)	and	spatial	grain	(pixel	size,	ground	sampling	
distance or spatial resolution) of the spectral (RS) and biodiversity 
data.	 In	 ecology,	 the	 species–	area	 relationship	 is	 one	 of	 the	 best-	
established concepts that describes the observation that the larger 
the	 extent	 of	 a	 given	 area	 is,	 the	more	 species	 you	 can	 find	 in	 it	
(Rosenzweig,	1995).	The	exact	relationship	between	species	counts	
and area will depend on the characteristics of the ecosystem under 
analysis,	its	history	and	its	surroundings.	However,	this	relationship	
is	always	positive	if	the	different-	sized	areas	are	nested.	We	can	as-
sume that the coarser the spatial grain of a given RS data set is at a 
given	 location,	 the	more	species	are	 likely	to	occur	within	an	 indi-
vidual	pixel.

In	contrast,	we	can	assume	that	the	coarser	the	spatial	grain	of	
the	RS	data	 is,	 the	smaller	 is	the	overall	spectral	variation	across	
all	 pixels	 of	 a	 given	 area.	 This	 is	 related	 to	 the	 general	 rule	 that	
aggregating	fine-	grain	data	will	reduce	extreme	values	(smoothing	
effect).	 In	 other	words,	 RS	 data	with	 fine	 spatial	 grain	 are	more	
likely to differentiate among the spectral response of individual 
species,	 and	 capture	 land-	cover	 types	 or	 individual	 objects	with	
extreme	spectral	behaviour	(e.g.,	at	the	landscape	scale,	a	narrow	
bright dust road surrounded by dark forest; or a small dark pond 
in	 a	 bright	 savannah;	 and	 at	 fine	 scales,	 a	 bright	white	 flower	 in	
front	of	darker	green	leaves).	The	coarser	the	pixels	become,	the	
more	averaged	out	 (i.e.,	smoothed)	the	reflectance	values	will	be	
(Figure	 1).	 Hence,	 for	 a	 given	 area,	 it	 can	 be	 assumed	 that	 any	
spectral-	variation	metric	for	a	given	area	will	decrease	with	pixel	
size	(Figure	2).	Furthermore,	the	coarser	the	grain	of	the	RS	data	is,	
the	fewer	pixels	are	available	for	a	given	plot	size	to	calculate	the	
spectral-	variation	metric.

Based on these simple and known effects of scale on species 
counts	and	spectral-	variation	metrics,	it	can	be	deduced	that	if	a	re-
lationship	between	spectral	variation	and	species	counts	exists	in	a	
given	region,	 the	 form	of	 this	 relationship	cannot	be	stable	across	
scales,	as	seen	also	in	the	experimental	work	by	Wang	et	al.	(2018).
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A	further	important	aspect	related	to	the	topic	of	scale	refers	to	
the	visibility	of	plant	individuals	or	stands,	which	are	relevant	to	the	
species	SVH.	At	fine	grains,	some	individual	species	may	be	clearly	

identifiable	 in	 the	RS	 data.	However,	 rare	 species	 or	 species	with	
small individuals might not show or be missed even at fine spatial 
grains. To provide a chance of capturing the contributions of the 

F I G U R E  1 Scale	effects	on	the	distribution	of	spectral	values.	Depicted	are	histograms	of	digital	number	values	of	the	blue	band	of	an	
RGB-	UAS	(red–	green–	blue	unmanned	aerial	system)	image	at	different	spatial	grains	(3-	,	48-		and	384-	cm	pixels).	The	UAS	image	shows	
a	landscape	with	a	mix	of	native	shrubs,	secondary	natural	forests,	and	plantation	species	in	south-	central	Chile	in	the	region	of	Maule	
(for	exact	location	see	Figure	2).	The	coarser	the	spatial	resolution	of	the	image,	the	less	extreme	the	observed	values	are	and	the	more	
intermediate values occur

F I G U R E  2 The	right	panel	shows	the	development	of	spectral	variation	with	changing	pixel	size	(3	to	384	cm)	for	eight	plots	sized	630	m2 
within	the	area	described	briefly	in	Figure	1.	The	location	of	the	plots	is	shown	in	the	left	panel.	The	spectral-	variation	measure	for	any	plot	
is	calculated	based	on	the	mean	Euclidean	distance	of	all	pixels	in	the	plot	using	the	pixel	values	of	the	first	two	components	of	a	Principal	
Components	Analysis	applied	to	the	three	bands	of	the	red–	green–	blue	imagery	collected	with	the	unmanned	aerial	system.	The	number	of	
pixels	used	to	calculate	the	spectral-	variation	measure	decreases	with	increasing	pixel	size



    |  5 of 13
Applied Vegetation Science

FASSNACHT eT Al.

visible	species	in	the	framework	of	the	species	SVH,	the	spatial	grain	
of the RS data should be adapted to the size of individuals or species 
stands	occurring	in	a	given	ecosystem.	For	example,	grasslands	may	

require	a	notably	finer	spatial	grain	than	forests	to	capture	import-
ant patterns in spectral variation (see also section 3 Phenology and 
other temporal effects).

F I G U R E  3 Degree	of	contrast-	based	spectral	variation	of	simulated	grassland	plots.	One	hundred	hyperspectral	images	were	simulated,	
each	at	four	spatial	grains:	from	left	to	right,	the	original	100	×	100	pixels	composed	of	spectra	from	4,	8,	12,	16	and	20	species	(a),	then	
aggregated to 50 ×	50	pixels	(b),	25	×	25	pixels	(c),	and	10	×	10	pixels	(d).	Images	were	created	by	randomly	filling	up	a	100	×	100	pixel	array	
with spectra from 4– 20 species. In total 21 species were available. Spectral variation was calculated in the same way as for Figure 2 (see 
Appendix	S1	for	more	details).	Indicated	correlations	are	Spearman	correlations	between	spectral	variation	and	species	counts

F I G U R E  4 Manifoldness-	based	spectral	variation	of	simulated	grassland	plots.	One	hundred	hyperspectral	images	were	simulated	
each	at	four	spatial	grains:	from	left	to	right,	the	original	100	×	100	pixels	(a),	then	aggregated	to	50	×	50	pixels	(b),	25	×	25	pixels	(c),	and	
10 ×	10	pixels	(d)	and	composed	of	spectra	from	4,	8,	12,	16	and	20	species	(100	images	for	each	number	of	species).	Images	were	created	
by randomly filling up a 100 ×	100	pixel	array	with	spectra	from	4–	20	species.	In	total	21	species	were	available.	Spectral	variation	was	
calculated	by	first	applying	a	K-	means	clustering	with	100	clusters	to	a	mosaic	including	all	synthetic	images	(of	a	given	grain);	then	the	
number	of	unique	classes	assigned	by	the	unsupervised	K-	means	classification	was	determined	for	each	individual	image
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It follows that the choice of spatial scale for capturing spe-
cies	 richness	 has	 severe	 consequences	 for	 SVH-	based	 counts.	
Considering	that	even	within	the	same	vegetation	type,	the	size	of	
stands	and	individuals	differs	between	species,	it	becomes	clear	that	
a	single	‘correct’	or	‘ideal’	spatial	scale	for	capturing	species	richness	
using	RS	does	not	 exist.	 Further	pitfalls	 are	 to	be	expected	when	
several ecosystems are considered simultaneously.

Another	example	of	how	spatial	grain	influences	the	relationship	
between spectral variation and species counts is given in Figures 3 
and	 4.	Here,	 the	 spectral	 variation	 of	 synthetic	 hyperspectral	 im-
ages	of	grasslands	expressed	with	two	different	types	of	spectral-	
variation metrics is depicted in relation to the number of species and 
the spatial grain of the images. Each of the synthetic hyperspectral 
images was created by randomly filling up an array of 100 × 100 
pixels	 in	 the	x and y	dimensions	with	species-	specific	spectral	sig-
natures.	 In	 total,	 we	 used	 21	 spectral	 signatures	 corresponding	
to	21	herb	and	grass	species	of	Central	Europe,	 thus	reducing	the	
real-	world	complexity	by	neglecting	infra-	specific	variation.	We	cre-
ated	100	of	these	 images	for	each	number	of	species	tested	 (4,	8,	
12,	16,	20,	21),	with	one	species	per	pixel.	Then	we	calculated	two	
spectral-	variation	metrics	 for	 the	 original	 images	with	 100	× 100 
pixels	(Figures	3a,4a)	as	well	as	for	the	same	images	after	they	were	
spatially aggregated to 50 ×	50	pixels,	25	×	25	pixels,	and	10	× 10 
pixels	 (Figures	3b–	d,4b-	d).	The	spatial	aggregation	was	conducted	
with	a	simple	calculation	of	means	using	the	‘aggregate’-	function	of	
the	raster	package	(Hijmans	&	van	Etten,	2012)	in	R	(R	Core	Team,	
2013)	(see	Appendix	S1	for	more	details).	The	first	spectral-	variation	
metric	(SV_continuous)	was	calculated	based	on	the	mean	Euclidean	
distance	of	 all	 pixels	 in	 the	plot	 using	 the	pixel	 values	of	 the	 first	
two	components	of	Principal	Components	Analyses	applied	to	the	
85 bands of the synthetic hyperspectral images and calculated for 
a mosaic of the 500 synthetic images of a given aggregation level 
(see Supplementary material for more details). This metric captures 
the	degree	of	contrast	of	the	pixels.	Following	the	species	SVH,	the	
higher	the	mean	Euclidean	distance	is,	the	more	species	should	be	
present.	The	second	spectral-	variation	metric	 (SV_categorical)	was	
derived	from	an	unsupervised	K-	means	clustering	with	100	clusters	
applied to a mosaic of all synthetic images of a given spatial grain. We 
selected more clusters than species in order to allow for more clus-
ters	forming	after	aggregating	pixels	with	the	corresponding	increase	
in	reflectance	types.	In	the	original	image,	where	each	of	the	species	
corresponds	to	a	single	spectrum,	the	clustering	stops	after	having	
derived	the	number	of	classes	that	fits	the	number	of	species.	After	
the	clustering,	the	number	of	unique	classes	to	which	the	pixels	of	an	
individual synthetic image within the mosaic were assigned during 
the	unsupervised	K-	means	classification	was	determined.	This	met-
ric	captures	the	manifoldness	of	the	pixels	 in	the	image.	Following	
the	 species	SVH,	 it	 is	 assumed	 that	 the	more	unique	classes	exist	
in	the	image,	the	more	species	are	present.	These	simulations	serve	
to make three important points: (i) in the results for the original im-
ages	and	SV_continuous	metric,	we	can	see	that	the	median	spectral	
variation	increases	from	4	to	20	species.	However,	at	the	same	time,	
numerous	(approximately	25%)	of	the	simulated	images	(even	those	

composed of only four species) have higher spectral variation than 
the highest spectral variation observed for 20 species (Figure 3a). 
The	number	of	K-	means	clusters	in	the	SV_categorical	metric	neces-
sarily matches the species numbers perfectly for the original images 
since no intraspecific spectral variation was considered (Figure 4a). 
(ii)	Both	metrics	(expectedly)	decrease	with	increasing	level	of	aggre-
gation	of	the	pixels	(coarser	spatial	grain).	(iii)	Differences	in	median	
spectral variation between images with differing numbers of species 
decreases	with	increasing	level	of	aggregation	(Figures	3a–	d,	4b–	d).

This	example	is	highly	simplified	by	assuming	an	approximately	
equal	cover	and	a	random	distribution	of	each	species	in	each	image	
and	by	assuming	that	each	species	individual	has	exactly	the	same	
spectral	signature.	Nevertheless,	the	example	illustrates	a	key	weak-
ness	of	spectral-	variation	metrics	capturing	the	degree	of	contrast	
in	the	visible	to	shortwave–	infrared	region	(SV_continuous):	even	if	
only	four	species	are	present,	the	spectral	variation	can	be	very	high	
(higher than the variation of 20 species) in case the amplitudes of the 
reflectance values of these four species differ a lot.

This problem is closely related to the fact that healthy plant spe-
cies’	spectral	signatures	all	follow	a	similar	typical	reflectance	curve	
and hence the overall spectral variation is limited from the start. If 
even	under	such	simplified	and	‘close-	to-	perfect’	conditions,	the	link	
between spectral variation and plant species counts (within a single 
ecosystem type) is weak (Spearman correlation of 0.35 in the origi-
nal data with 100 ×	100	pixels	for	SV_continuous),	it	is	very	unlikely	
that it will improve under natural conditions with notably increased 
complexity	in	species'	vertical	and	horizontal	arrangements.	On	the	
other	 hand,	 the	 spectral-	variation	metric	 based	 on	 K-	means	 clus-
tering	(SV_categorical)	which	imitates	the	spectral-	species	concept	
(e.g.,	Féret	&	Asner,	2014)	will	in	theory	result	in	a	perfect	relation	
between the number of species and the number of clusters if there 
is	just	one	species	per	pixel	and	species	feature	a	unique	spectral	sig-
nature.	Although	these	preconditions	are	unrealistic,	the	experiment	
still	prooves	that	the	species	SVH	concept	may	have	its	applications	
if	metrics	capturing	the	manifoldness	of	the	pixels	in	the	image	are	
applied.

3  |  PHENOLOGY AND OTHER TEMPOR AL 
EFFEC TS

The	majority	of	Earth's	ecosystems	is	 influenced	by	daily,	seasonal	
and stochastic dynamics in terms of environmental conditions. 
Physiological	processes	such	as	photosynthetic	activity	are	strongly	
coupled	with	 these	dynamics,	 and	 in	 turn	vegetated	 surfaces	 also	
show	daily,	seasonal	or	random	variation	in	the	related	optical	traits	
that shape the electromagnetic signal captured by RS sensors. 
Species	may	have	more	unique	spectral	signatures	at	one	time	but	
less	pronounced	differences	at	another	time,	meaning	that	the	spe-
cies	SVH	will	lead	to	varying	results	over	time.	Corresponding	pro-
cesses	may	affect	 the	original	SVH	as	well.	For	example,	meadow	
types may be well distinguishable before mowing but loose this 
separability afterwards.



    |  7 of 13
Applied Vegetation Science

FASSNACHT eT Al.

3.1  |  Daily variation

Simple	 examples	 of	 daily	 variation	 are	 changes	 in	 leaf	 orientation	
to reduce or increase the amount of captured incoming radiation 
and	 to	 thereby	 regulate	 evapotranspiration	 (Chávez	 et	 al.,	 2014).	
Regular daily variation may be considered less problematic for most 
polar-	orbiting	satellite	systems	with	fixed	fly-	over	times.	However,	
there might be related changes in spectral variation in airborne data 
and	in	longer	time	series	in	the	case	of	orbit	shifts	of	polar-	orbiting	
satellites.	For	example,	vegetation	in	(semi-	)arid	regions	may	adapt	
its	leaf	orientation	in	rather	short	time	periods	(Chávez	et	al.,	2014)	
and	a	shift	 in	overflight	 time	of	one	hour	as	 for	example	reported	
for	Landsat	5	 (Zhang	&	Roy,	2016)	may	 result	 in	notably	different	
spectral signatures and hence spectral variation even though no true 
change in plant species counts has occurred.

3.2  |  Seasonal variation

Seasonal	variation	is	quite	well	predictable	but	still	poses	problems	
with	respect	to	the	SVH	because	it	may	be	responsible	for	a	nota-
ble	share	of	the	overall	spectral	variation	at	a	given	location,	even	if	
focussing	only	on	the	main	vegetation	period.	Furthermore,	in	many	

types	of	 ecosystems,	 e.g.,	 dryland,	 grassland	 and	 savanna	ecosys-
tems	as	well	as	 in	 forests'	understorey	 layers,	 the	development	of	
annual	herbs	and	grasses	and	short-	lived	species,	as	well	as	flower-
ing events and leaf phenology are important. They can lead to a high 
degree	of	variation	in	important	optical	traits	such	as	leaf	area	index	
(LAI),	leaf-	angle	distribution	and	pigments	(colours)	(e.g.,	Landmann	
et	al.,	2015;	Qi	et	al.,	2014;	Spanner	et	al.,	1990).	The	large	influence	
of flowering events on the spectral signal has been discussed for 
example	in	Schiefer	et	al.	(2021).

Figure	 5	 shows	 an	 example	 of	 the	 seasonal	 variation	 in	 spec-
tral signatures of a few common grass and herb species of Central 
Europe. The spectra were collected during an outdoor cultivation 
experiment	(see	Appendix	S1).	We	can	see	that	some	of	the	grass-
land species strongly differ in their spectral behaviour depending on 
the phenological state in which their spectral signature is captured.

If we relate this phenological behaviour of herbs and grasses 
to	the	species	SVH,	it	becomes	clear	that	all	typically	used	contin-
uous	spectral-	variation	measures	would	be	notably	influenced	by	
this	phenomenon	(corresponding	effects	on	the	original	SVH	can	
also be assumed). In Figure 5 we can also see that the similarity 
of	the	spectra	of	the	six	species	varies	a	lot	over	the	year.	While	
at	 the	beginning	of	 the	 vegetation	 season	 (31	May)	 the	 six	 spe-
cies have widely varying optical traits and corresponding diverse 

F I G U R E  5 Field-	collected	spectra	of	six	species	plotted	for	different	timepoints	in	the	year.	Water	absorption	bands	at	1400–	
1500	nm	and	1800–	2000	nm	were	excluded.	Different	colours	represent	the	different	species	in	this	case	(red	= Calamagrostis epigejos; 
orange = Geum urbanum; blue = Nardus stricta; green = Agrostis capillaris; violet = Aegopodium podagraria; yellow = Festuca ovina). For 
explanations	of	the	methodology	to	create	the	spectral	curves,	see	Appendix	S1
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spectra,	 they	 have	 a	 very	 comparable	 spectral	 behaviour	 at	 the	
peak	of	the	vegetation	period	(7	July).	Assuming	an	equal	fractional	
cover	of	the	six	species	for	which	a	continuous	spectral-	variation	
(SV_continuous)	measure	would	be	derived,	the	variation	measure	
will change dramatically while the plant species number remains 
the	same.	Other	spectral-	variation	metrics	based	on	unsupervised	
clustering	 (SV_categorical)	may	be	 less	 influenced,	but	 flowering	
and	co-	occurrence	of	 the	same	species	 in	different	phenological	
stages	 (e.g.,	 in	 areas	with	 strong	environmental	 gradients)	might	
also	affect	the	captured	manifoldness	(as	for	example	represented	
by the number of classes identified by an unsupervised clustering 
algorithm in a given area).

Another	example	for	SV_continuous	is	given	in	Figure	6.	Here	it	
can again be seen that the spectral variation hardly serves as indi-
cator	for	differing	numbers	of	species.	More	 importantly,	 it	 is	also	
apparent that depending on which species were selected in one of 
the	 fixed	amounts	of	 species	examined,	 the	spectral	variation	can	
drastically vary over the course of a year. While this is a simplified 
example,	it	can	still	be	assumed	that	the	corresponding	effects	will	
be	visible	in	real	data	sets	and	might	be	even	more	complex	due	to	
higher	intermixture	of	species	canopies.	In	addition,	it	should	be	con-
sidered that phenology is only one driver of intraspecific variation in 
optical	traits	and	hence	spectral	variation.	The	health	status,	growth	
form due to adaptations to the abiotic and biotic environment and 
stress	events	 are	examples	 for	 additional	 intraspecific	 variation	 in	
optical	traits	that	are	likely	to	occur,	particularly	when	focussing	on	
larger	spatial	extents.

3.3  |  Unpredictable variation

Apart	 from	 phenological	 and	 daily	 sources	 of	 variation	 some	 im-
pacts are more difficult to predict. Such impacts embrace temporary 
stresses	and	disturbances	including	for	example	droughts	in	forests	
(e.g.,	Asner	&	Alencar,	2010),	mowing	of	grassland	or	laying	down	of	
plants	after	rainfall	and	wind	(Feilhauer	&	Schmidtlein,	2011).	Such	
non-	regular	 variation	 caused	 by	 disturbance	 or	 sudden	 weather	
conditions	is	difficult	to	take	into	account.	An	extreme	temporal	ex-
ample	occurs	 in	arid	and	semi-	arid	ecosystems	where	most	of	 the	
species	are	hidden	for	most	of	the	time,	becoming	visible	only	after	
rare	and	irregular	rainfall	events.	Similar	dynamics	may	also	exist	in	
wetlands where the occurrence of vegetation as well as the optical 
signal observed by RS data may fluctuate seasonally with the water 
table which in turn may relate to varying precipitation patterns. 
Similarly,	precipitation-	induced	rapid	vegetation	developments	can	
also be observed in other ecosystems and might be hard to describe 
with	spectral-	variation	measures,	particularly	if	RS	data	acquisitions	
are available at a limited temporal resolution.

In	summary,	seasonal	and	other	temporal	differences	in	optical	
traits can make up for a notable portion of the overall spectral vari-
ation in certain ecosystems and hence have a direct effect on both 
the	original	and	 the	species	SVH.	A	 relationship	between	spectral	
variation and plant species counts (or an alternative biodiversity 

metric)	found	in	one	part	of	the	year	may	not	exist	in	another	(see	
also	Schmidtlein	&	Fassnacht,	2017).	Hence,	establishing	a	stable	link	
between spectral variation and biodiversity (at least in terms of plant 
species counts) seems highly challenging in ecosystems with a pro-
nounced	temporal	dynamic.	To	use	spectral	variation	as	a	proxy	vari-
able	for	biodiversity,	identifying	suitable	time	windows	or	including	
the	temporal	dimension	into	the	applied	spectral-	variation	measure	
may	hence	be	 important	prerequisites.	Studies	based	on	 repeated	
RS measurements throughout the season coupled with repeated 
in-	situ	sampling	of	vegetation	could	help	to	better	understand	the	
influence of phenological changes and other temporal effects. From 
RS	data	alone,	it	is	difficult	to	disentangle	the	seasonal	variation	of	
optical	traits	of	the	same	species	from	the	seasonal	exchange	in	dif-
ferent	species'	presence	or	detectability,	and	from	other	unpredict-
able variation introduced by abiotic and biotic drivers.

4  |  HABITAT T YPE MAT TERS AT LE A ST A S 
MUCH A S HABITAT NUMBERS

An	 example	 for	 why	 habitat	 type	 (or	 vegetation	 type)	 matters	 at	
least as much as habitat numbers are Central European calcareous 
grasslands.	These	are	very	species-	rich	habitats,	but	at	 the	spatial	
resolution of common satellite sensors their spectral variation is low. 
The area marked in green in Figure 7 shows such a calcareous grass-
land,	the	Garchinger	Heide,	near	Munich.	This	area	of	27	ha	contains	
more	than	240	species	(Bayerisches	Landesamt	für	Umwelt,	2020).	
However,	 when	 visually	 and	 numerically	 (Table	 1)	 comparing	 the	
spectral variation within this area (polygon 1 in Figure 7) with the 
spectral variation of areas of the same size in the surrounding in-
tensively	used	agricultural	landscape	(polygons	2–	7	in	Figure	7),	it	is	
obvious	that,	at	the	spatial	resolution	of	a	Sentinel-	2	satellite	image,	
most of the other areas have (in some cases notably) higher spectral 
variation,	despite	having	a	far	lower	number	of	species.

The	example	of	the	Garchinger	Heide	relates	to	the	issue	of	(rare)	
species-	rich	habitats	that	has	been	already	discussed	in	one	of	the	
earliest	works	on	the	SVH	(Palmer	et	al.,	2002).	 In	the	example	of	
the	Garchinger	Heide,	a	 small	habitat	with	a	comparably	homoge-
neous spectral signature contains a high number of plant species. 
Including	or	excluding	this	habitat	type	from	a	given	area	will	have	a	
tremendous effect on the plant species count but hardly any effect 
on	the	spectral	variation.	This	is	a	major	flaw	of	the	original	SVH	and	
strong assumptions have to be made to still enable a general validity 
of the concept: it is valid to assume that if an additional habitat is 
added	to	a	given	area,	the	spectral	variation	of	the	area	will	increase,	
along	with	the	species	count	(at	least	it	will	not	diminish).	However,	
comparing	for	example	two	areas	A	and	B	in	which	A	has	two	and	B	
has	three	habitats,	B	will	only	have	more	species	than	A	in	the	case	
that	B	includes	all	the	habitats	that	are	also	occurring	in	A.	If	this	is	
not	 the	 case,	 it	 is	 easily	possible	 that	 area	A	has	 two	 species-	rich	
habitats	and	area	B	has	three	species-	poor	habitats	and	hence,	area	
A	could	harbour	more	species	than	area	B	while	B	might	still	have	
a higher spectral variation. This problem persists independently 
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from	 the	 applied	 type	 of	 spectral-	variation	metric	 (SV_continuous	
or	SV_categorical).

Following	the	species	SVH,	spectral	variation	would	be	used	to	
characterize biodiversity patterns only within a single patch (habitat) 
such	as	the	Garchinger	Heide;	however,	what	might	be	problematic	
is	 that	there	 is	patchy	structure	within	that	area	as	well.	Hence,	 it	
would	quickly	become	hard	to	decide	at	which	scale	a	between-	site	
approach	finishes	and	at	which	scale	a	within-	site	approach	starts.	
Nevertheless,	we	can	assume	that	the	more	we	zoom	into	patches,	
the	more	relevance	gains	the	‘species	SVH’.	The	predictive	power	of	
the latter has been discussed above and is summarized in Figures 3 
and 4.

A	further	related	problem	is	that	habitats	that	may	appear	spec-
trally	very	similar	 in	the	RS	data	due	to	shared	canopy-	dominating	
species,	may	still	differ	widely	in	species	counts.	A	related	example	
from Central Europe is the various European beech (Fagus sylvatica)-	
dominated	 forest	 communities	 which	 range	 from	 species-	poor	
(Luzulo-	Fagetum	 beech	 forests)	 to	 species-	rich	 (Cephalanthero-	
Fagetum beech forests) forests. The biodiversity of those habitats is 
dominated by the herb layer which is hardly visible below the dense 
canopies of the beech forests and hence cannot be captured by RS.

5  |  SPECTRAL- VARIATION	METRICS

5.1  |  Technical considerations

5.1.1  |  Choice	of	the	spectrum/spectral	regions	—		
radiometric resolution

Spectral-	variation	 (SV_continuous)	 metrics	 calculated	 based	 on	
the variation of the reflectance values of the wavebands in the 
RS image are affected by the spectral coverage of the bands as 
well	 as	 the	 radiometric	 resolution	 of	 the	 bands	 and	 sun-	sensor	
geometry	(Schaepman-	Strub	et	al.,	2006).	While	differences	in	ra-
diometric resolution of different sensors can be accounted for by 
using	standardized	data	or	physical	units	(e.g.,	surface	reflectance	
values),	 differing	 numbers	 and	widths	 of	wavebands	 are	 harder	
to	address.	Hence,	the	same	metric	calculated	for	different	satel-
lite sensors may have notably different meanings and capture dif-
ferent processes leading to the observed spectral variation. This 
might	 be	 a	 problem	with	 respect	 to	 the	 SVH,	 especially	 if	 data	
from	different	sensors	are	compared	and	SV_continuous	metrics	
are used.

F I G U R E  6 Changes	of	degree	of	contrast-	based	spectral	variation	during	the	vegetation	period	(SV_continuous).	In	the	panels,	each	
colour	indicates	one	random	composition	of	species	and	the	line	indicates	how	the	spectral-	variation	value	for	this	composition	changes	
over	time.	The	‘pixels’	of	each	species	of	the	synthetic	images	were	filled	with	the	corresponding	field-	measured	spectra	from	the	
corresponding	time	step.	For	better	visual	interpretation	we	only	plotted	8	of	the	100	random	compositions	of	4,	8,	12	and	16	species	
summarized	in	Figure	3.	Since	not	for	all	species	spectra	were	measured	at	each	timepoint,	we	only	plot	spectral-	variation	values	of	time	
points	where	spectra	were	available	for	each	of	the	respective	species.	As	can	be	seen,	the	higher	the	number	of	species	is,	the	less	likely	it	
is,	that	spectra	were	measured	for	all	species.	This	is	why	for	12	and	16	species	only	spectral-	variation	values	for	the	first	three	time	steps	
were available
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5.1.2  |  High	contrast	land	surfaces	will	increase	
spectral variation

Areas	with	particularly	high	or	low	reflectance	values	in	some	wave-
bands	 (e.g.,	bare-	soil	 areas,	 rocks,	 sealed	surfaces	etc.)	will	have	a	
notable	 influence	on	any	spectral-	variation	measure	capturing	 the	
degree	of	spectral	contrast	(SV_continuous).	So	far,	no	clear	indica-
tions were made how this should be considered in the framework of 
the	SVH.	An	obvious	solution	could	be	to	exclude	all	non-	vegetated	
areas	by	applying	a	vegetation	mask	before	calculating	the	spectral-	
variation	metrics.	While	this	is	feasible	for	very	fine-	grain	RS	data,	it	
might already become challenging for intermediate spatial resolution 

data	sets	 including	Sentinel-	2	and	Landsat	which	 typically	contain	
a	 large	 number	 of	 mixed	 pixels.	 Furthermore,	 scarcely	 vegetated	
patches	 can	 also	 contribute	 to	 species	 numbers.	 For	 example,	 in	
harsh	 environments	 such	 as	 coastal	 dune	 ecosystems,	many	 focal	
species are small and occur in a very fine mosaic pattern of bare 
sand	and	vegetation	(e.g.,	Ewald	et	al.,	2020).	Such	areas	may	face	
the risk of being masked even though making a notable contribution 
to	the	species	numbers.	This	problem	may	be	less	prominent	for	SV_
categorical	metrics	but	depending	on	the	number	of	non-	vegetated	
surface	types	present	in	an	area,	it	might	still	cause	some	additional	
unwanted variability.

5.2  |  Discrete vs continuous data

The	above	discussions	have	demonstrated	advantages	of	SV_cate-
gorical	over	SV_continuous	metrics.	The	continuous	approach	is	the	
one	proposed	originally	by	Palmer	et	al.	(2000)	who	emphasize	con-
tinuity	in	the	spatial	analysis	as	a	major	advantage	of	the	SVH.	The	
SV_categorical	approach	is	closely	related	to	the	spectral-	species	ap-
proach	originally	suggested	by	Féret	and	Asner	(2014),	where	class	
numbers (typically obtained by a spectral clustering approach) are 
considered	proxies	of	species	numbers	(thus	relating	to	the	‘species	
SVH’).	Recently,	 this	approach	has	been	scaled	up	to	wider	spatial	
extents	and	to	a	higher	level	of	biological	organization	(e.g.,	vegeta-
tion	types	or	habitats)	(Rocchini	et	al.,	2021).	The	approach	has	some	
obvious advantages: (1) consistency over time may increase as even 
if	the	optical	traits	of	plant	species	change	over	the	year,	the	land-	
cover	patches	or	landscape	elements	may	be	more	persistent	(e.g.,	a	
broad-	leaved	forest	stand	may	look	very	different	in	a	satellite	scene	
acquired	in	summer	and	winter	but	may	be	detectable	as	a	spectrally	
homogeneous	 spatial	 unit/patch	 in	both	 scenes);	 (2)	 spectrally	 ex-
treme	pixels	or	land-	cover	types	will	not	have	unproportionally	large	
influence	on	the	spectral-	variation	metric	but	will	rather	represent	
individual discrete classes amongst a plethora of other classes; and 
(3) the approach is essentially summarizing the continuous spectral 
values into spatial objects that represent landscape elements or in-
dividual species and hence mirror the core assumption of the origi-
nal	 SVH	or	 species	 SVH	better.	 Schmidtlein	 and	Fassnacht	 (2017)	
reported persistently higher correlations between species counts 
and	an	SV_categorical	metric	 compared	 to	an	SV_continuous	met-
ric based on Euclidean distances calculated in the spectral feature 
space	of	several	MODIS	bands,	but	the	approach	could	still	not	re-
move the problems of individual habitats with very high (or very low) 
species numbers discussed in section 4 Habitat type matters at least 
as much as habitat numbers.

6  |  FINAL REMARKS

Most	of	the	issues	related	to	the	SVH	as	described	in	this	study	pose	
challenges	not	only	to	the	SVH	but	also	to	other	commonly	applied	
RS-	based	biodiversity	assessments	outlined	in	section	1	Introduction. 

F I G U R E  7 The	‘Gachinger	Heide’	near	Munich,	Germany	
(marked in green with id =	1),	a	species-	rich	calcareous	grassland	
embedded in a landscape of intensive agriculture. The spectral 
diversity of this grassland is compared to other landscape elements 
of the same size (marked in white with id =	2–	7).	Area	#1	contains	
many more species than the other areas although only one habitat 
type is included in this patch. Its spectral variation is accordingly 
low (Table 1)

TA B L E  1 Overview	of	spectral	diversity	values	calculated	with	
a	spectral	variation	(SV_continuous)	metric	for	landscape	patches	
shown in Figure 7

Landscape element id (Figure 7)
Spectral 
variationa

1	–		Species-	rich	calcareous	grassland 319

2	–		Urban	area 2041

3	–		Agricultural/urban	interface 1544

4 –  Forest 595

5	–		Agriculture 1778

6	–		Agriculture	(bare) 1022

7	–		Agriculture/forest/road/water 1557

aMean	Euclidean	distance	of	all	Sentinel-	2	pixels	within	the	polygons	
calculated	from	the	first	two	Principal	Components	Analysis	(PCA)	
components	of	the	Sentinel-	2	raster	stack.	PCA	components	were	
calculated	based	on	digital	numbers	of	the	L1C	product	of	Sentinel-	2	
(nominal value range between 0 and 10000).
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A	commonly	claimed	advantage	of	RS-	based	biodiversity	monitoring	
is that repeated and standardized measurements are possible with 
comparably little effort which enables capturing temporal changes. 
This	 is	an	 important	requirement	for	any	monitoring.	As	discussed	
in	this	study,	establishing	a	direct	and	universally	valid	link	between	
the RS signal and biodiversity information collected in the field is 
extremely	challenging	due	to	the	nature	of	optical	RS	which	does	not	
allow	to	address	the	different	biodiversity	facets	equally.	Instead	of	
focussing	on	taxonomic	or	phylogenetic	differences	(as	typically	fo-
cused	on	in	field	surveys),	RS	and	particularly	the	spectral-	variation	
approach relies on optical traits that are driven by functional and 
morphological differences between the species (such as the archi-
tecture	of	leaves	and	branches,	size,	width	and	colour	of	the	leaves,	
size	and	colour	of	inflorescences,	etc.).	In	case	a	species	shows	high	
and spatially differentiated variation in morphology during the life 
cycle or due to plasticity or disease or pests or disturbance (Feilhauer 
&	Schmidtlein,	 2011),	 it	 can	 falsely	 increase	 or	 lower	 the	 spectral	
variation and hence the species number predictions.

One	question	that	could	be	raised,	however,	is	whether	search-
ing for this generalized direct link between biodiversity and RS data 
is	 useful	 in	 the	 first	 place.	Most	RS-	based	 approaches	 attempt	 to	
identify the link between biodiversity and RS signal in the spatial 
rather than temporal dimension. This is in direct contradiction to the 
proclaimed	most	important	property	of	RS	data,	that	is,	the	option	
for	repeated	acquisitions	and	monitoring	over	time.	Most	ecologists	
and	biodiversity	experts	agree	that	detailed	biodiversity	surveys	on	
the ground are the most reliable way to correctly assess biodiversity 
of a given region. One could assume that once the current biodiver-
sity of a given area is inventoried and well understood (and the best 
way	to	do	so	is	going	to	the	field),	the	main	task	would	be	to	monitor	
whether the biodiversity at this location is changing or remaining 
constant	within	a	certain	level	of	expected	natural	fluctuations.	RS	
might	be	a	suitable	technology	for	addressing	such	task,	with	spec-
tral variation being a key variable.

Adapting	to	this	scenario,	the	central	task	of	RS	would	lay	in	the	
change	detection	aspect,	that	is,	in	the	identification	of	changes	in	
the spectral and structural properties of the ecosystem rather than 
describing or mapping the ecosystem/biodiversity state. This type 
of	RS-	based	monitoring	is	theoretically	possible	without	support	of	
any field data by simply comparing the current (spectral/structural) 
state	of	an	area	against	an	expected	state	derived	from	earlier	ob-
servations. It is important that this comparison must occur on multi-
ple spatial and temporal scales to account for the natural dynamics 
of	 a	 given	ecosystem	 (which	may	widely	differ,	 for	 example	 a	 fire	
may not have a notable effect on biodiversity in a savanna but may 
make	a	huge	difference	 in	a	temperate	ecosystem,	natural	succes-
sion	cycles	may	be	fast	in	one	area	and	very	slow	in	another,	etc.).	
Spectral variation measured at multiple spatial grains and for various 
extents	(window	sizes)	could	be,	amongst	others,	an	efficient	metric	
contributing	to	such	a	‘real’	monitoring	scheme.

In	 this	 study,	we	 pointed	 out	 issues	 that	 question	 a	 universal,	
causal direct link between spectral variation and species counts. The 

reflective properties and hence the spectral variation of a given area 
in an RS data set is affected by numerous factors including the land-
scape	composition,	spatial	grain	of	the	data,	the	acquisition	time	and	
corresponding	 sun-	sensor	 geometry	 and	 the	methodical	 approach	
to	calculate	the	spectral	variation.	In	some	ecosystems,	the	spatial	
non-	stationarity	 in	the	link	between	spectral	variation	and	species	
numbers introduced by these factors is likely to be an insurmount-
able obstacle. Based on the points raised here and considering the 
results	from	earlier	studies	(e.g.,	Schmidtlein	&	Fassnacht,	2017)	we	
recommend to carefully revise under which condition a link between 
spectral	 variation	 and	 biodiversity	 can	 be	 assumed.	 As	 demon-
strated	in	this	study,	simple	simulation	experiments	can	support	this	
task and are an efficient means to identify conceptual weaknesses 
of	 some	aspects	of	 the	SVH	and	 to	compare	different	methodical	
approaches	 to	 calculate	 spectral	 variation.	Making	 valuable	 field-	
collected biodiversity data openly available and testing the links be-
tween biodiversity and spectral variations in a more systematic way 
using multiple metrics and approaches could further contribute to 
an improved understanding of the link between spectral variation 
and biodiversity.

The need for a more systematic testing of the links between bio-
diversity	and	spectral	variations	applies	not	only	 in	 the	context	of	
SVH	but	also	with	respect	to	other	RS-	based	approaches	to	map	and	
monitor biodiversity as it is likely that the factors influencing spectral 
variation	discussed	here	do	not	apply	solely	for	the	SVH	but	also	for	
other commonly discussed approaches to estimate (spatial) biodiver-
sity patterns from RS data. We hence recommend that future stud-
ies should focus more on efficiently capturing changes in landscapes 
over time (and hence a potential change of biodiversity) rather than 
solely on the direct mapping of biodiversity patterns across space. 
The	latter	can	be	achieved	with	field	surveys	at	much	higher	quality	
but might nevertheless benefit from an indirect integration of RS 
data.	RS	data	can	for	example	guide	and	improve	the	sampling	de-
sign	of	biodiversity	surveys	by	providing	a	pre-	stratification	of	the	
study	 area,	which	 also	was	 the	 original	motivation	 for	 developing	
the	SVH	(Palmer	et	al.,	2002).	Similar	approaches	have	successfully	
been applied in forest inventories for decades and have proven to 
increase their efficiency.
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