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Abstract Tensor data are becoming important recently in various application fields.
In this paper, we consider the maximal rank problem of 3-tensors and extend Atkinson
and Stephens’ and Atkinson and Lloyd’s results over the real number field. We also
prove the assertion of Atkinson and Stephens: max.rankR(m, n, p) ≤ m + �p/2�n,
max.rankR(n, n, p) ≤ (p+1)n/2 if p is even, max.rankF(n, n, 3) ≤ 2n −1 if F = C

or n is odd, and max.rankF(m, n, 3) ≤ m +n −1 if m < n where F stands for R or C.

Keywords Tensor · Maximal rank

1 Introduction

High-dimensional arrays, that is, tensor data, are becoming important recently in var-
ious application fields. For example, Miwakeichi et al. (2004) applied parallel factor
analysis (PARAFAC), originated by Harshman (1970), to the squared norm of the
convolution of the time/space/frequency electroencephalogram (EEG) data and its
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complex Morlet wavelet transformation and extracted the temporal signatures of theta
and alpha atoms and also visualized the spatial signature of them. On the other hand,
as an extension of independent component analysis (ICA), Vasilescu and Terzopoulos
(2005) developed multilinear ICA (MICA) using the representation of n-mode prod-
uct of tensor images, which can addresses the face recognition problem under the
additional factors, such as illumination, viewpoint and expression. Further, the recent
survey study by Muti and Bourennane (2007) reviews tensor filtering based on mul-
timode principal component analysis (MPCA). In chemometric, there are vast litera-
tures, and we can find them, for example, from Malinowski (2002), Harshman et al.
(2003), Smilde et al. (2004), or Wu et al. (2009).

Our paper is mainly related to PARAFAC decomposition. PARAFAC decomposes
a tensor into a sum of the simplest structured tensor, that is a rank 1 tensor. One impor-
tant problem of PARAFAC decomposition is its uniqueness problem. Kruskal (1977,
1989) gave several essential results about the uniqueness of PARAFAC decomposition
by showing a lower bound of tensor rank. Other important problem of PARAFAC is
to determine an appropriate number of factors, and Bro and Kiers (2003) proposed
core consistency diagnostic (CORCONDIA) for this problem. To know the maximal
rank of a model is, in this context, also quite important. Thus, the upper bound or
the maximal rank of tensors has also gathered the concern of many researchers (see,
for the recent reference, Kolda and Bader 2009). However, no exact estimate of the
maximal rank has been obtained yet even for n × n × 3 tensors, which is our target.
Here, we start giving the rigid terminology needed to give our results.

A p-tensor is an element of F
n1 ⊗ F

n2 ⊗ · · · ⊗ F
n p , where F is the real or complex

number field and n1, n2, . . . , n p are positive integers. It is known that every p-tensor
can be expressed as a sum of p-tensors of the form a1 ⊗ a2 ⊗ · · · ⊗ ap. The rank of
a tensor x is, by definition, the smallest number such that x is expressed as a sum of
the tensors of the above form. Since there is a canonical basis in F

n1 ⊗ · · · ⊗ F
n p ,

there is a one to one correspondence between the set of all p-tensors and the set of
p-dimensional arrays of elements of F. In particular, a 3-tensor can be identified to
A = (A1; A2; . . . ; An3), where each Ai is an n1 ×n2 matrix. The rank of a tensor may
be naturally considered to express complexity of the tensor by definition and the max-
imal rank of a certain type of tensors are also considered as the model complexity. The
factorization of a tensor to a sum of rank 1 tensors means that the datum is expressed
by a sum of data with the simplest structure, and we may have better understanding of
the datum. This is an essential attitude for data analysis and, therefore, the problem of
tensor factorization is an essential one for applications. For modeling data, the maxi-
mal rank of “a set of tensors” (model) is also crucially important, because an excessive
rank model is redundant and deficient rank model cannot describe the data fully.

In this paper, we consider the maximal rank problem of 3-tensors. In the follow-
ing, we denote F

a ⊗ F
b ⊗ F

c by T (a, b, c) or F
a×b×c for simplicity and call an

element of T (a, b, c) an a × b × c tensor. We denote by max.rankF(a, b, c) the max-
imal rank of all tensors in T (a, b, c). Kruskal (1977) studied the rank of a p-tensor
and mainly obtained its lower bound. Atkinson and Stephens (1979) and Atkinson
and Lloyd (1980) developed a non-linear theory based on their own several lemmas.
Basically, they estimated the upper bounds by adding two diagonal matrices, which
enables the two matrices to be diagonalizable simultaneously. They did not solve the
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About the maximal rank of 3-tensors 809

problem fully, and restricted the type of tensors for obtaining clear-cut results. They
obtained that (1) max.rankC(m, n, p) ≤ m + �p/2�n and that (2) if p is even, then
max.rankC(n, n, p) ≤ (p + 1)n/2. Atkinson and Stephens further claimed that (3)
max.rankC(n, n, 3) ≤ 2n − 1 and max.rankC(n, n + 1, 3) ≤ 2n without proof.

In this paper, we show that (1) and (2) are also valid over the real number field
(see Theorems 1, 3) and prove the claim (3) in its generalized form. That is,
max.rankC(n, n + k, 3) ≤ 2n + k −1 for k ≥ 0. We also show that max.rankR(n, n +
k, 3) ≤ 2n + k − 1 for k ≥ 1 and that under a mild condition, an n × n × 3 tensor over
R has rank at most 2n − 1 (see Theorems 5, 6). As an application of this result, we
give upper bounds of the rank of relatively small tensors from T (3, 3, 3) to T (6, 6, 3).

2 Preliminaries

We first recall some basic facts and set terminology.

Notation 1. By F, we express the real number field R or the complex number field
C.

2. We denote F
m ⊗ F

n ⊗ F
p as T (m, n, p) or F

m×n×p.
3. For a tensor x ∈ T (m, n, p) with x = ∑

i jk ai jk ei ⊗ e j ⊗ ek , we identify x with
(A1; . . . ; Ap), where Ak = (ai jk)1≤i≤m,1≤ j≤n for k = 1, . . . , p is an m × n
matrix, and call (A1; . . . ; Ap) a tensor.

4. For an m × n × p tensor T = (A1; . . . ; Ap), l × m matrix P and n × k matrix
Q, we denote by PT Q the l × k × p tensor (P A1 Q; . . . ; P Ap Q).

5. For an m × n × p tensor T = (A1; . . . ; Ap), we denote by T T the n × m × p
tensor (AT

1 ; . . . ; AT
p ).

6. For p m ×n matrices A1, . . . , Ap, we denote by (A1, . . . , Ap) the m ×np matrix
obtained by aligning A1, . . . , Ap horizontally.

7. For m ×n matrices A1, . . . , Ap, we denote by 〈A1, . . . , Ap〉 the vector subspace
spanned by A1, . . . , Ap in the F-vector space of all the m × n matrices with
entries in F.

8. For an m × n matrix M, we denote the m × j (resp. m × (n − j)) matrix con-
sisting of the first j (resp. last n − j ) columns of M by M≤ j (resp. j<M). We
denote the i × n (resp. (m − i) × n) matrix consisting of the first i (resp. last
m − i ) rows of M by M≤i (resp. i<M). For integers i1, . . . , ir and j1, . . . , js
with 1 ≤ i1 < · · · < ir ≤ m and 1 ≤ j1 < · · · < js ≤ n, we denote the r × s
matrix consisting of i1th, i2th, . . . , ir th rows and j1th, j2th, . . . , js th columns of
M by M={i1,...,ir }

={ j1,..., js }.
9. We denote by Ei j the matrix unit whose entry in (i, j) cell is 1 and 0 otherwise.

10. We set

Diag(A1, A2, . . . , At ) =

⎛

⎜
⎜
⎜
⎝

A1 0
A2

. . .

0 At

⎞

⎟
⎟
⎟
⎠

for matrices A1, A2, . . . , At .
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Definition 1 Let x be an element of T (m, n, p). We define the rank of x , denoted by
rank x , to be min{r | ∃ai ∈ F

m , ∃bi ∈ F
n , ∃ci ∈ F

p for i = 1, . . . , r such that x =∑r
i=1 ai ⊗bi ⊗ ci }. max{rank x | x ∈ T (m, n, p)} is denoted by max.rankF(m, n, p).

It is clear from the definition that rank(x + y) ≤ rank x + rank y for any x , y ∈
T (m, n, p).

Definition 2 For a matrix A = (ai j ), we set supp(A) := {(i, j) | ai j �= 0} and call it
the support of A.

The following lemmas are easily verified.

Lemma 1 Let (A1; . . . ; Ap) be an m × n × p tensor. Then rank(A1; . . . ; Ap) =
min{r | ∃ rank 1 matrices C1, . . . , Cr such that 〈A1, . . . , Ap〉 ⊂ 〈C1, . . . , Cr 〉}. In
particular,

1. if 〈A1, . . . , Ap〉 = 〈B1, . . . , Bq〉, then rank(A1; . . . ; Ap) = rank(B1; . . . ; Bq),
2. for any nonsingular matrices P and Q of size m and n, respectively,

rank(A1; . . . ; Ap) = rank(P A1 Q; . . . ; P Ap Q)

and
3. rank(AT

1 ; . . . ; AT
p ) = rank(A1; . . . ; Ap).

Lemma 2 rank(A1; . . . ; Ap) ≥ rank(A1, . . . , Ap).

From now on, we denote by rankR or rankC instead of rank to specify over which
field, R or C, we are working. For the statements common to both fields, we use rankF.

The following lemma is well known.

Lemma 3 Let

f (λ) = λn + a1λ
n−1 + · · · + an

be a monic polynomial with a variable λ and coefficients in F. Suppose that f (λ) = 0
has n distinct roots in F. Then there is a neighborhood U of a = (a1, a2, . . . , an)T in
F

n such that for any x = (x1, x2, . . . , xn)T ∈ U,

λn + x1λ
n−1 + · · · + xn = 0

has n distinct roots in F and these roots are continuous functions of x.

3 Maximal rank of 3-tensors

In this section, we show the results in the real number field, which are obtained by
Atkinson and Stephens (1979) and Atkinson and Lloyd (1980) in the complex number
field. We show several results that corresponds with the results given by them, but few
results are slightly different and some of them are new ones. Now we prepare several
lemmas which is a real version of Lemma in Atkinson and Stephens (1979). First, we
show the extended version of Lemma 3 in Atkinson and Stephens (1979).
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About the maximal rank of 3-tensors 811

Lemma 4 Let A = (ai j ) and B = (bi j ) be n × n matrices with entries in F. Then
there exist diagonal matrices X, Y with entries in F satisfying the following.

1. A + X is nonsingular.
2. (A + X)−1(B + Y ) has n distinct eigenvalues in F.

Moreover, if i1, . . . , ir are integers with 1 ≤ i1 < · · · < ir ≤ n, A={i1,...,ir }
={i1,...,ir } is nonsin-

gular and (A={i1,...,ir }
={i1,...,ir })

−1(B={i1,...,ir }
={i1,...,ir } ) has r distinct eigenvalues in F, then we can take

X and Y so that the entries of the (iu, iu) cell of X and Y are zero for u = 1, . . . , r .
In particular,

(a) if (n, n) ∈ supp(A), then we can take X and Y so that the entries of the (n, n)

cell of X and Y are 0.
(b) if {(n − 1, n), (n, n − 1)} ⊂ supp(A), (n, n) �∈ supp(A) ∪ supp(B) and bn−1,n/

an−1,n �= bn,n−1/an,n−1, then we can take X and Y so that the entries of the
(n − 1, n − 1) and (n, n) cells of X and Y are 0.

Proof First, we prove the former half of the lemma. Take distinct elements s1, . . . , sn

of F and set D = Diag(s1, . . . , sn). Note that if the absolute values of all entries of A′
are sufficiently small, then A′ + En is nonsingular and all entries of (A′ + En)−1 are
continuous with respect to entries of A′. Thus, (A′ + En)−1(B ′ + D) is a continuous
function with respect to A′ and B ′ if the absolute values of their entries are sufficiently
small. Since

det(λEn − (A′ + En)−1(B ′ + D)) = 0

has n distinct roots s1, s2, . . . , sn in F if A′ = B ′ = O , we see by Lemma 3 that there
is a neighborhood of O in F

n2
such that if A′ and B ′ are both in it, then

det(λEn − (A′ + En)−1(B ′ + D)) = 0

has n distinct roots in F. Hence, for sufficiently small ε > 0,

det(λEn − (ε A + En)−1(εB + D)) = 0

has n distinct roots in F and, therefore,

det(λ(A + (1/ε)En) − (B + (1/ε)D)) = 0

has n distinct roots in F. So it is sufficient to set X = (1/ε)En and Y = (1/ε)D.
Next, we prove the latter half of the lemma. By permuting the rows and columns

simultaneously, we may assume that i1 = 1, . . . , ir = r . Set

A =
(

A11 A12
A21 A22

)

, B =
(

B11 B12
B21 B22

)

,
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where A11 and B11 are r × r matrices. Then, by assumption, A11 is nonsingular and
(A11)

−1 B11 has r distinct eigenvalues, say s1, . . . , sr , in F. We take n − r distinct
elements sr+1, . . . , sn from F\{s1, . . . , sr } and set

D1 = En−r , D2 = Diag(sr+1, . . . , sn).

Then by the same argument as the proof of the former half, we see that

(
A11 ε A12

ε A21 ε2 A22 + D1

)

is nonsingular and

det

(

λEn −
(

A11 ε A12

ε A21 ε2 A22 + D1

)−1 (
B11 εB12

εB21 ε2 B22 + D2

))

= 0

has m distinct roots for sufficiently small ε > 0. Therefore,

det

(

λ

(
A11 ε A12

ε A21 ε2 A22 + D1

)

−
(

B11 εB12

εB21 ε2 B22 + D2

))

= 0

has m distinct roots for sufficiently small ε > 0. Since

det

(

λ

(
A11 A12

A21 A22 + ε−2 D1

)

−
(

B11 B12

B21 B22 + ε−2 D2

))

= ε−2(n−r) det

(

λ

(
A11 ε A12

ε A21 ε2 A22 + D1

)

−
(

B11 εB12

εB21 ε2 B22 + D1

))

,

we see that it is sufficient to set X = ε−2Diag(O, D1) and Y = ε−2Diag(O, D2). ��
The following result is well known, but we write a proof for convenience.

Proposition 1 If p ≥ mn, it holds

max.rankF(m, n, p) = mn.

Proof It is clear from the definition that max.rankF(m, n, p) = max.rankF(p, m, n).
If A = (A1; A2; . . . ; An) is an p×m×n tensor, then it is also clear from the definition
that rankF A ≥ rankF(A1, A2, . . . , An). So we see that max.rankF(p, m, n) ≥ mn.

Next, let A = (ai jk) be an arbitrary 3-tensor. Then

A =
a∑

i=1

b∑

j=1

ei ⊗ e j ⊗ (ai j1, ai j2, . . . , ai jn)T.

Therefore, rankF A ≤ ab. ��
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About the maximal rank of 3-tensors 813

We can show the real case of Lemma 4 in Atkinson and Stephens (1979).

Lemma 5 (cf. Lemma 4 in Atkinson and Stephens 1979) Let X and Y be an m × m
matrix such that X is nonsingular and each root of det(λX − Y ) = 0 is in F and not
repeated. Then for any m × (n − m) matrices U and V , it holds that

rankF(X, U ; Y, V ) ≤ n.

Proof We can apply the proof of Lemma 4 in Atkinson and Stephens (1979). ��
The following theorem is a slight generalization of Theorem 1 in Atkinson and

Stephens (1979).

Theorem 1 Let m ≤ n and F = R, C.

1. if p is odd, it holds that max.rankF(m, n, p) ≤ m + n(p−1)
2 .

2. if p is even, it holds that max.rankF(m, n, p) ≤ 2m + n(p−2)
2 and in addition if

m = n, it holds that max.rankF(n, n, p) ≤ n(p+2)
2 − 1.

Proof Let A = (A1; . . . ; Ap) ∈ T (m, n, p). There is nonsingular matrices P and Q

and integer r ≤ n such that P Ap Q =
(

Er 0
0 0

)
. Then letting B j = P A j Q for each

j = 1, . . . , p, we have

rankF(A1; . . . ; Ap) = rankF(B1; . . . ; Bp).

Let Dp = Bp and D j = (D′
j , O) be m × n matrices with diagonal matrices D′

j for
1 ≤ j < p such that (B2i−1)≤m − D′

2i−1 and (B2i )≤m − D′
2i satisfy the conditions of

1 and 2 of Lemma 4 for i = 1, . . . , �(p − 1)/2�. Then it holds

rankF(A) ≤ rankF(D1; · · · ; Dp) + rankF(B1 − D1; · · · ; Bp−1 − Dp−1; O).

Thus for odd integer i = 1, 3, 5, . . ., we obtain rankF(Bi − Di ; Bi+1 − Di+1) ≤ n by
Lemma 5. Thus, if p is odd, we have

rankF(A) ≤ m +
(p−1)/2∑

k=1

rankF(B2k−1 − D2k−1; B2k − D2k)

≤ m + n(p − 1)

2

and otherwise

rankF(A) ≤ m + rankF(B1 − D1; B2 − D2) + · · · + rankF(Bp−1 − Dp−1; O)

≤ m + n(p − 2)

2
+ m.
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814 T. Sumi et al.

Furthermore, if p is even and m = n, then

rankF(A) ≤ 2n + n(p − 2)

2
− 1 = n(p + 2)

2
− 1,

since we can take Dp−1 so that rank(Bp−1 − Dp−1) ≤ n − 1. ��
Lemma 5 and Theorem 2 of Atkinson and Stephens (1979) are also true over the

real number field, the proofs of which are quite similar.

Lemma 6 (Lemma 5 in Atkinson and Stephens 1979) If k ≤ n, then

max.rankF(m, n, mn − k) = m(n − k) + max.rankF(m, k, mk − k).

Theorem 2 (Theorem 2 in Atkinson and Stephens 1979) If k ≤ m ≤ n, then

max.rankF(m, n, mn − k) = mn − k2 + max.rankF(k, k, k2 − k).

Theorem 1 by Atkinson and Lloyd (1980) is also slightly generalized.

Theorem 3 Let m ≤ n. If p is even, it holds

max.rankF(m, n, p) ≤ m + n(p − 1)

2
.

Proof Let A = (A1; . . . ; Ap) ∈ T (m, n, p). There are tensor T and nonsingular
matrices P and Q so that rankF(T1; T2) ≤ n/2 and P(Ap − T1)Q and P(Ap−1 −
T2)Q are both of the form (D, O) with some diagonal matrix D (Sumi et al., 2009,
Corollary 3.10). Set B j = P A j Q for j = 1, . . . , p − 2, Dp−1 = P(Ap−1 − T2)Q,
and Dp = P(Ap − T1)Q. For diagonal matrices D j ( j = 1, . . . , p − 2), we have

rankF(A) ≤ rankF(B1; · · · ; Bp−2; Dp−1; Dp) + n

2
≤ rankF(B1 − D1; · · · ; Bp−2 − Dp−2; O; O)

+ rankF(D1; · · · ; Dp−2; Dp−1; Dp) + n

2

≤
(p−2)/2∑

j=1

rankF(B2 j−1 − D2 j−1; B2 j − D2 j ) + 2m + n

2
.

Thus, by Lemmas 4 and 5, we have

rankF(A) ≤ n(p − 2)

2
+ 2m + n

2
= n(p − 1) + 2m

2

for some D1, . . . , Dp−2. ��
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4 Upper bound for the maximal rank of 3-tensors with three slices

In this section, we give a proof of the following statement (Theorem 4) asserted in
Atkinson and Stephens (1979) without proof. In fact, we prove more general statements
over C and, under mild condition, over R also. See Theorems 5 and 6.

Theorem 4 (Atkinson and Stephens (1979))

max.rankC(n, n, 3) ≤ 2n − 1 and max.rankC(n, n + 1, 3) ≤ 2n.

We begin with the following lemma.

Lemma 7 Let m be an integer with m ≥ 2. If a1, . . . , as , b1, . . . , bt are
m-dimensional non-zero vectors and A1, . . . , Au, B1, . . . , Bv are m × 2 matrices
of rank 2, then there is a nonsingular matrix P such that any entry of Pai (i =
1, . . . , s), bT

i P−1 (i = 1, . . . , t) and any 2-minor of P Ai (i = 1, . . . , u) and BT
i P−1

(i = 1, . . . , v) are not zero.

Proof Let X = (xi j ) be an m×m matrix of indeterminates, i.e., {xi j }m
i, j=1 are indepen-

dent indeterminates. None of the following polynomials of xi j is zero, where Cof(X)

is the matrix of cofactors of X .

– det X .
– j th entry of X ai .
– j th entry of bT

i Cof(X).
– 2-minor of X Ai consisting of j th and kth rows with 1 ≤ j < k ≤ m.
– 2-minor of BT

i Cof(X) consisting of j th and kth columns with 1 ≤ j < k ≤ m.

So, the product f (xi j ) of all the above polynomials is not zero. Since F is an infinite
field, we can take pi j ∈ F so that f (pi j ) �= 0. Then it is clear that we can take
P = (pi j ), since P−1 = (det P)−1Cof(P). ��
In order to estimate the rank of n × n × 3 tensors, we prepare the following lemmas.

Lemma 8 Let (A1; A2; A3) be an m×n×3 tensor with m ≤ n such that A3 = (D, O)

where D is a diagonal matrix with 0 entry in (m, m) cell and (A1)≤m, (A2)≤m sat-
isfy the condition of (a) or (b) of Lemma 4. Then it holds that rankF(A1; A2; A3) ≤
m + n − 1.

Proof By Lemma 4, there are m × m diagonal matrices D1 and D2 with 0 entry in
(m, m) cell such that (A1 + (D1, O))≤m is nonsingular and ((A1 + (D1, O))≤m)−1

((A2 + (D2, O))≤m) has m distinct eigenvalues. Therefore, by Lemma 5

rankF(A1; A2; A3)

≤ rankF(A1 + (D1, O); A2 + (D2, O); O)

+ rankF(−(D1, O);−(D2, O); A3) ≤ n + m − 1.

��
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Lemma 9 Let n be an integer with n ≥ 3 and A1, A2 n × n matrices with (n, n) �∈
supp(A1) ∪ supp(A2). Suppose that (A1)={n} �= 0 and (A1)

={n} �= 0T and for any
t ∈ F, (t A1 + A2)={n} �= 0 or (t A1 + A2)

={n} �= 0T . Then there is a nonsingular
(n − 1) × (n − 1) matrix P such that A = Diag(P, 1)A1Diag(P, 1)−1 and B =
Diag(P, 1)A2Diag(P, 1)−1 satisfy the condition of (b) in Lemma 4.

Proof Set

A1 =
(

(A1)
≤n−1
≤n−1 a1

bT
1 0

)

and A2 =
(

(A2)
≤n−1
≤n−1 a2

bT
2 0

)

.

First, assume that rank(a1, a2) = 2. Then by Lemma 7, we see that there is a nonsin-
gular (n − 1)× (n − 1) matrix Q1 such that any entry of Q1a1 and bT

1 Q−1
1 and any 2-

minor of Q1(a1, a2) are not zero. Set Q1(a1, a2) = (ai j ) and (b1, b2)
T Q−1 = (bi j ).

If (an−1,1, an−1,2) and (b1,n−1, b2,n−1) are linearly independent; then we can take
P = Q1 since

Diag(Q1, 1)Ai Diag(Q1, 1)−1 =
(

Q1(Ai )
≤n−1
≤n−1 Q−1

1 Q1ai

bT
i Q−1

1 0

)

.

If (an−1,1, an−1,2) and (b1,n−1, b2,n−1) are linearly dependent, then (tan−2,1 +an−1,1,

tan−2,2 + an−1,2) and (b1,n−1, b2,n−1) are linearly independent for any t ∈ F \ {0},
since (an−2,1, an−2,2) and (an−1,1, an−1,2) are linearly independent by the choice of
Q1. Choose t ∈ F\{0} so that tan−2,1 +an−1,1 �= 0 and set Q2 = En−1 + t En−1,n−2.
Then we can take P = Q2 Q1, since

Diag(Q2 Q1, 1)Ai Diag(Q2 Q1, 1)−1 =
(

Q2 Q1(Ai )
≤n−1
≤n−1 Q−1

1 Q−1
2 Q2 Q1ai

bT
i Q−1

1 Q−1
2 0

)

,

Q−1
2 = En−1 − t En−1,n−2, and the (n − 1, n) entry and (n, n − 1) entry of

Diag(Q2 Q1, 1)Ai Diag(Q2 Q1, 1)−1

are tan−2,i +an−1,i and bi,n−1, respectively. Therefore, we have proved the case where
rank(a1, a2) = 2.

We can prove the case where rank(b1, b2) = 2 in the same way.
Now assume that rank(a1, a2) = rank(b1, b2) = 1. Choose as before, a nonsin-

gular (n − 1) × (n − 1) matrix Q1 such that any entry of Q1a1 and bT
1 Q−1

1 is not
zero and set Q1(a1, a2) = (ai j ), (b1, b2)

T Q−1 = (bi j ). Then, an−1,2/an−1,1 �=
b2,n−1/b1,n−1, since otherwise −(an−1,2/an−1,1)a1 + a2 = −(b2,n−1/b1,n−1)a1 +
a2 = −(b2,n−1/b1,n−1)b1 + b2 = 0, which contradicts the assumption. Therefore,
we can take P = Q1. ��
Now we state the following:
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About the maximal rank of 3-tensors 817

Theorem 5 Let T = (A1; A2; A3) be an n × n × 3 tensor. If 〈A1, A2, A3〉 contains a
non-zero singular matrix, then rankFT ≤ 2n − 1. In particular, if F = C or n is odd,
then rankFT ≤ 2n − 1.

Proof We prove by induction on n.
Since max.rankF(1, 1, 3) = 1 and max.rankF(2, 2, 3) = 3, we may assume that

n ≥ 3. By Lemma 1 and the assumption, we may assume that A3 = Diag(Er , O)

with r < n and supp(A1) ⊃ supp(A2).
If (i, j) ∈ supp(A1) for some (i, j) with i > r and j > r , by permuting rows and

columns within (r +1)th, …, nth one, if necessary, we can apply Lemma 8. Therefore,
rankFT ≤ 2n − 1.

Now assume that (i, j) �∈ supp(A1) for any i , j with i > r and j > r . Set
r<(Ai )

≤r = A12i and r<(Ai )≤r = A21i . If there is a column vector of A121, which is
0, then rankFT ≤ n + n − 1 by Lemma 5, since supp(A1) ⊃ supp(A2) and, therefore,
T is essentially an n × (n − 1) × 3 tensor in this case. Therefore, we may assume that
no column vector of A121 is 0. We may also assume that no row vector of A211 is 0T.

Set A12i = (ai,r+1, . . . , ain) and AT
21i = (bi,r+1, . . . , bin). Assume first that there

is j > r such that a1 j , a2 j are linearly independent. Then by exchanging the (r +1)th
and the j th columns, we may assume that (A1)

≤r+1
≤r+1 and (A2)

≤r+1
≤r+1 satisfy the con-

dition of Lemma 9. So we take the nonsingular r × r matrix P of the conclusion of
Lemma 9 and set

Diag(P, En−r )AkDiag(P, En−r )
−1 = (ai jk).

Then, ar+1,r+1,k = 0 for any k and ar,r+1,2/ar,r+1,1 �= ar+1,r,2/ar+1,r,1. Therefore,
by exchanging the (r + 1)th and the nth rows and columns, and exchanging the r th
and the (n − 1)th rows and columns, if necessary, we may transform

Diag(P, En−r )(A1; A2; A3)Diag(P, En−r )
−1

to a tensor that satisfies the condition of Lemma 8 (we do not need the permutation if
r = n − 1). So the conclusion follows by Lemma 8. The case that there is j > r such
that b1 j , b2 j are linearly independent is proved in the same way.

Next, assume that a1 j , a2 j are linearly dependent and b1 j , b2 j are linearly depen-
dent for any j > r .

Since the vector space spanned by the column vectors of (A1)
≤r
≤r+1 is at most r and

the last column of (A1)
≤r
≤r+1 is not zero, we see that there is j with 1 ≤ j ≤ r such

that j th column of (A1)
≤r
≤r+1 is a linear combination of the columns of j<(A1)

≤r
≤r+1.

Therefore, we see that there is an (r + 1) × (r + 1) lower triangular unipotent matrix
V such that ((A1)≤r+1V )

≤r
≤r = ((A1)

≤r
≤r+1V )≤r has a column vector, which is 0.

So by the induction hypothesis,

rankFT

= rankF(A1; A2; A3)

= rankF(A1Diag(V, En−r−1); A2Diag(V, En−r−1); A3Diag(V, En−r−1))
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818 T. Sumi et al.

≤ rankF(((A1)≤r+1V )
≤r
≤r ; ((A2)≤r+1V )

≤r
≤r ; ((A3)≤r+1V )

≤r
≤r )

+
n∑

j=r+1

rankF(a1 j ; a2 j ; 0) +
n∑

j=r+1

rankF((bT
1 j , 0)V ; (b2 j , 0)T V ; 0T )

≤ 2r − 1 + (n − r) + (n − r)

= 2n − 1,

since rankF(a1 j ; a2 j ; 0) ≤ 1 and rankF(bT
1 j ; bT

2 j ; 0T ) ≤ 1 for any j with j > r . ��
It is possible that there is no non-zero singular matrix in 〈A1, A2, A3〉 over the real

number field. For example, let

A1 =

⎛

⎜
⎜
⎝

0 1 0 0
−1 0 0 0
0 0 0 1
0 0 −1 0

⎞

⎟
⎟
⎠ , A2 =

⎛

⎜
⎜
⎝

0 0 0 1
0 0 1 0
0 −1 0 0

−1 0 0 0

⎞

⎟
⎟
⎠

and A3 = E4. Since the determinant of x A1 + y A2 + z A3 is (x2 + y2 + z2)2,
x A1 + y A2 + z A3 is singular only when x = y = z = 0.

Next, we consider the non-square case. First, we prepare the following lemmas.

Lemma 10 Let A and B be n×n matrices, a = (a1, . . . , an)T and b = (b1, . . . , bn)T

be n-dimensional vectors. Suppose ai �= 0 for any i = 1, . . . , n. Then there are diag-
onal matrices X and Y and a vector p such that

1. A + X is nonsingular,
2. (A + X) p = a and (B + Y ) p = b.

Moreover, if b1/a1, . . . , bn/an are distinct from each other, then we can take X and Y
so that (A + X)−1(B + Y ) has n distinct eigenvalues in F.

Proof Set A = (ai j ) and B = (bi j ). For 0 < ε ∈ R, we set

ai (ε) = ai − ε

n∑

j=1

ai j ,

bi (ε) = bi − ε

n∑

j=1

bi j ,

D1(ε) = Diag(a1(ε), . . . , an(ε)), and

D2(ε) = Diag(b1(ε), . . . , bn(ε)).

Then,

(ε A + D1(ε))1 = a and (εB + D2(ε))1 = b

where 1 = (1, . . . , 1)T.
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By the same argument as the proof of Lemma 4, we see that ε A + D1(ε) is non-
singular if ε > 0 is sufficiently small, and if b1/a1, . . . , bn/an are distinct from each
other, we can take ε so that (ε A + D1(ε))

−1(εB + D2(ε)) has n distinct eigenvalues
in F.

Therefore, it is sufficient to set X = (1/ε)D1(ε), Y = (1/ε)D2(ε) and p = ε1. ��

Lemma 11 Let (A1; A2) be an m ×n ×2 tensor with m < n. Set Ai = (ai1, . . . , ain)

for i = 1, 2. Suppose (A1)≤m is nonsingular and

((A1)≤m)−1(A2)≤m

has m distinct eigenvalues. Suppose also that there are integers j1, . . . , js with m <

j1 < · · · < js ≤ n and m-dimensional vectors p1, . . . , ps such that

(Ai )≤m pt = ai jt for i = 1, 2, t = 1, 2, . . . , s.

Then rankF(A1; A2) ≤ n − s.

Proof Let V be the n × n upper triangular unipotent matrix, the j th column of which

is
(− pt

0

)
+ e jt , if j = jt for some t and e j otherwise. Then j1, j2, . . . , js th columns

of Ai V are zero by the assumption and, therefore, we see by Lemma 5 that

rankF(A1; A2) = rankF(A1V ; A2V ) ≤ n − s,

since (A1V ; A2V ) is essentially an m × (n − s) × 2 tensor. ��

Now we state the following

Theorem 6 If m < n, then max.rankF(m, n, 3) ≤ m + n − 1.

Proof We prove for an arbitrary m × n × 3 tensor T = (A1; A2; A3), rankFT ≤
m + n − 1.

Set r = max{rank A | A ∈ 〈A1, A2, A3〉}. Then by Lemma 1, we may assume that
A3 = (Diag(Er , O), O) and supp(A1) ⊃ supp(A2).

Set Ai = (ai1, . . . , ain) for i = 1, 2. If there is j > m such that a1 j = 0, then,
since we are assuming that supp(A1) ⊃ supp(A2), T is essentially an m × (n −1)×3
tensor. So rankFT ≤ m + n − 1 by Theorem 1.

Now assume that a1 j �= 0 for any j > m.
We first consider the case where a1 j , a2 j are linearly dependent for any j with

j > m. Since the vector space spanned by the column vectors of (A1)≤m+1 is at most
m and the last column of (A1)≤m+1 is not zero, we see that there is j with 1 ≤ j ≤ m
such that j th column vector of A1 is a linear combination of the column vectors of
j<(A1)≤m+1. Therefore, we see that there is an (m + 1) × (m + 1) lower triangular
unipotent matrix V such that (((A1)≤m+1)V )≤m has a column vector, which is 0.
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So we see by Theorem 5

rankFT

= rankF(A1Diag(V, En−m−1); A2Diag(V, En−m−1); A3Diag(V, En−m−1))

≤ rankF(((A1)≤m+1V )≤m; ((A2)≤m+1V )≤m; ((A3)≤m+1V )≤m)

+
n∑

j=m+1

rankF(a1 j ; a2 j ; 0)

≤ 2m − 1 + n − m

= m + n − 1,

since a1 j , a2 j are linearly dependent for j > m.
From now on, we assume that there is j with j > m such that a1 j , a2 j are linearly

independent.
We first consider the case where r = m. By Lemma 7, we see that there is a non-

singular m × m matrix P such that any entry of Pa1 j and any 2-minor of P(a1 j , a2 j )

is not zero. Set Bi = P Ai Diag(P, En−m)−1 and Bi = (bi1, . . . , bin) for i = 1, 2, 3.
Then B3 = (Em, O) and every entry of b1 j and every 2-minor of (b1 j , b2 j ) are not
zero. So by Lemma 10, we see that there are m × m diagonal matrices D1 and D2 and
an m-dimensional vector p such that

((Bi )≤m + Di ) p = bi j for i = 1, 2,
(B1)≤m + D1 is nonsingular and
((B1)≤m + D1)

−1((B2)≤m + D2) has m distinct eigenvalues.

Therefore, by Lemma 11, we see that

rankF(B1 + (D1, O); B2 + (D2, O)) ≤ n − 1.

So

rankFT

= rankF(B1; B2; B3)

≤ rankF(B1+(D1, O); B2 + (D2, O))+rankF(−(D1, O);−(D2, O); (Em, O))

≤ n − 1 + m.

Finally, we consider the case where r < m. Since A3 = (Diag(Er , O), O) and
rank(t A3 + A1) ≤ r for any t ∈ F by the definition of r , we see that (i, j) �∈ supp(A1)

if i > r and j > r .
If the (r +1)th row of A1 is zero, then (A1; A2; A3) is essentially an (m −1)×n×3

tensor. So

rankF(A1; A2; A3) ≤ m − 1 + n

by Lemma 5. Therefore, we may assume that (r+1)th row of A1 is not zero. Take j with
j > m such that a1 j , a2 j are linearly independent. Exchanging the (r+1)th and the j th
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columns of Ai , we may assume that a1,r+1, a2,r+1 are linearly independent. By apply-
ing Lemma 9 to (A1)

≤r+1
≤r+1 and (A2)

≤r+1
≤r+1, we see that there is a nonsingular r ×r matrix

P such that Diag(P, 1)(A1)
≤r+1
≤r+1Diag(P, 1)−1 and Diag(P, 1)(A2)

≤r+1
≤r+1Diag(P, 1)−1

satisfy the condition of (b) in Lemma 4. Set Bi = Diag(P, Em−r )Ai Diag(P, En−r )
−1

for i = 1, 2, 3. Then B3 = (Diag(Er , O), O), (B1)
≤r+1
≤r+1 and (B2)

≤r+1
≤r+1 satisfy the con-

dition (b) in Lemma 4.
Let Ci be the m × n matrix obtained by exchanging the (r + 1)th and mth rows

and columns and r th and (m − 1)th rows and columns of Bi , respectively, for i =
1, 2, 3. Then (C1)≤m and (C2)≤m satisfy the condition of (b) in Lemma 4 and C3 =
(Diag(Er−1, O, 1, 0), O). Therefore, we see that

rankFT = rankF(C1; C2; C3) ≤ m + n − 1

by Lemma 8. ��
Finally, we state some upper bounds of the maximal rank for small tensors, which

are direct consequences of Theorem 5.

Proposition 2 The followings are true.

1. max.rankF(3, 3, 3) ≤ 5
2. max.rankC(4, 4, 3) ≤ 7
3. max.rankF(5, 5, 3) ≤ 9
4. max.rankC(6, 6, 3) ≤ 11
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