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The competitive learning vector quantization (CLVQ) algorithm
with constant step ε > 0—also known as the Kohonen algorithm with 0
neighbors—is studied when the stimuli are i.i.d. vectors. Its first noticeable
feature is that, unlike the one-dimensional case which has n! absorbing
subsets, the CLVQ algorithm is “irreducible on open sets” whenever the
stimuli distribution has a path-connected support with a nonempty inte-
rior. Then the Doeblin recurrence (or uniform ergodicity) of the algorithm
is established under some convexity assumption on the support. Several
properties of the invariant probability measure νε are studied, including
support location and absolute continuity with respect to the Lebesgue
measure. Finally, the weak limit set of νε as ε→ 0 is investigated.

Introduction and main definitions. The origin of the competitive
learning vector (or space) quantization essentially comes from the difficulties
encountered in data analysis in compressing the information contained in
huge sets of data. Two possible ways can be investigated. One is to reduce the
dimension of the data state space using, for example, a PCA or some similar
technique. The other way is to drastically reduce the size of the data set by
building a small number of prototypes, each of them representing a specified
subset of the data set. This second approach is called vector quantization.

This paper is devoted to the study of an “on line” quantization process that
relies on the minimization of a quadratic criterion. Namely, if the data take
their values in a compact set of Rd, if they are i.i.d. and µ distributed and if
n is the number of searched prototypes, the potential to be minimized is

∀x x= �x1; : : : ; xn� ∈ �Rd�n; Eµ
n�x� x= 1

2

∫
min

1≤k≤n
�xk −ω�2µ�dω�:(1)

It is well known that, under some diffuseness assumption on µ [see (3)],
E
µ
n is differentiable at every n-tuple x ∈ �Rd�n having pairwise distinct com-

ponents and that its gradient has an integral representation with respect to
µ (see, e.g., [17], [21] when d ≥ 2). The algorithm that will be considered in
this paper—the competitive learning vector quantization (CLVQ)—is merely
the constant step stochastic gradient related to this representation [see (2)
and (5)].

In information theory, this potential is called the distortion of µ at x.
The minimizing problem(s) related to Eµ

n (existence of minEµ
n, structure of
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argminlocEµ
n, estimation of minEµ

n, minimizing algorithms, etc.) is known
as the quantization of the distribution µ. These questions have been widely
investigated by various authors in the framework of information theory until
the 1980’s. Let us mention, for example, Conway, Lloyd, Kieffer, Trushkin
and Zador (see [13] for a survey). Most results deal with the asymptotics of
minEµ

n as n→+∞ in any dimension d, the uniqueness of argmin�loc�Eµ
n in

the one-dimensional setting under log-concavity assumptions on the density
of µ, or the search for some efficient (deterministic) algorithms for tracking
the minimum of Eµ

n, still in the one-dimensional setting.
Surprisingly, the CLVQ algorithm is not mentioned in the literature, neither

in the constant nor decreasing gain setting. This may be explained by the fact
that a stochastic gradient descent is usually not competitive when compared to
a deterministic procedure. On the other hand, in a higher-dimensional setting,
there seems to be no alternative to the CLVQ for quantization purposes.

In fact, the CLVQ algorithm came to light for the first time in the mid-
1980’s as the degenerate setting of a self-organizing algorithm based on some
“neuro-mimetic” intuition: the Kohonen algorithm (see [15], [16]); this is the
reason for its second denomination: Kohonen algorithm with 0 neighbors. Fol-
lowing the usual neural network terminology, one may see the data as stimuli
exciting some sensitive units (or neurons). The number n of units is supposed
to be small with respect to the number of stimuli. The stimuli excite the unit
set one after the other at successive times t ∈ N∗. At every time t the unit that
gives the best response to the stimulus ωt tends to improve its response to
similar stimuli to come while the others do not modify their sensitivity. After a
while, one usually observes that the system reaches some stationary distribu-
tion. Beyond its historical interest, this approach provides an interpretation
of the CLVQ algorithm with constant step as a simple competition mechanism
with local updating. The asymptotic stationarity requires that the updating
is not time dependent, that is, is constant. Obviously, our first task will be to
establish the existence of such a stationary distribution.

Looking back to the statistical applications, such a feature is useful to track
some eventual slow alterations of the statistical characteristics of the stimuli.
Thus, one may think of the digitization of images shot in slightly different
lights. It also prevents an early “freezing” of the process at some undesired
“flat” area of the potential as is observed with its decreasing step version. On
the other hand, a small enough updating step parameter provides a stationary
distribution generally supposed to concentrate around the local minima of the
potential Eµ

n. Subsequently, it is important to study both the structure of the
stationary distribution for a given updating step ε > 0 and its asymptotic
behavior as the step ε→ 0.

Mathematical definition of the CLVQ algorithm �constant gain�. Let C be
a convex compact set of Rd, d ≥ 1; endowed with the Euclidean norm � · �,
let I x= �1; : : : ; n� a so-called unit set, let �ωt�t∈N be a sequence of C-valued
independent identically distributed i.i.d. random stimuli with distribution µ
and let ε be a �0;1�-valued real number. The d-dimensional Kohonen CLVQ
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algorithm with n units (or simply points) is a Cn-valued process �Xt�t∈N re-
cursively defined by X0 x= x ∈ Cn and

∀ t ∈ N; ∀ i ∈ I; Xt+1
i =

{
Xt
i − ε�Xt

i −ωt+1�; if i = i0�ωt+1;Xt�;
Xt
i; otherwise;

(2)

where i0�ω;x� is the (lowest) index s.t. �xi0�ω;x� −ω� = min1≤j≤n �xj −ω�.
So at time t+ 1, the closest component to the stimuli ωt+1 is moved by an

ωt+1-centered homothety with ratio 1−ε ≥ 0; it gets closer to ωt+1 than it was
before. This finally is the mathematical translation for “the unit that has the
best response to the stimuli improves it while other units stand still.”

In neural network terminology, Xt
i is known as the weight of unit i at time

t and i0�ω;x� is called the “winning” unit related to the stimulus ω and the
weight vector x. The gain (or step) parameter of the algorithm is εt.

On the other hand, the optimization approach requires some further defi-
nitions, namely the notion of Voronoi tessellation of an n-tuple x ∈ Cn.

Definition 1. (a) Let D x= �x ∈ Cn �xi 6= xj; i 6= j� be the set of weight
vectors with pairwise distinct components. The Voronoi tessellation of C in-
duced by x x= �x1; : : : ; xn� ∈ D is defined as the family �Ci�x��1≤i≤n of open
sets of C defined by

∀ i ∈ �1; : : : ; n�; Ci�x� x=
{
ω ∈ C � �xi −ω� < min

k6=i
�xk −ω�

}
:

(b) When x ∈ Cn \D, the Voronoi tessellation �Ci�x��1≤i≤n may be defined,
following the algorithm convention, by

Ci�x� x=





{
ω ∈ C � �xi −ω� < min

xk 6=xi
�xk −ω�

}
; if i x= min�k �xk = xi�;

\; otherwise.

(c) For all x ∈ Cn, if �k ∈ I �xk = xi� = �i�, i (or xi) is said to be single.
Otherwise, J x= �k ∈ I �xk = xi� is called a “cluster” and one sets CJ�x� x=
CminJ�x�. The obvious notation xJ will be used, too.

The complement of the Voronoi tessellation of an n-tuple is obviously con-
tained in the union of a finite number of hyperplanes. This leads to the fol-
lowing definition on the stimulus distribution µ:

µ is strongly diffuse if for every hyperplane H, µ�H� = 0:(3)

So, if µ is strongly diffuse, for every x ∈ Cn, µ�⋃1≤i≤n ∂Ci�x�� = 0. The first
obvious consequence is that if µ is strongly diffuse and x ∈ Cn, the winning
unit i0�ω;x� satisfies

i0�ω;x� x=
n∑
i=1

i1Ci�x��ω�; µ�dω�-a.s.(4)
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The second consequence is that (see [17] or [21]) the potential defined by
(1) is then differentiable at every x ∈ D with a gradient given by

∇Eµ
n�x� =

(∫

Ci�x�
�xi −ω�µ�dω�

)

1≤i≤n
:(5)

Combining (4) and (5) implies that the CLVQ algorithm (1) definitely is the
constant step stochastic gradient descent related to the potential Eµ

n, com-
pleted on D by some ad hoc convention.

Equation (2) defines a Cn-valued homogeneous Markov chain since the ωt’s
are i.i.d. Its transition probability �Pε�x;dy��x∈Cn is defined on bounded Borel
functions f by

∀x ∈ Cn; Pε�f��x� x=
∫
C
f�x− εH�ω;x��µ�dω�;(6)

where Hi�ω;x� = �xi−ω�1�i=i0�ω;x��, 1 ≤ i ≤ n. Let Px denote the distribution
of the whole Markov chain �Xt�t≥0, starting at X0 x= x ∈ Cn.

For the same reasons that make Eµ
n not differentiable on cD, the transition

Pε is never Feller: Pε�f� is not continuous at clustered points x ∈ cD. Actually,
if µ is strongly diffuse, Pε�f� is continuous on D whenever f is. So, although
the algorithm is compact-valued, the usual stability methods for nonlinear
recursive models (see [9], [20]) cannot work here. Thus, the very existence
of a stationary distribution νε is far from being straightforward. Finally the
much more technical—but often more powerful—recurrence methods finally
work under some suitable assumptions on µ. The same technical difficulties
are encountered when dealing with the asymptotic behavior of νε as ε → 0:
the standard methods fail (see, e.g., [3] when d = 1) because ∇Eµ

n is not
everywhere continuous on Cn. Some smooth enough approximations of Eµ

n

are necessary.

Some two-dimensional examples of quantization obtained with the CLVQ.
Nowadays, the CLVQ procedure, along with many of its variants, is available
in several “neural network method” computer libraries. More recently, multidi-
mensional quantization methods were applied to high-dimensional numerical
integration problems (see [21]) and automatic meshing (see [23]) with promis-
ing results. Figure 1 displays some quantizations of several stimuli distribu-
tions µ on the unit square �0;1�2, namely

µ = U��0;1�2�; µ x= N

(
0y
[

1 1/2

1/2 1

])
(suitably truncated),

µ x= µ⊗2
1 ; µ1 x= exp�2� (suitably truncated),

µ x= 1
2U�11 ∪ 12� + 1

2U
(
Disk

(( 1
2 ;

1
2

)
; 1

4

))
;

where 1i; i = 1; 2 denote the diagonal lines of the unit square.
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Fig. 1. µ-quantization of �0;1�2 by a 100-tuple.

Existing results on the CLVQ algorithm. Many mathematical results on
the Kohonen CLVQ algorithm have been obtained as by-products of general
investigations carried out on the “regular” Kohonen algorithm (2 neighbors).
They are subsequently related to one-dimensional stimuli: after the seminal
paper by Cottrell and Fort [7] exclusively devoted to the Kohonen algorithm
with two neighbors and uniformly distributed stimuli, the Kohonen algorithm
with 0 neighbors was mentioned with a general distribution µ in [1] and was
investigated in [3] along with the 2-neighbor algorithm. The uniqueness of the
zero(s) of ∇Eµ

n when the stimuli distribution has a log-concave density has
been established independently several times by various methods (see papers
by Kieffer [14], Trushkin [24] or more recently by Lamberton and Pagès [19],
Cohort [6]).

As mentioned above, the natural field of application of the CLVQ algorithm
is the multidimensional setting. Anyway, most one-dimensional results can-
not be satisfactorily transposed to vector-valued stimuli: as soon as d ≥ 2, the
CLVQ algorithm behaves radically differently from the one-dimensional case.
Thus, as shown in the first part of the paper, the one-dimensional algorithm
with n points has n! absorbing sets while, under mild assumptions, such ab-
sorbing classes no longer exist whenever d ≥ 2. Incidentally, we guess that
this phenomenon is closely related to the difficulties encountered in defining
a satisfactory notion of (self-)organization for the standard multidimensional
Kohonen algorithm.

For some partial multidimensional results in the decreasing step case, one
may cite Fort and Pagès [11], where stability of grid equilibrium points is
investigated. Some conditional and regular a.s. convergence results for an
equilibrium are established in [21].

In the constant step case, a very recent work by Burton and Faris [5] in-
vestigates the CLVQ algorithm with uniformly distributed stimuli on a hyper-
cube, viewed as a random dynamical system. It is shown that the process has
a unique invariant distribution and is superstable. This mainly implies that
the distribution of Xt weakly converges with an exponential rate toward the
invariant distribution and that two trajectories of the chain get a.s. close, still
at an exponential rate.

In this paper, which is an extended version of [4], our approach is differ-
ent: we consider the case of a rather general—but still compactly supported—
stimulus distribution µ. Our aim is to study the property of the algorithm as
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a homogeneous Markov chain in terms of irreducibility, existence, uniqueness
and properties of an invariant distribution νε, stability, uniform ergodicity of
the chain, w.r.t. to the structure of the distribution µ and its support. Finally,
the asymptotic behavior of the invariant distribution νε as ε approaches 0 is
elucidated.

The first section is dedicated to several preliminary results along with the
first theorem: under some connectivity assumption, the chain is “irreducible
on open sets,” that is, visits any open set from any starting value x with pos-
itive Px-probability. Section 2 is devoted to the uniform ergodicity (or Doeblin
recurrence) result when the stimulus distribution is locally greater than the
Lebesgue measure and the support of µ is a nontrivial convex set. The fol-
lowing sections are dedicated to the properties of the invariant probability
measure νε: in Section 3.1 we compare supp�ν� and supp�µ�n. We stress that,
if supp�µ� is not a convex set and an invariant probability measure νε does
exist, its support is wider than supp�µ�n. Section 3.2 is devoted to the abso-
lute continuity properties of ν compared to those of µ. Section 4 deals with
the asymptotic behavior of νε as ε ↓ 0. We show that νε tends to concentrate
around the equilibrium set of the corresponding decreasing step algorithm.

We will assume throughout this work that C is the convex hull of supp�µ�;
that is,

C = Conv�supp�µ��:
We will denote by δC x= supu; v∈C �u − v� the diameter of C. Note that δC =
δsupp�µ� x= supu; v∈supp�µ� �u− v�. For every u ∈ Rd, B�u; r� will denote the Eu-
clidean open ball with center u and radius r > 0. For every x x= �x1; : : : ; xn� ∈
�Rd�n, we setBn�x; r� x=

∏n
k=1B�xk; r�. Å will denote the interior ofA. Finally,

�v� will denote the integral part of v ∈ R+.

1. Irreducibility of the chain on open sets.

1.1. The main result. The aim of this section is to establish the irreducibil-
ity on open sets of the chain. This property is rigorously defined by (8). Roughly
speaking, it means that, for every x ∈ Cn,Xt visits with positive Px-probability
any open set that meets supp�µ�n.

Let τ
A
x= min�s ∈ N �Xs ∈ A� denote the hitting time of a set A by �Xt�t≥0.

Theorem 1 (Irreducibility on open sets). Let d ≥ 2. If the following as-
sumption on supp�µ� holds:

supp�µ� is path-connected and supp°�µ� 6= \;(7)

then �Xt�t∈N satisfies, for every starting value x ∈ Cn and any open set O ⊂ Cn,

O ∩ supp�µ�n 6= \ ⇒ Px�τO < +∞� > 0:(8)

This result points out the basic difference between the one-dimensional and
the multidimensional settings. In dimension 1 (see [3]), the CLVQ algorithm
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(0-neighbor Kohonen algorithm) leaves the initial order of the starting value
x unchanged: the n! sets Fσ x= �x ∈ Cn �xσ�1� < · · · < xσ�n��, σ a permutation
of �1; : : : ; n�, are all absorbing sets and make up a partition of D. [A set F is
absorbing for �Xt�t∈N if, for every x ∈ F, Px��X1 ∈ F�� = Px��∀ t ∈ N; Xt ∈
F�� = 1:] On the other hand, when d ≥ 2, the irreducibility on open sets
implies the following corollary.

Corollary 1. If d ≥ 2 and assumption (7) hold, then, for every subset F
of Cn,

F is an absorbing set ⇒ supp�µ�n ⊂ F:
Consequently, if supp�µ� is a convex set (i.e., supp�µ� = C), Cn is the smallest
closed stable set.

This diverging behavior is essentially due to the obvious topological prop-
erty of Rd, d ≥ 2x ∀ x ∈ Rd, Rd \ �x� is (still) path-connected.

Remarks. (a) It is obvious from the definition of the algorithm that C° n is
an absorbing set (this result fails if ε = 1).

(b) Figure 2 points out that when supp�µ� is not a convex set, there are
some areas in Cn that cannot be reached from any starting value x belonging
to supp�µ�n. So, the assumption O ∩ supp�µ�n 6= \ cannot be relaxed.

Corollary 2. If assumption (7) holds, then any n-tuple x ∈ supp°�µ�n is
topologically recurrent (in the sense of [20]).

The proof is obvious using the strong Markov property.

Some extensions of Theorem 1. (a) When d ≥ 3, assumption (7) can be
relaxed to “supp�µ� is path-connected and contains a small two-dimensional
disk.”

(b) The path-connectivity assumption of supp�µ� can be partly relaxed, too.
Suppose, for example, that d ≥ 2 and supp�µ� splits into two path-connected

Fig. 2.
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components C1 and C2. Then the chain is irreducible on open sets iff

∃x1 ∈ C1; ∃x2 ∈ C2 s.t. �x1 − x2� < max
(
max
u∈C1

�x1 − u�;max
u∈C2

�x2 − u�
)
:

1.2. Proof of Theorem 1 when x ∈ supp�µ�n. The main step of the proof is
the following proposition which says that a given component i of Xt can be
dragged from xi ∈ C into the vicinity of yi ∈ C provided that there is some
supp�µ�-valued path connecting these points.

Proposition 1. Let x ∈ Cn; y ∈ Cn and i ∈ I such that

i = min�k �xk = xi� and yi 6= xj for every 1 ≤ j ≤ n:

Assume that there exists a continuous path γix �0;1� → supp�µ� such that xi =
γi�0�; yi = γi�1� and minxk 6=xi dist�xk; γi� > 0. Then we have the following.

(a) For all r > 0, there exists T ∈ N∗ such that

Px�XT
i ∈ B�yi; r�y XT

k = xk for k 6= i� > 0:(9)

(b) Statement (a) holds uniformly. In fact, the time T can be chosen locally
uniformly with respect to all the components xk 6= xi of x (resp., w.r.t. x if xi
is single); that is, ∀ r > 0; ∃T ∈ N, s.t. for every z ∈ Cn satisfying

zk ∈ B
(
xk;

ρi
16

)
if xk 6= xi; zk = xk if xk = xi;

[
resp., zk ∈ B

(
xk;

ρi
16

)
; 1 ≤ k ≤ n; if xi is single

]
;

(10)

Pz�XT
i ∈ B�yi; r�y XT

k = zk for k 6= i� > 0;

where ρi x= minxk 6=xi dist�xk; γi� > 0. Moreover, T x= T�r; ρi; γi� only depends
on r, ρi and on the uniform continuity modulus of the path γi.

In turn, Proposition 1 relies on the following “safety” lemma.

Lemma 1. Let x ∈ Cn, i ∈ I s.t. i x= min�k �xk = xi� and ri ∈
�0;minxk 6=xi �xk − xi��. For every g ∈ supp�µ� s.t. �ri/8� ≤ �g − xi� ≤ �ri/4�,
for every r > 0, there exists some T ∈ N s.t., for every z ∈ Cn whose components
satisfy the following:

�11��i�




�zi − xi� <

ri
16
; if xi is single,

zi = xi; otherwise,

(ii) zk = xi for every k 6= i s.t. xk = xi;
(iii) �zk − xk� < ri/16 if xk 6= xi;
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one has

Pz�XT
i ∈ B�g; r�; XT

k = zk; k 6= i� > 0:

Furthermore, T only depends upon ri, r (and ε).

Proof. Without loss of generality we may assume that r < ri/8. We will
prove by induction on t that the winning indicies at times s = 1; : : : ; t are all
i on the event At x= �ωs ∈ B�g; r/2�; 1 ≤ s ≤ t� so that

Xt
i = �1− ε�tzi + ε

t∑
s=1

�1− ε�t−sωs:(12)

(t = 1). zi is single. Then

�ω1 − zk� ≥ �xi − xk� − ��ω1 − g� + �g − xi� + �zk − xk�� >
5ri
8

if k 6= i;

�ω1 − zi� ≤ �ω1 − g� + �g − xi� + �xi − zi�� <
3ri
8
;

so ω1 ∈ Ci�z�.
zi is not single. The above inequalities still hold, respectively, for zk 6= zi

and zk = zi. Furthermore, i = min�k � zk = zi�.

(t⇒ t+ 1). Let ωt+1 ∈ B�g; r/2�.
zi is single. It follows from (12) that, on At,

�Xt
i − g� ≤ �1− ε�t

(
ri
16
+ ri

4

)
+ �1− �1− ε�t�r

2
<

5ri
16

so �Xt
i −ωt+1� < 3ri/8. On the other hand, if zk 6= xi,

�Xt
k −ωt+1� = �zk −ωt+1� > 5ri

8
as above.
zi is not single. For every k s.t. zk 6= xi, one has as above

�Xt
i −ωt+1� < 3ri

8
<

5ri
8
< �zk −ωt+1� = �Xt

k −ωt+1�:

If zk = zi, then �Xt
i − ωt+1� ≤ �1 − ε�t�xi − ωt+1� + �1 − �1 − ε�t��ri/16� <

�Xt
k − ωt+1� since �Xt

k − ωt+1� = �xi − ωt+1� ≥ �xi − g� − �g − ωt+1� >
�ri/8� − �ri/16� = �ri/16�. Finally one derives from (12) that Xt

i ∈ B�g; r� on
At provided that t ≥ T x= �ln�1− ε�/ ln�8r/�5ri��� + 1: 2

Proof of Proposition 1. The continuity of the path γi on the unit inter-
val yields a finite γi-valued subdivision �g′0; g′1; : : : ; g′N+2� such that g′0 = xi,

tk x= sup
{
s ∈ �tk−1;1� / �γi�s� − g′k−1� =

ρi
8

}
∧ 1;

g′k x= γi�tk�:
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Then the slightly modified subdivision gk x= g′k; 0 ≤ k ≤ N, gN+1 x= yi,
satisfy ρi/8 ≤ �gk − gk−1� ≤ ρi/4, 1 ≤ k ≤N+ 1.

The proposition relies upon N + 1 applications of the above lemma at the
successive points �x1; : : : ; xi−1; gk; xi+1; : : : ; xn� with r

�k�
i = ρi, r�k� x= ρi/16,

1 ≤ k ≤ N, r�N+1�
i x= ρi, r�N+1� x= r. It yields N + 1 times Tk ∈ N∗, and the

announced result holds with T x= T1 + · · · + TN+1 thanks to the Markov
property. 2

In Proposition 2, we prove that a whole n-tuple can be moved into the
neighborhood of a n-tuple y whose components lie in the same connected
component of the interior of supp�µ�.

Proposition 2. Assume that d ≥ 2 and assumption (7) holds. Let x;y ∈
supp�µ�n satisfying:

�i� y ∈ 0n for some connected component 0 of supp°�µ�;
�13�
�ii� ∀ i; j ∈ I; xi 6= yj:

Then we have the following:

(a) ∀ r > 0; ∃T ∈ N∗ s.t. Px�XT ∈ Bn�y; r�� > 0.
(b) Uniformity. If x ∈ D, ∃ρ > 0; ∀ r > 0; ∀ z ∈ Bn�x; ρ�,

Pz�XT ∈ Bn�y; r�� > 0

for the same T as in (a).

Proof. Let x;y be as in assumptions (13). The main problem is to choose
a suitable order to move one-by-one each component of X0 with a positive
probability using Proposition 1 at each step. First let �γi�1≤i≤n be a family of
supp�µ�-valued continuous paths s.t. γi�0� = xi and γi�1� = yi, γi ∩ �yk �k 6=
i� = \. This is possible as supp�µ� \ �yk �1 ≤ k ≤ n� is still path-connected:
d ≥ 2 and all the components of y lie in the same connected component 0 of
the interior of supp�µ� (0 is locally convex as an open set of Rd).

Consider now γ1. If, for every xk 6= x1; xk /∈ γ1, then assumption (7) of
Proposition 1 is fulfilled. Consequently, there exists some event with posi-
tive probability on which Xt

1 is moved into a neighborhood of y1, in T1 steps.
If some component(s) xk 6= x1 belong to γ1, we proceed as follows. We define
a permutation σ1 on the indices k of the γ1-valued components xk’s located
between y1 and x1 according to their natural encountering order. Thus, we set
σ1�1� x= k1 if xk1

is the closest component to y1 on the way to x1. Finally, σ1 is
conventionally defined on the packed components so as to be increasing on the
corresponding set of indices. Reproducing the same process with each path γi,
we finally define a global priority moving order σ on all the components of x.

Now we may build a new path γ∗σ�1�, joining xσ�1� to yσ�1� so γ∗σ�1�∩�xk / xk 6=
xσ�1�� = \ and γ∗σ�1�∩�yk /yk 6= yσ�1�� = \. We proceed as follows (see Figure
3): since supp�µ� \ �yk; 1 ≤ k ≤ n� is path connected, there exists a 0-valued
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Fig. 3.

path γ̃σ�1� connecting y1 and yσ�1�. Then γ∗σ�1� is made up by sticking together
the part of γ1 that connects xσ�1� and y1 with γ̃σ�1�.

We construct the same way round, a path γ∗σ�i� for every σ�i�. Then, we are
able to make up an event with positive probability on which the components
are moved one by one, with respect to the priority order σ , applying at the
ith step Proposition 1 to �xσ�i�; yσ�i�; γ∗σ�i��. The result finally follows from the
Markov property. 2

Proposition 3 provides a kind of converse to Proposition 2: it is possible to
redispatch the components into given small areas provided that the starting
value belongs to the same connected component of supp°�µ�. The proof still
relies on Proposition 1 and some priority moving order. The details are left to
the reader.

Proposition 3. Assume that d ≥ 2 and assumption �7� hold. Let x;y ∈
supp�µ�n satisfying

�14��i� x ∈ 0n for some connected component 0 of supp°�µ�;
�ii� ∀ i; j ∈ I; xi 6= yj:

Then both statements (a) and (b) of Proposition 2 are still valid.

Proposition 4. Theorem 1 holds when the starting value x belongs to
supp �µ�n.

Proof. Let x ∈ supp�µ�n. Without loss of generality we may assume that
O = Bn�y; r�; y = �y1; : : : ; yn� ∈ supp�µ�n; r > 0. Let ỹ ∈ D s.t. �x; ỹ�
satisfies assumption (13) of Proposition 2 and �ỹ; y� satisfies (14). The n-tuple
ỹ is used as a “transit” point. Proposition 3 yields a time S and ρ̃ > 0 s.t.

∀ z ∈ Bn�ỹ; ρ̃�; Pz�XS ∈ Bn�y; r�� > 0:

Then Proposition 2 yields a time T ∈ N s.t.

Px�XT ∈ Bn�ỹ; ρ̃�� > 0:
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Finally, the Markov property applied at time T yields

Px�XT+S ∈ Bn�y; r�� ≥ Px��XT ∈ Bn�ỹ; ρ̃�� ∩ �XT+S ∈ Bn�y; r���;
≥ Ex

(
1�XT∈Bn�ỹ; ρ̃��PXT�XS ∈ Bn�y; r��

)
;

> 0;

which completes the proof. 2

1.3. Attractivity of supp�µ�n. At this stage, it remains to prove that Xt

can be dragged with positive Px-probability into supp�µ�n from any starting
value x ∈ Cn.

The main ingredient is the following geometrical lemma about the convex
hull of supp�µ�.

Lemma 2. Suppose that µ is not a Dirac mass. Every u ∈ C has at least a
projection v ∈ supp�µ�, that is, s.t. �u − v� = minw∈supp�µ� �u − w�. Any such
projection satisfies �u− v� < supw∈supp�µ� �w− v�:

Proof. One may assume that u ∈ C \ supp�µ�. The point u is an extremal
point of the convex closed ball B�v; �u− v�� and so B�v; �u− v�� \ �u� is still
convex. If supw∈supp�µ� �w− v� ≤ �u− v�, then supp�µ� ⊂ B�v; �u− v�� \ �u�.
Hence C ⊂ B�v; �u− v�� \ �u� which is contradictory. 2

The idea is now to drag one-by-one the C \ supp�µ�-valued components of
a starting value x ∈ Cn, starting by the closest to supp�µ�. To this end, the
stimuli will be picked up near the projection v of this component on supp�µ�.
But, to make sure that an outside component will actually be attracted, all
the inside components must have been previously sent to the neighborhood of
a far enough point w ∈ supp�µ�. The inside components are then driven into
supp°�µ� to increase the number of components that are truly inside supp�µ�.

First a few technical notations. For every x ∈ Cn, set j�x� x= ��i ∈ I �xi ∈
supp�µ���, σ1 x= min�t �j�Xt� ≥ �j�X0� + 1� ∧ n� and τ

k
x= min�t �j�Xt� ≥

k�; 1 ≤ k ≤ n� (τ
0
x= 0). If θt denotes the canonical shift on the Xt’s, one has

τ1 ≤ σ1; τk+1 = τk + σ1 ◦ θτk; 1 ≤ k ≤ n− 1:(15)

Proposition 5. Suppose that assumption (7) holds.

(a) For every x ∈ Cn; Px�σ1 < +∞� > 0.
(b) For every x ∈ Cn and for every k ∈ I; Px�τk < +∞� > 0. Consequently

∀ x ∈ Cn; Px�τsupp�µ�n < +∞� = Px�τn < +∞� > 0:

Remark. In fact, we show that Px�τsupp° �µ�n < +∞� > 0.

Proof. (b) The proof is straightforward by induction, using the strong
Markov property, assertion (a) and inequalities (15). Assume that Px�τk <
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+∞� > 0 for some k ∈ �0; : : : ; n− 1�. Then

Px�τk+1 < +∞� = Px�τk < +∞ and σ1 ◦ θτk < +∞�
= Ex�1�τk<+∞�PXτk �σ1 < +∞��
> 0 using the induction assumption.

(a) If x ∈ supp�µ�n, σ1 = 0; otherwise we set

i0 x= min
{
i / dist�xi; supp�µ�� = min

xk /∈supp�µ�
dist�xk; supp�µ��

}
:

Lemma 2 yields vi0 ∈ supp�µ� s.t. �xi0 − vi0� < supw∈supp�µ� �w− vi0�.
Let J�x� x= �k ∈ I �xk ∈ supp�µ�� and let wk ∈ supp�µ�, k ∈ J�x�, r > 0

s.t.
⋃
k∈J�x�B�wk; r� ⊂ �w � �w − vi0� > �xi0 − vi0�� and the B�wj; r� have a

pairwise empty intersection. Further restrictions on r will be added later on.
Proposition 2(a) admits a straightforward extension in which some compo-
nents of the starting value w may lie outside supp�µ� provided that the inside
ones lie inside the same connected component of supp�µ�. It provides a time
T1 ∈ N∗ s.t. Px�XT1

j ∈ B�wj; r�; j ∈ J�x�� > 0. Roughly speaking, that means
that we “hide” the supp�µ�-valued components far enough from vi0 . So, we
may now attract an outside component.

Let z ∈ Cn s.t. zj ∈ B�wj; r�; j ∈ J�x�, zi = xi; i /∈ J�x�. Let ρ0 > 0 s.t.

B�vi0; ρ0� ∩C ⊂
{
ω ∈ C � dist�ω; �xk / �xk − vi0� = �xi0 − vi0���

< dist
(
ω;

⋃

k∈J�x�
B�wk; r�

)}

and ρ0 < ε/�2+ ε��xi0 − vi0�. An easy computation shows that, on the event
�ω1 ∈ B�vi0; ρ0��, the winning index i1 ∈ �k / �xk − vi0� = �xi0 − vi0�� Pz-
a.s. and that B�vi0; ρ0� ⊂ Ci1�X1�; Pz-a.s. For notational convenience, this
first winning index will still be denoted i0. So continuing to pick up the ωt’s in
B�vi0; ρ0� yields a time T2 s.t. Pz�XT2

i0
∈ B�vi0;2ρ0�; XT2

j = zj; j 6= i0� > 0 for
every z defined as above. Let γ0 be a supp�µ�-valued path satisfying γ0�0� x=
vi0 and v′i0 x= γ0�1� ∈ supp°�µ�: At the very worst, all the wj, j ∈ J�x�, may lie
on γ0. Now let ṽj; j ∈ J�x� ∪ �i0�, be some elements satisfying ṽi0 = v′i0 such
that ṽj lies in the same connected component of supp°�µ� as v′i0 . Provided that
2ρ0 and r are small enough, a straightforward adaptation of Proposition 2(b)
yields a time T3 s.t., for every y ∈ Cn satisfying yj ∈ B�wj; r�; j ∈ J�x�; yi0 ∈
B�vi0;2ρ0�; yi = xi; i /∈ J�x� ∪ �i0�,

Py
(
X
T3
k ∈ B�ṽk; r�︸ ︷︷ ︸

⊂supp° �µ�

; k ∈ J�x� ∪ �i0�; X
T3
k = yk; k /∈ J�x� ∪ �i0�

)
> 0:
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Finally, the Markov property successively applied at times T`, 1 ≤ ` ≤ 3,
leads to

∀ x ∈ Cn \ supp�µ�n; ∃ T �= T1 +T2 +T3� ∈ N∗ s.t. Px�j�Xt� ≥ j�x� + 1� > 0:
2

End of the Proof of Theorem 1. The result follows from Propositions 4
and 5, using some standard Markov arguments and

Px�τO < +∞� ≥ Px�τn < +∞ and τn + τO ◦ θτn < +∞�
≥ Ex�1�τn<+∞�PXτn �τO < +∞�� > 0: 2

Proof of Corollary 1. Assume that F is stable and does not meet
supp�µ�n. Then maxy∈F j�y� ≤ n − 1; let x0 ∈ argminF j. Proposition 5(b)
implies that there is some T s.t. Px0

�XT ∈ supp�µ�n� > 0. As XT ∈ F Px0
-a.s.,

F ∩ supp�µ�n 6= \.
Now, let x̃ ∈ F ∩ supp�µ�n and y ∈ supp�µ�n. For every open neighborhood

O of y, Px̃�τO < +∞� > 0, so F∩O 6= \ hence y ∈ F. Finally supp�µ�n ⊂ F. 2

Remark. The lack of uniformity with respect to the starting value x in
Theorem 1 is the main gap between irreducibility on open sets and classical
recurrence properties (see Theorem 3 below).

2. Doeblin recurrence of the Kohonen CLVQ algorithm. The Doe-
blin recurrence property of a Markov chain �Xt� consists of the convergence
with a geometric rate of the Px-distribution of Xt to a unique invariant prob-
ability measure ν, uniformly in x. It is also known as the uniform ergodicity
property (see [20]). The theorem that will be precisely called upon is recalled
below for the reader’s convenience. For some background see [8], [22] or, more
recently, [20].

Theorem 2. Let �Xt�t∈N be an �E;E �-valued homogeneous Markov chain
with transition P�x;dy�. If �Xt�t≥0 satisfies

�G � ≡ ∃χ; nonnegative measure on �E;E �; ∃ t0 ≥ 1; ∃ c > 0; ∃G ∈ E(16)

s.t. (i) χ�G� > 0, and (ii) ∀ y ∈ E; ∀ B ∈ E ; B ⊂ G ⇒ Py�Xt0 ∈ B� ≥ cχ�B�,
then �Xt�t≥0 admits a unique invariant probability measure ν satisfying the
following:

(i) ν�B� ≥ cχ�B� for every B ∈ E ∩G,
(ii) ∀ t ≥ 1; ∀ y ∈ E; ∀ A ∈ E ; �Py�Xt ∈ A� − ν�A�� ≤ �1− cχ�G���t/t0�−1.

The chain is then said to be Doeblin recurrent (or uniformly ergodic).

2.1. The main Doeblin recurrence result. The Doeblin recurrence of the
d-dimensional Kohonen CLVQ algorithm, d ≥ 2, finally holds under the same
type of assumption as in the one-dimensional setting; that is, if µ is locally
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minorized by the Lebesgue measure λCn on Cn. However, one must keep in
mind that, as soon as d ≥ 2, the chain has no strict absorbing set while n!
absorbing sets exist when d = 1. Namely, we have the following theorem.

Theorem 3. Assume that supp�µ� = C and C
° 6= \. If

∃ an open set O ⊂ C; ∃ α > 0 s.t. µ�O ≥ αλ�O;(17)

then the d-dimensional Kohonen CLVQ algorithm is Doeblin recurrent.

Remarks. (a) Note that under the above assumptions the semigroup Pε

of the chain is not Feller (even on D). So the elementary fixed point theorems
cannot provide the existence of an invariant probability measure.

(b) Assumption (17) is rather classical for nonlinear regression models like
Xt = f�Xt−1� + ωt. It still works in this more nonlinear model Xt+1 =
F�Xt;ωt+1�.

Application. The chain being Doeblin recurrent, it is straightforward that,
for every bounded Borel function fx Cn→ R, the Poisson equation F−P�F� =
f− ν�f� has a bounded solution F�x� x=∑kP

k�f− ν�f���x�. Hence the chain
is positively recurrent and satisfies a central limit theorem; that is, for every
x ∈ Cn,

1
T

T−1∑
t=0

f�Xt� →Px−a:s:

∫
Cn
f�u�ν�du�

and

√
T

(
1
T

T−1∑
t=0

f�Xt� −
∫
Cn
f�u�ν�du�

)
→DPx

N �0yσ2�f��;

where σ2�f� x= ν�F2�− ν�P�F�2�. These results are some well-known Markov
background (see [9], page 302, or [20]). We recall them here as some convincing
arguments in favor of the implementation of the Kohonen CLVQ algorithm
with constant step: they allow some on-line numerical computation of integrals
and provide some confidence intervals for the estimates.

2.2. Proof of Theorem 3. We will show that the condition �G � of Theorem
2 is fulfilled with χ = �λ�O�⊗n. This condition is similar to the one-dimensional
one. The proof is divided into several lemmas. The first one is devoted to the
existence, for any starting point y, of a “petite recurrent” set Gy around y.
As a second step, we show that Xt can be dragged into Gy before a given
time T with a positive Px-probability, uniformly with respect to the starting
value x ∈ Cn (see Proposition 6). In turn, this result relies on a “δ-parting”
property (see Lemma 4). Proposition 1 stressed how the hitting time of a n-
ball depends on mini6=j �xi − xj� where x denotes the starting point of the
chain. So, in Lemma 4, we state that the chain �Xt�t≥0 reaches Kδ x= �z ∈
Cn / mini6=j �zi − zj� > δ�, δ > 0, with a positive Px-probability, uniformly
with respect to x.
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Lemma 3 (Existence of a “petite recurrent” set). Let x ∈ D and 0 < ρ <
1
4 mini6=j �xi − xj�. Then we have the following:

(i) Borel set ∀ B ⊂ Bn�x; ερ�, Px�Xn ∈ B� ≥ µ⊗n��B− �1− ε�x�/ε�:
(ii) The statement (i) holds locally uniformly w.r.t. x; namely, if η ∈�0; ερ�

and r = ερ− η,

∀ z ∈ Bn�x;η�; ∀ Borel set B ⊂ Bn�x; r�; Pz�Xn ∈ B� ≥ µ⊗n
(
B− �1− ε�z

ε

)
:

Proof. Let A x= �ω1 ∈ B�x1; ρ�; : : : ; ωn ∈ B�xn; ρ��. We will show that on
A, Pz-a.s., the winning indices are successively i1 = 1; : : : ; ik = k; : : : ; in = n.

Actually, one has on A:

�z1 −ω1� ≤ �z1 − x1� + �x1 −ω1� ≤ �1+ ε�ρ on one hand;

�zk −ω1� ≥ �xk − x1� − �zk − xk� − �x1 −ω1� > 2ρ;

k 6= 1 on the other hand:

So, as �1 + ε�ρ < 2ρ, the winning index at time 1 on A is i1 = 1 Pz-a.s.
Suppose now that we have proved that, on A, Pz-a.s., i1 = 1; : : : ; ik = k, for
k < n. Hence Xk

j = �1 − ε�zj + εωj; j ≤ k, and Xk
j = zj; j > k Pz-a.s. So,

B�xj; ρ� being a convex set, we have Xk
j ∈ B�xj; ρ�; 1 ≤ j ≤ n. Then

�Xk
j −ωk+1� ≥ �xj − xk+1� − �Xk

j − xj� − �xk+1 −ωk+1� > 2ρ; j 6= k+ 1;

�Xk
k+1 −ωk+1� = �zk+1 −ωk+1� < 2ρ; j = k+ 1:

So, at time n, we have Xn = �1− ε�z+ εWn, where Wn x=t �ω1; : : : ; ωn�. Note
that A = �Wn ∈ Bn�x; ρ��.

Now, let z ∈ Bn�x;η� and B ⊂ Bn�x; r�, Borel set. We have

�Xn ∈ B� ⊃
{
Wn ∈

B− �1− ε�z
ε

}
∩A =

{
Wn ∈

B− �1− ε�z
ε

}
:

Hence Pz�Xn ∈ B� ≥ µ⊗n��B− �1− ε�z�/ε�. 2

Lemma 4 (Uniform δ-parting of the components). Suppose that supp�µ� =
C. Then

∃ c > 0; ∃ δ > 0; ∃ T ∈ N∗ s.t. ∀ x ∈ Cn; Px�XT ∈Kδ� > c;
where Kδ x= �x ∈ Cn � ∀ i 6= j; �xi − xj� ≥ δ�.

Proof. Since C is a compact set, there exists some a; b ∈ C such that
�b−a� = δC (diameter of C), C being a closed convex set �a; b� ⊂ C. For every
u ∈ C, let p�u� ∈ �0; δC� be the coordinate of the orthogonal projection of u on
the straight line �a; b� with origin a. Notice that p�a� = 0, p�b� = δC.

Let x = �x1; : : : ; xn� ∈ Cn and let σ be the permutation of 1; : : : ; n such
that p�xσ�1�� ≤ · · · ≤ p�xσ�n�� and σ is increasing on the sets Ii x= �1 ≤ k ≤
n/p�xk� = p�xi��, i ∈ I. For notational convenience, we will denote p0 = 0 ≤
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· · · ≤ pi�x� x= p�xσ�i�� ≤ · · · ≤ pn+1 = δC. Notice that two components may
have the same projection so that the pi’s may not be distinct.

For every δ > 0 and 0 ≤ j ≤ n+ 1, let

K
j
δ x= �z ∈ Cn �pi+1�z� − pi�z� ≥ δ for at least j different indices i�:

So we have Kn+1
δ ⊂Kδ and K1

δ = Cn as soon as δ < δC/�n+ 1�, since∑n
i=0pi+1 − pi = δC:
Now, assume we have proved that

∀ δ ∈ �0; δC/�n+ 1��; ∀ j ∈ �0; : : : ; n− 1�; ∃ α > 0; ∃ t ∈ N∗

such that ∀ x ∈Kj
δ; Px�Xt ∈Kj+1

δ/4 � > α:
(18)

Then the lemma follows from a straightforward induction based on the Markov
property. Now, to prove assertion (18) we take x ∈Kj

δ , and consider the index
i x= min�k �pk+1 − pk > δ�. Without loss of generality we may assume that
i ≥ 1 (when i = 0, the proof below works with l x= max�k /pk+1 − pk≤ δ�≤n).

Let us consider now the point ξ ∈ C such that �xσ�i�; ξ� is parallel to the
diameter �a; b� of C, and p�ξ� − pi�x� = 3

8δ (see Figure 4).
Then, on the event A1 x= �ω1 ∈ B�ξ; r��, with r < δε/8, Px-a.s., the named

index i1 at time 1 [which may not be equal to σ�i� because of the convention]
is such that 0 ≤ p�xi1� ≤ pi. Thus X1

i1
= �1 − ε�xi1 + εω1 and Px-a.s. on the

event A2 x= �ω1; ω2 ∈ B�ξ; r��; the winning index at time 2 is still i1. As a
matter of fact,

�X1
i1
−ω2� < �1− ε��xi1 −ω

2� + ε�ω1 −ω2� ≤ �1− ε��3δ/8+ r� + 2εr;

�X1
k −ω2� > 3δ/8− r for every k 6= i1;

Fig. 4.
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and �1−ε�� 3
8δ+r�+2εr < 3

8δ−r since r < δε/8 (r < 3δε/8 would be suitable
at this stage of the proof).

Carrying on the process yields that Px-a.s., on the event As x= �ω1; : : : ; ωs ∈
B�ξ; r��, the winning indices at times 1; : : : ; s are all equal to i1 so that Xs

i1
=

�1− ε�sxi1 + ε
∑s
k=1 �1− ε�s−kωk.

Let tδ x= min�s / �1− ε�s < 8εr/3δ�. On the event Atδ
, Px-a.s., �Xtδ

i1
− ξ� ≤

δ/4, while no other component has been moved. So pi + �δ/4� ≤ p�Xtδ
i1
� ≤

pi+1 − 1
2δ, and thus Xtδ ∈Kj+1

δ/4 : Then we have

Px�Xtδ ∈Kδ/4� ≥ µ�B�ξ; r��tδ :
Assertion (18) finally derives from the lower semicontinuity of the function

y 7→ µ�B�y; r��, which has a positive lower bound then on the compact set
supp�µ� = C. 2

We will prove that the convexity of supp�µ� implies that the result in Propo-
sition 2 actually holds uniformly with respect to the starting point x ∈ Cn.

Proposition 6 (Uniform dragging). Suppose supp�µ� = C and C
° 6= \. Let

y ∈ Cn, r > 0; then

∃ β > 0; ∃ T ∈ N∗ such that ∀x ∈ Cn; Px�XT ∈ Bn�y; r�� > β:(19)

Proof. Since D∩Bn�y; r� is an open set and D = Cn, there is some y′ ∈ D
and r′ > 0 such that Bn�y′; r′� ⊂ D ∩Bn�y; r�. So, in order to establish (19),
we may assume w.l.o.g. that y ∈ D. Let δ x= 1

2 mini6=j �yi − yj� (so y ∈Kδ).
Now, using the δ-parting lemma (Lemma 4) and the Markov property, we

may assume that x ∈Kδ.
In order to apply Proposition 1, we will build now a family of C-valued

paths �γi�i∈I that connect xi and yi, have a uniformly bounded length L with
respect to x ∈ Kδ and satisfy ρi x= minxk 6=xi d�xk; γi� > 0 (see Proposition 1).
Let δ1 ∈�0; δ/2�. Assume for a while that

∀ k ∈ �1; : : : ; n�; yk /∈
n⋃
k=1

B�xk; δ�:(20)

For every i ∈ �1; : : : ; n�, we build γi by modifying the straight line �xi; yi�
as follows: we cancel the possible intersections of �xi; yi� with the balls
B�xj; δ1�;B�yk; δ1�; 1 ≤ j; k ≤ n; j; k 6= i and replace them by an arc of
the circle residing in the frontier of the intersecting ball. There are at most 2n
intersections. Hence the length of γi is bounded by L x= δC+2�n−1��π−2�δ1:

Without loss of generality we may assume that 0 < r < δ1/8. Then one
checks that r < ρ1, so Proposition 1(b) applied to x1 and y1 yields a time
T ∈ N∗ and a constant c > 0, depending only upon L; δ and r, such that

Px�XT
1 ∈ B�y1; r�y XT

j = xj; j 6= 1� > c:
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As r < ρ2, we may apply again Proposition 1(b), this time to x2; y2. So we get,
for some time T, ∀ z ∈ Cn with z1 ∈ B�y1; r� and zk = xk; k 6= 1;

Pz�XT
2 ∈ B�y2; r�y XT

k = zk; k 6= 1� > c:
Applying Proposition 1(b) to the xj; yj’s, 1 ≤ j ≤ k yields, for all z ∈ Cn,

s.t. z1 ∈ B�y1; r�; : : : ; zk ∈ B�yk; r�; zj = xj; j > k,

Pz�XT
k+1 ∈ B�yk+1; r�y XT

j = zj; j 6= k+ 1� > c:
Finally, the Markov property at times T; 2T; : : : ; nT yields that for every

x; y satisfying (20),

Px�XnT ∈ Bn�y; r�� ≥ cn:
Let us turn now to the case where x; y ∈Kδ but do not satisfy assumption

(20). We will show that, provided δ is small enough, there is some “transit”
n-tuple z ∈ Kδ such that both x; y and y; z satisfy (20). So, we may assume
w.l.o.g. that δ < δC/3n. The diameter of Bx;y x= ⋃n

j=1�B�xj; δ� ∪ B�yj; δ�� is
not greater than 2nδ. As 2nδ < 2

3δC < δC − δ, there exists some z1 ∈ C s.t.
d�z1;B

x;y� > δ.
Carrying on the process in exactly the same way yields by induction

z2; : : : ; zn, s.t.

∀ k ∈ �0; : : : ; n− 1�; d�zk+1;B�z1; δ� ∪ · · · ∪B�zk; δ� ∪Bx;y� > δ:
One easily checks that the n-tuple z = �z1; : : : ; zn� ∈ Kδ satisfies the above
requirement for a transit point. 2

End of the Proof of Theorem 3. Let x0 ∈D ∩On and ρ0<
1
4 mini6=j �xi−

xj� s.t. Bn�x0; ρ0� ⊂ On. Let η0; r0 be as defined in Lemma 3(ii):

∀ z ∈ Bn�x0; η0�; ∀ B ⊂ Bn�x0; r0�; Pz�Xn ∈ B� ≥ µ⊗n
(
B− �1− ε�z

ε

)
:

As �B− �1− ε�z�/ε ⊂ �Bn�x0; r0� − �1− ε�z�/ε ⊂ Bn�x0; ρ0�, one has

Pz�Xn ∈ B� ≥ αnλ⊗n
(
B− �1− ε�z

ε

)
≥
(
α

ε

)n
λ⊗n�B�:

Now, Proposition 6 yields a time T0 and β0 > 0 s.t.

∀ x ∈ Cn; Px�XT0 ∈ Bn�x0; η0�� ≥ β0:

Then the Markov property at time T0 leads to

∀ x ∈ Cn; Px�XT0+n ∈ B� ≥ Ex
(
1�XT0∈Bn�x0;η0��PXT0 �Xn ∈ B�

)
;

≥ β0

(
α

ε

)n
λ⊗n�B�:

Condition �G � of Theorem 2 is thus satisfied with χ = λ⊗n, t0 = T0+n and
G = Bn�x0; r0�. This completes the proof. 2
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Remark. Whenever both existence and uniqueness of ν hold, then ν is
symmetric; that is, for any permutation σ ∈ �1; : : : ; n�; ν = νσ , where νσ
is the image of ν by the application ϕσ from D onto D defined by x 7→
�xσ�1�; : : : ; xσ�n��. The transition Pε obviously satisfies Pε�f� = Pε�f ◦ϕσ� for
every Borel bounded function f whose support is contained in D. So νr is also
an invariant probability measure, uniqueness providing the expected equality.

If uniqueness assumption fails, there exists at least one symmetrical in-
variant probability measure νsym x= �1/n!�∑σ νσ .

3. About the invariant probability measure. This section is devoted
to some investigations about the structure of an invariant probability measure
ν for the chain. Following Theorem 3, the existence and uniqueness of ν is
granted, provided that supp�µ� is a convex set with nonempty interior and µ
is locally minorized by the Lebesgue measure. However, our conjecture is that
ν does exist at least whenever assumption (17) holds and supp°�µ� = supp�µ�
(i.e., supp�µ� has no tentacle).

3.1. Location of the support of ν.

Theorem 4. Assume that assumption (7) holds [supp�µ� is path-connected
and supp°�µ� 6= \] and ν is an invariant probability measure for �Xt�t≥0. Then
ν satisfies the following:

(a) ν�D� = 1 and �supp�µ��n ⊂ supp�ν� ⊂ Cn;
(b) if supp�µ� is nonconvex, then �supp�µ��n« supp�ν�.

Remarks. In terms of applications, Theorem 4 shows that the algorithm
with constant step necessarily explores the vicinity of the tracked (local) min-
ima. No early freezing can occur as with the usual decreasing step algorithm.

Proof of Theorem 4(a). We first notice that D is a stable set for the
Markov chain �Xt�; that is,

∀ x ∈ D; Px�X1 ∈ D� = 1:(21)

In fact, if the winning index at time 1 is i, then X1
i = �1 − ε�xi + εω1 and

X1
k = xk for k 6= i. If X1

i = xj for some j 6= i, then �1−ε��xi−ω1� = �xj−ω1�.
Such an equality cannot hold, since i is the winning index.

Moreover, (21) and the Markov property straightforwardly imply that

∀ x ∈ D; Px�∀ t ≥ 1; Xt ∈ D� = 1:

Now, let O ⊂ D ∩ �supp�µ��n, where O is a nonempty open set. Theorem 1
yields

∀ z ∈ Cn; ∃ Tz ∈ N s.t. Pz�XTz ∈ O� > 0:

The Markov property then implies, for every z ∈ Cn and t ∈ N,

Pz�XTz+t ∈ D� ≥ Ez
(
1�XTz∈O�PXTz �Xt ∈ D�

)
= Pz�XTz ∈ O� > 0;
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and so

∀ z ∈ Cn; lim inf
t

Pz�Xt ∈ D� > 0:(22)

Finally, the Pε-invariance of the measure ν and Fatou’s lemma imply

ν�D� =
∫
Cn
Px�Xt ∈ D�ν�dx� ≥ ν�D� +

∫
cD

lim inf
t

Px�Xt ∈ D�
︸ ︷︷ ︸

>0

ν�dx�:(23)

Hence ν�cD� = 0. So ν�D� = 1 and supp�ν� ⊂ D ⊂ Cn. Now, let y ∈ �supp�µ��n
and r > 0. According to Theorem 1,

∀ x ∈ supp�ν�; ∃ Tx ∈ N s.t. Px�XTx ∈ Bn�y; r�� > 0:(24)

So there is some T̃ ∈ N s.t. ν��x /Px�XT̃ ∈ Bn�y; r�� > 0�� > 0. Now, �Pε�T̃
being invariant by ν,

ν�Bn�y; r�� =
∫
Pz�XT̃ ∈ Bn�y; r��ν�dz�

≥
∫
�z/Pz�XT̃∈Bn�y; r��>0�

Pz�XT̃ ∈ Bn�y; r��︸ ︷︷ ︸
>0

ν�dz� > 0:
(25)

Hence ν�Bn�y; r�� > 0 for any r > 0; that is, y ∈ supp�ν�:
The proof of item (b) will be derived as a consequence of the main result of

the next subsection. 2

3.2. About supp�ν� when supp�µ� is not a convex set. For every ε ∈ �0;1�,
let Dε x= �ε

∑t
s=0 δs�1 − ε�s; t ∈ N; δs ∈ �0;1�; 0 ≤ s ≤ t� and let Dε be its

closure. The following lemma provides a description of the set Dε.

Lemma 5. (i) If ε ≤ 1
2 , Dε is everywhere dense in �0;1�; that is, Dε = �0;1�.

(ii) If ε > 1
2 , Dε is nowhere dense in �0;1�; that is, λ�Dε� = 0.

Remark. The set D2/3 is in fact the Cantor set.

Proof. (i) ε ≤ 1
2 . Let z ∈ �0;1�. One sets δ0 = 0 if z < ε; δ0 = 1 if z ≥ ε.

Then 0 ≤ z− εδ0 ≤ ε1�δ0=0�+�1− ε�1�δ0=1� ≤ 1− ε since ε ≤ 1/2. Assume now
that there exists some δ0; : : : ; δt ∈ �0; 1� such that 0 ≤ z− ε�δ0 + · · · + δt�1−
ε�t� ≤ �1 − ε�t. Setting δt+1 = 0 if ��z− ε�δ0 + · · · + δt�1− ε�t��/�1− ε�t� < ε,
δt+1 = 1 otherwise implies that

0 ≤ z− ε�δ0 + · · · + δt+1�1− ε�t+1�

≤
{
ε�1− ε�t+1 ≤ �1− ε�t+2; if δt+1 = 0;

�1− ε�t+1�1− εδt+1� = �1− ε�t+2; if δt+1 = 1:
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Finally,

∀ t ∈ N; 0 ≤ z− ε�δ0 + · · · + δt�1− ε�t� ≤ �1− ε�t+1 −→ 0 as t→+∞;
which completes the proof of (i).

(ii) If ε > 1
2 ,

{
ε
∑t
s=0 δs�1− ε�s ≤ 1− ε; if δ0 = 0;

ε
∑t
s=0 δs�1− ε�s ≥ ε; if δ0 = 1:

Hence Dε∩�1− ε; ε�= \. Carrying on the process on both subintervals finally
yields that λ�cDε� =

∑
t�2�1− ε��t�2ε− 1� = 1. 2

Proposition 7. Suppose that supp�µ� satisfies assumption (3). Let a, b,
c ∈ supp�µ� such that �a− b� < min��a− c�; �b− c��.

(i) If ε ≤ 1
2 , then �a; b� × �c�n−1 ⊂ supp�ν�.

(ii) If ε > 1
2 , then �b+ �a− b�Dε� × �c�n−1 ⊂ supp�ν�.

Proof. Taking Lemma 5 into account, the proposition amounts to proving
that b+ �a− b�Dε × �c�n−1 ⊂ supp�ν�.

Let m x= λa + �1 − λ�b with λ ∈ Dε and let η > 0 such that �a − b� +
2η < min��a − c�; �b − c��. There exists some large enough T ∈ N such that
�1− ε�T < η/�a� and λ = ε∑T

s=0 δs�1− ε�s.
Now, let O x= B�a;η� ×B�c; η� × · · · ×B�c; η� be an open neighborhood of

�a; c; : : : ; c� and let y ∈ O be a starting value for the algorithm.
On the event A x= ⋂1≤s≤T�ωs ∈ B�a;η� if δT−s = 0, ωs ∈ B�b;η� if δT−s =

1�, the winning index at times t ∈ �1; : : : ;T� is Py-a.s. always 1. So

Xt
1 = �1− ε�ty1 + ε

t∑
s=1

�1− ε�t−sωs; Xt
i = yi; 2 ≤ i ≤ n; 1 ≤ t ≤ T:

This follows from an induction relying on the inequalities

�Xt
1 − a� ≤ η+ �a− b� and �Xt

1 − b� ≤ η+ �a− b�;
�Xt

i − a� > �a− c� − �yi − c� > �a− b� + η
and

�Xt
i − b� > �a− b� + η if i ≥ 2:

Now, still using the above inequalities, one has Py-a.s. on the event A,

�XT
1 −m� ≤ �1− ε�T�y1� + ε

∑
s / δT−s=1

�1− ε�T−s�ωs − a�

+ ε
∑

s / δT−s=0

�1− ε�T−s�ωs − b�

≤ �1− ε�T��a� + η� + �1− �1− ε�T�η ≤ 2η:
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Hence, writing θ x=∑T
s=0 δs,

Py�XT ∈ B�m;2η� ×B�c; η� × · · · ×B�c; η��
≥ Py�A�
≥ µ�B�a;η��θ × µ�B�b;2η��T−θ > 0:

Now, let x ∈ supp�µ�n and α > 0. Following Theorem 1, there exists some
integer S such that

∀ z ∈ Bn�x; α�; Pz�XS ∈ O� > 0:

Therefore it follows, using the Markov property, that for every z ∈ Bn�x; α�,
Pz�XS+T ∈ B�m;2η� ×B�c; η� × · · · ×B�c; η��

≥ Pz�XS ∈ O�µ�B�a;2η��θ × µ�B�b;η��T−θ > 0:

Now ν�Bn�x; α�� > 0 since supp�µ�n ⊂ supp�ν� and integrating w.r.t. the in-
variant probability measure ν finally yields

ν�B�m;2η� ×B�c; η� × · · · ×B�c; η��

=
∫
Pz
(
XS+T ∈ B�m;2η� ×B�c; η� × · · · ×B�c; η�

)
ν�dz�

≥
∫
Bn�x; α�

Pz
(
XS+T ∈ B�m;2η� ×B�c; η�n−1)ν�dz� > 0:

This completes the proof. 2

Proof of Theorem 4(b). All the probabilistic ingredients being included
in Proposition 7, the proof now amounts to discovering three points a; b; c
satisfying

a; b; c ∈ supp�µ�; �a; b� ⊂ csupp�µ� and

�a− b� < min��a− c�; �b− c��
(26)

in order to apply the proposition.
As a first step we will establish that, if supp�µ� is a nonconvex compact set,

then it satisfies the following (intuitive) property:

∀ η > 0; ∃ x 6= y ∈ supp�µ�
such that �x;y� ⊂ csupp�µ� and �x− y� ≤ η:

(27)

Then we will derive assumption (26) from (27).
Step 1. Let a; b ∈ supp�µ� such that �a; b� 6⊂ supp�µ� and γ be a continuous

supp�µ�-valued path joining a and b. Let η > 0. Now, consider a partition
g0; g1; : : : ; gk; : : : ; gm+1 of γ such that g0 = a; gm+1 = b; gi ∈ supp�µ� and
�gi − gi+1� ≤ η; 0 ≤ i ≤m. Two subcases arise.

Case (a). For some i0 ∈ �0; : : : ;m�, �gi0; gi0+1� 6⊂ supp�µ�. Let e ∈
�gi1; gi1+1� \ supp�µ�. Then the widest interval included in the open set
�gi1; gi1+1� \ supp�µ� and containing e, say I x= �x;y�, is not empty; that is,
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x 6= y and, supp�µ� being closed, x;y lie in supp�µ�. So assumption (27) is
clearly satisfied.

Case (b). For all i ∈ �0; : : : ;m�, �gi; gi+1� ⊂ supp�µ�. Then the piecewise
affine path γ1 joining the gi’s is supp�µ�-valued and has finite length. So,
supp�µ� being a compact set, there exists a supp�µ�-valued geodesic line γ̃
between a and b. The line γ̃ cannot be a straight line since �a; b� 6⊂ supp�µ�. So,
there exists a partition g̃0; g̃1; : : : ; g̃m; g̃m+1 of γ̃, such that g̃0 = a; g̃m+1 =
b; �g̃i − g̃i+1� ≤ η; 0 ≤ i ≤ m and �g̃i1; g̃i1+1� 6⊂ γ̃ for at least one index
i1 ∈ �0; : : : ;m�. Now, γ̃ being a geodesic line in supp�µ�, �g̃i1; g̃i1+1� cannot be
contained in supp�µ�.

Step 2. Assume now that no triplet �a; b; c� ∈ supp�µ�3 satisfies assumption
(26). Then,

∀ a; b ∈ supp�µ�; �a; b� ⊂ csupp�µ� ⇒ ∀ c ∈ supp�µ�;
�a− b� ≥ min��a− c�; �b− c��:

Using Step 1, one may choose a; b ∈ supp�µ� so as �a−b� < δC/8 and �a; b� ⊂
csupp�µ� [where δC still denotes the diameter of C = Conv�supp�µ��].

Now, the triangular inequality straightforwardly yields

∀ c ∈ supp�µ�; �a− c� ≤ �a− b� +min��a− c�; �b− c�� ≤ 2�a− b�:
On the other hand, δC = δsupp�µ� x= maxu; v∈supp�µ� �u− v�. Hence

δC x= max
c; c′∈supp�µ�

�c−c′� ≤ max
c∈supp�µ�

�a−c�+ max
c′∈supp�µ�

�a−c′� ≤ 4�a−b� ≤
δsupp�µ�

2
:

The obvious contradiction shows that (26) is fulfilled for some a; b; c ∈
supp�µ�, which completes the proof. 2

3.3. Absolute continuity properties �d ≥ 1�. Let λC denote the restriction
of the Lebesgue measure to the convex hull C of supp�µ�. Theorem 5 below
shows how the absolute continuity properties can be transferred from the
stimulus distribution µ to the invariant probability measure ν. It extends a
first (one-dimensional) result established in [3].

Theorem 5. (a) Assume that supp�µ� is path-connected and supp°�µ� 6= \
(i.e., assumption (7) which implies irreducibility on open sets). Then

µ� λC ⇒ 1supp�µ�n · ν � λCn :(28)

(b) If supp�µ� is a convex set with a nonempty interior (i.e., supp�µ� = C
and C

° 6= \), then

µ ∼ λC ⇒ ν ∼ λCn :

Proof of Theorem 5. Throughout the proof we will denote by ϕ the den-
sity of the probability measure µ.
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(a) For every J ⊂ �1; : : : ; n�, the projection from �Rd�n onto �Rd�J will be
denoted πJ. Then we set xJ x= πJ�x�, νJ x= ν ◦πJ and λJ x= λCn ◦πJ = λCJ .
We show by induction on k x= �J� the following property:

Pk ≡ ∀ J ⊂ �1; : : : ; n� with �J� = k; 1supp�µ�J · νJ � λJ:(29)

(P1). Let J = �i� and gx Rd → R+ be a nonnegative Borel function such
that g = 0 λ-a.s. The pε-invariance of ν implies that

∫
gdν�i� =

∫
Cn
ν�dx�

(∫
cCi�x�

g�x�i��µ�dω�

+
∫
Ci�x�

g��1− ε�x�i� + εω�µ�dω�
)
:

(30)

Now, for every x ∈ Cn,
∫
Ci�x�

g��1− ε�x�i� + εω�µ�dω� ≤
1
εd

∫
C
g�u�ϕ

(
u− �1− ε�x�i�

ε

)
du = 0:

So (30) now reads
∫
gdν�i� =

∫
Cn
ν�dx�g�x�i���1− µ�Ci�x���y

that is,
∫
Cn
ν�dx�g�x�i��µ�Ci�x�� = 0:

(31)

As µ�Ci�x�� > 0 on �x�i� ∈ supp�µ��, (31) implies
∫

supp�µ� g�x�i��ν�i��dx�i�� =
0. Finally 1supp�µ� · ν�i� � λC.
�Pk ⇒ Pk+1�. Assume that �J� = k + 1 and let gx �Rd�J → R+ be a non-

negative Borel bounded function satisfying g = 0 λJ-a.s. and g is everywhere
null outside supp�µ�J\�i�.

Let gi; xJ\�i� denote the partial function of g only depending on the ith com-
ponent xJ, the other xj’s, j ∈ J \ �i� being fixed. Now, the pε-invariance of ν
yields

∫
gdνJ =

∫
ν�dx�

(
g�xJ�

∑
`/∈J

µ�C`�x��

+
∑
i∈J

∫
Ci�x�

gi; xJ\�i���1− ε�xJ + εω�µ�dω�
)
:

(32)

Let p ∈ N∗. For every i ∈ J and x ∈ Cn, one has
∫
Ci�x�

gi; xJ\�i���1− ε�xJ + εω�µ�dω�

≤ p
∫
C
gi; xJ\�i���1− ε�xJ + εω�dω+ �g�∞λC��ϕ ≥ p��

≤ p

εd

∫
C
gi;xJ\�i��u�du+ �g�∞λC��ϕ ≥ p��:
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Integrating w.r.t. ν leads to
∫
ν�dx�

(∫
Ci�x�

gi; xJ\�i���1− ε�xJ + εω�µ�dω�
)

≤ p

εd

∫
νJ\�i��dxJ\�i��

(∫
duigi;xJ\�i��ui�

)
+ �g�∞λC��ϕ ≥ p��:

(33)

Now, g = 0 λJ-a.s.; thus gi;xJ\�i��ui� = 0 λ�dui�-a.s. for λJ\�i�-almost every
xJ\�i�. Using now the induction assumption Pk, we know that

1�supp�µ�J\�i�� · νJ\�i� � λJ\�i�:

Hence, for νJ\�i�-almost every xJ\�i� ∈ supp�µ�J\�i�, the first term on the right-
hand side of �33� is 0. Then letting p→+∞ yields in turn that

ν�dx�-a.s.
∫
Ci�x�

gi; xJ\�i���1− ε�xJ + εω�µ�dω� = 0;

since g is 0 everywhere outside supp�µ�J\�i�. So (32) now reads
∫
gdνJ =

∫
ν�dx�g�xJ�

(
1−

∑
i∈J
µ�Ci�x��

)
y

that is,
∫
ν�dx�g�xJ�

∑
i∈J
µ�Ci�x��

︸ ︷︷ ︸
>0 if xJ∈supp�µ�J

= 0:(34)

So,
∫
ν�dx�1�supp�µ�J��xJ�g�xJ� = 0; that is, 1supp�µ�J · νJ � λJ, which com-

pletes the proof of (a).
(b) This part of the proof is based on the “improved” version of Lemma 3

stated in Section 2.2. Let us go back to the notations of Theorem 3 (Doeblin
recurrence) and consider x0 ∈ D and its related “petite recurrent” (open) set
Bn�x0; r0� given by Lemma 3(ii). A careful reading of the proof of Theorem
3 shows that the following inequality holds for any Borel set B ⊂ Bn�x0; r0�
and any x ∈ D [assumption (17) is not required here]:

Px�XT0+n ∈ B� ≥ Ex
(

1�XT0∈Bn�x0; η0��µ
⊗n
(
B− �1− ε�XT0

ε

))
:

Hence, integrating w.r.t. the invariant probability measure ν yields

ν�B� ≥
∫
D
ν�dx�Ex

(
1�XT0∈Bn�x0; η0��µ

⊗n
(
B− �1− ε�XT0

ε

))
:(35)

Assume now that µ⊗n�B� 6= 0. Then µ ∼ λC implies �λC�⊗n�B� 6= 0
which in turn implies that �λC�⊗n��B− �1− ε�XT0�/ε� 6= 0 Px-a.s. since
�B− �1− ε�XT0�/ε ⊂ D. Finally µ⊗n��B− �1− ε�XT0�/ε� > 0 Px-a.s.

A straightforward substitution in (35) yields that ν�B� 6= 0; that is,
�µ⊗n��Bn�x0; r0� � ν�Bn�x0;r0�. Now D is a countable union of open n-balls
Bn�x0; r0� since one may set r0 x= �ε/8�mini6=j ��x0�i − �x0�j�. Finally,
ν�cD� = 0 implies that µ⊗n � ν. Part (a) completes the proof. 2
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Remark. If µ ∼ λC, there exists at most one invariant probability measure
(see [9] or [20]). Unlike the one-dimensional setting (see [3]), this does not
provide any stability property since the chain �Xt�t≥0 is never Feller in Cn

(because of cD) whenever d ≥ 2.

4. Asymptotic behavior of n« when «→→→0 (d≥≥≥1). The aim of this sec-
tion is to prove that in some way the weight of νε concentrates at the equi-
librium point(s) of the algorithm when ε ↓ 0. By equilibrium, we mean the
zeros of the average function of the algorithm h�x� x=

∫
CH�x;ω�µ�dω� de-

fined on Cn. This definition fits with the convention made in Definition 1 for
the Voronoi tessellation of points x ∈ ∂D x= Cn \D; that is,

∀ x ∈ Cn; hi�x� x=
∫
Ci�x�
�xi −ω�µ�dω�; 1 ≤ i ≤ n:

For notational convenience, if I x= I1 ∪ · · · ∪ Ip denotes the partition of the
unit set I into the p clusters of x ∈cD, we set for every ` ∈ �1; : : : ; p�

CI`�x� x= Cmin I`�x� and hI`�x� x= hmin I`�x�:
Note that if j ∈ I` and j 6= min I` then hj�x� = 0. Hence, in some sense,

the equilibrium set �h = 0� for n points contains all the equilibrium points of
the algorithm with p points, p ≤ n.

The main ingredient of this section is an important property of the Kohonen
CLVQ algorithm already mentioned in the introduction but not used since: if
µ is strongly diffuse then h derives—on D—from a potential; that is,

∀ x ∈ D; h�x� x= ∇Eµ
n�x� where Eµ

n�x� x=
∫

min
1≤i≤n

�xi −ω�2µ�dω�:

In fact, the potential Eµ
n is continuous (even locally Lipschitz) on the whole

space �Rd�n and differentiable on
⋃
i6=j�xi 6= xj�. It was studied in full detail

in [21] (Eµ
n is continuous, the sequence n 7→ minCn E

µ
n is decreasing to 0, etc.),

together with some applications to high-dimensional numerical integration.

Theorem 6. Assume that (i) µ is strongly diffuse and (ii) µ satisfies as-
sumption (7).

(a) If d ≥ 2, any limiting point ν0 for the weak convergence of the family
�νε�ε>0 as ε ↓ 0 satisfies

supp�ν0� ⊂ �h = 0�
(including the zeros of h in ∂D x= Cn \D).

(b) If d = 1, one may assume that supp�µ� = �0;1� and (see [3]) that Xt

belongs to F+n x= �x ∈ �0;1�n /0 < x1 < · · · < xn < 1� since all the (open)
simplexes of �0;1�n are absorbing sets. Then, still denoting by νε the restriction
to F+n of the invariant probability measure, one has for any weak limiting point
ν0 of �νε; ε > 0� as ε ↓ 0,

supp�ν0� ⊂ �h = 0� ⊂ F+n :
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Remarks. Statement (b) slightly improves the original one-dimensional
result in [3] where absolute continuity of µ was required.

If h were continuous on the whole state set Cn instead of D, the proof would
reduce to a straightforward extension of the one-dimensional case in [3]: when
d = 1, the key lemma is that the restriction of h to any absorbing set, say
F+n , can be continuously extended on its closure. Then Lemma 8 completes
the proof. This is no longer true when d ≥ 2. In the multidimensional setting,
the main ingredient is to approximate properly Eµ

n and its derivative by some
continuously differentiable functions 8p satisfying:

(i) 8p→ E
µ
n as p→+∞;

(ii) ∇8p→ ∇8∞ as p→+∞ and ∇8∞ = ∇Eµ
n on D;

(iii) The inner product ∇8p · h is continuous on Cn.

Note that the set �h = 0� in item (a) includes the zeros of the h lying in cD
provided by the above extension of h. Namely, it contains the points x ∈ cD,
whose clusters �xI1

; : : : ; xIp� are the components of an equilibrium point for
the algorithm with p units, p < n. So this result is less satisfactory than the
one-dimensional one.

4.1. Approximation of the average function h.

Definition 2. Let p ∈ N∗. For every x ∈ �Rd�n, one sets

∀ ω ∈ Rd; ϕp�ω;x� x=





( n∑
k=1

�xk −ω�−2p
)−1/p

; if ω /∈ �xi; 1 ≤ i ≤ n�;

0; otherwise,

8p�x� x=
∫
ϕp�ω;x�µ�dω� ∈ R+:

Proposition 8. For every p ∈ N∗, we have the following:

(i) 8p is a continuously differentiable function whose gradient at x ∈
�Rd�n is

∇8p�x� = 2
(∫ ( n∑

k=1

�xk −ω�−2p
)−�p+1�/p

�xi −ω�µ�dω�
)

1≤i≤n
:

(ii) For every x ∈ D, ∇8p�x� −→p→+∞ h�x�.
If x /∈ D and I = I1∪· · ·∪I`∪· · ·∪Ip denotes the partition of I into the clusters
of x, then

∀ i ∈ I`; ∇8p; i�x� −→p→+∞
1
�I`�

hI`�x� =
1
�I`�

∫
CI` �x�

�xI` −ω�µ�dω�:

(iii) Let ∇8∞ x= limp ∇8p on Cn. Then �h�2/n ≤ h · ∇8∞.
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Remarks. Furthermore, 8p →p→+∞ E
µ
n uniformly on compact sets of

�Rd�n.
In spite of our notation, ∇8∞ is not a gradient on cD.

The above results on 8p follow from the properties of the functions ϕp�ω;x�
gathered in the straightforward lemma below whose proof is left to the reader.

Lemma 6. For every p ∈ N∗, x ∈ �Rd�n, ω ∈ �Rd�n, we have the following:

(i) n−1/p min1≤k≤n �xk −ω�2 ≤ ϕp�ω;x� ≤ min1≤k≤n �xk −ω�2;

(ii) ϕp�ω; ·� is continuously differentiable on �Rd�n and, for every i ∈
�1; : : : ; n�,
∂ϕp

∂xi
�ω;x�

x=





2
( n∑
k=1

( �xi −ω�
�xk −ω�

)2p)−�p+1�/p
�xi −ω�; if ω /∈ �xj; 1 ≤ j ≤ n�;

0; otherwise.

Hence
∥∥∥∥
∂ϕp

∂xi
�ω;x�

∥∥∥∥ ≤ 2 min
1≤k≤n

(�xk −ω�
�xi −ω�

)2�p+1�
�xi −ω� ≤ 2�xi −ω�:

Proof of Proposition 8. (i) Using Lemma 6, for every ω ∈ C,
x 7→ ϕp�ω;x� is continuously differentiable on �Rd�n and ϕp�ω; ·� and
�∂ϕp/∂xi��ω;x� are, respectively, bounded on C by δ2

C and 2δC. So 8p is well
defined and continuously differentiable thanks to the suitable dominated
convergence theorems.

(ii) Let i ∈ I`; if ω /∈ CI`�x�,
∥∥∥∥
∂ϕp

∂xi
�ω;x�

∥∥∥∥ ≤ 2 min
1≤k≤n

(�xk −ω�
�xi −ω�

)2�p+1�

︸ ︷︷ ︸
<1

�xi −ω�:

Hence �∂ϕp/∂xi��ω;x� −→p→+∞ 0.
If ω ∈ CI`�x�,

n∑
j=1

( �xi −ω�
�xj −ω�

)2p

= �I`� +
n∑

j/∈I`

( �xi −ω�
�xj −ω�

)2p

−→p→+∞ �I`�:

Hence �∂ϕp/∂xi��ω;x� −→p→+∞ �1/�I`���xi − ω� and �∂ϕp/∂xi� ≤ 2�xi − ω�.
The dominated convergence theorem completes the proof (if x ∈ D, set Ii x=
�i�).

(iii) This follows from the obvious inequalities �I`� ≤ n. 2
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4.2. Proof of Theorem 6. Recall that, in any case, supp�νε� ⊂ Cn [cf. The-
orem 4(a)].

Lemma 7. (a) Let I be a cluster of x ∈ �Rd�n. Then

lim
y→x

∑
i∈I
hi�y� =

∫
CI�x�
�xI −ω�µ�dω� = hI�x�:

(b) For every p ∈ N∗, ∇8p · h is continuous on the whole set Cn.

Proof. (a) Let y�p� → x. Obviously CI�x� ⊂ lim infp
⋃
i∈ICi�y�p�� ⊂

lim infp
⋃
i∈ICi�y�p�� ⊂ CI�x�. Since µ is strongly diffuse, it follows that

1�∪i∈ICi�y�p��� −→ 1CI�x� µ-a.s. The dominated convergence completes the proof.
(b) The result follows from item (a), once it is observed that all the com-

ponents of ∇8p; i are identical for any index i belonging to the same cluster
I`. 2

Lemma 8. If f ∈ C 1��Rd�n; R� (continuously differentiable), then
∫
Cn
∇f�x� · h�x�νε�dx� −→ 0 as ε→ 0:

Proof. Let x ∈ Cn and ω ∈ C. The definition of the semigroup Pε in (6)
and the Taylor formula yield

�Pε�f��x� − f�x� + ε∇f�x� ·H�ω;x�� ≤ w�∇f; εδC�εδC;(36)

where w�∇f; ·� denotes the continuity modulus of ∇f. Integrating (36) with
respect to the invariant probability measure νε then yields

∣∣∣∣
∫
Cn
∇f�x� · h�x�νε�dx�

∣∣∣∣ ≤ δCw�∇f; εδC� −→ε→0 0: 2

Proof of Theorem 6. (a) Let ν0 x= limk ν
εk be a limiting point of the fam-

ily νε; ε > 0, for the weak topology on the probability measures on Cn. Ap-
plying Lemma 8 to the 8p functions (see Section 4.1) yields

∫
Cn
8p · h�x�νεk�dx� −→k→+∞ 0:

On the other hand, Lemma 7 implies that 8p · h is continuous on Cn, so

∀ p ∈ N∗;
∫
Cn
8p · h�x�ν0�dx� = lim

k

∫
Cn
8p · h�x�νεk�dx� = 0:

Then, letting p ↑ +∞, one derives from Proposition 8(ii) and 8(iii) that

0 ≤ 1
n

∫
Cn
�h�x��2ν0�dx� ≤

∫
Cn
∇8∞ · h�x�ν0�dx� = 0:

Hence supp�ν0� ⊂ �h = 0�.
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(b) If d = 1, assumption (7) reads: supp�µ� is a nondegenerate interval. So,
w.l.o.g., one may set supp�µ� x= �0;1�. Furthermore,F+n being an absorbing set,
one may only consider F+n instead of �0;1�n. The related invariance probability
measure(s) on F+n will still be denoted νε. Lemma 8 remains obviously true
in that setting. Following [2], one checks that the restriction of the average
function h to F+n admits a continuous extension h̃ to F+n ∩Cn. Using h̃ instead
of 8p in the above proof straightforwardly implies that supp�ν0� ⊂ �h̃ = 0�.
But, still following [2], �h̃ = 0� = �h = 0� ⊂ Fn

+ ∩D = F+n . 2

Provisional remarks. Actually, we guess that ν0 never weights the edge
ofD. Hence only the “true” n equilibria are weighted. Then, using, for example,
recent results in Fort and Pagès [12], it is most likely that only D-valued
attracting equilibria of the ODE ≡ ẋ = −h�x� are possibly weighted.

Conclusion. This work is a first step toward deeper investigations of
quantization algorithms. The existence of an invariant probability measure
νε for every ε ∈ �0;1� under natural assumptions on the stimuli distribution,
the geometrical characteristics of its support and its absolute continuity were
studied. Its asymptotic behavior as ε→ 0 has been elucidated. The compari-
son between these constant step results and those obtained with a decreasing
step assumption (

∑
t εt = +∞ and

∑
t ε

2
t < +∞; see [21] or [10]) suggests im-

plementing some intermediary algorithms inspired by simulated annealing to
reach an optimal (quadratic) quantization in the mutlidimensional case. In
the one-dimensional case, some simpler and faster deterministic algorithms
provide the optimal quantization (see papers by Lloyd, Kieffer and Trushkin
in [13]).
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Université Paris 6
URA 224
Tour 56, F-75252 Paris Cedex 05
and
Université Paris 12
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