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ABOUT THE PROOF-THEORETIC ORDINALS 
OF WEAK FIXED POINT THEORIES 

GERHARD JAGER AND BARBARA PRIMO 

Abstract. This paper presents several proof-theoretic results concerning weak fixed point theories over 

second order number theory with arithmetic comprehension and full or restricted induction on the natural 

numbers. It is also shown that there are natural second order theories which are proof-theoretically 

equivalent but have different proof-theoretic ordinals. 

Fixed points and fixed point theories play an important role in many branches 
of mathematical logic and theoretical computer science. The spectrum ranges from 
the fixed point theorem in recursion theory to fixed point arguments in categorical 
logic and denotational semantics of high-level programming languages. 

In proof theory, special emphasis has been put on formal systems for fixed points 
of (iterated) inductive definitions and their relationship to subsystems of analysis, 
set theory and constructive mathematics (cf. e.g. Buchholz, Feferman, Pohlers and 
Sieg [2], Feferman [3], and Jager [7]). However, interpreted in the proper sense, 
also features of modern type theories can be studied in terms of fixed points, and 
many concepts in nonmonotonic reasoning (circumscription, completion of theo­
ries, etc.) are related to fixed point theories. To a certain extent even parts of logic 
programming are built upon fixed point constructions (cf. e.g. Lloyd [9] and Jager 
and Stark [8]). 

The general purpose of this paper is to study several proof-theoretic aspects of 
the fixed point theories FP-ACA0 and FP-ACA. They are formulated in the lan­
guage of second order arithmetic, contain the axioms of primitive recursive arith­
metic PRA, and comprise comprehension for arithmetic formulas. In addition, 
there has to be a fixed point for every positive arithmetic definition clause, and this 
fixed point can be proved to define a set. Both theories differ in the principles of 
complete induction which are available: In FP-ACA0 complete induction on the 
natural numbers is restricted to sets, whereas FP-ACA contains complete induc­
tion for arbitrary formulas. 

We will show that the proof-theoretic ordinals of FP-ACA0 and FP-ACA are 
£0 and <pls0, respectively. This is remarkable since we will also see that FP-ACA0 

is proof-theoretically equivalent to the system (E\-AC) of second order arithmetic, 
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PROOF-THEORETIC ORDINALS OF FIXED POINT THEORIES 1109 

which is known to have proof-theoretic ordinal cple0. Hence we obtain the interest­
ing consequence that FP-ACA0 and (E\-AC) are proof-theoretically equivalent 
theories of second order arithmetic but have different proof-theoretic ordinals. 

In this paper we make use of the traditional approach to proof-theoretic ordi­
nals. Hence we call an ordinal a provable in a second order theory Th if there exists 
a primitive recursive well-ordering •< on the natural numbers of order type a so 
that the well-foundedness of -< is provable in Th. Then the proof-theoretic ordinal 
of Th is denned to be the least ordinal which is not provable in Th. On the other 
hand, two theories Thx and Th2 are called proof-theoretically equivalent if each can 
be reduced to the other. 

In the literature one can also find different notions of proof-theoretic ordinal 
which are more or less directly based (often via consistency statements) on proof-
theoretic reductions. An example is Feferman [3], where the proof-theoretic ordinal 
of a theory Th is defined as the least ordinal a such that the consistency statement 
for Th can be proved in HA + TI (-<„); here TI(<X) is the scheme of transfinite in­
duction up to a. 

In most cases the different approaches to proof-theoretic ordinals do not really 
matter, and theories are proof-theoretically equivalent if they have the same proof-
theoretic ordinals. Therefore the results of this paper are also interesting in the 
sense that they present natural subsystems of second order arithmetic which show 
that one must use the notions of proof-theoretic ordinal and proof-theoretic equiv­
alence with some care. More on this can be found in §4, below. 

In §1 we present some basic notions and give a precise definition of the theories 
FP-ACA0 and FP-ACA. In §2 we introduce the infinitary system FP-ACA* which 
is needed for carrying through some proof-theoretic reductions. §3 is dedicated to 
collecting the proof-theoretic results about FP-ACA0 and FP-ACA. The paper 
concludes with a general discussion of our results in view of related work. Several 
proofs of this paper are worked out in full detail in Primo [11] and only sketched 
in the following. 

§1. The theories FP-ACA0 and FP-ACA. Let L2 be the usual language of 
second order arithmetic with number variables x,y,z,x1,y1,z1,..., set variables 
X,Y,Z,X1,Yl,Zl,..., the constant 0 and a symbol for each primitive recursive 
function and relation. The terms s,t,sutu... and formulas F,G,H,F1,G1,H1,... 
of L2 are denned as usual; an L2 formula is called an arithmetic L2 formula if it 
does not contain bound set variables. 

We write X and x for finite strings Xt,...X„ and x1,...xn of set and number 
variables. The notation F[X, x] is used to indicate that all free variables of F come 
from the lists X and x; F(X, x) may contain other free variables besides X and x. 
The formula F(G) denotes the formula that results from F(X) if we replace each 
occurrence of (t e X) by G(t). A formula is called X-positive if it does not contain 
negative occurrences of the set variable X. We write Jf for the usual set of the non-
negative integers and Pow(J/") for the power set of Jf. 

Each X-positive arithmetic formula 4 [X ,x ] induces an operator FA from 
Pow(yT) to PowpT) so that 

rA(S) :={nejV:Jrt= A\S,n\) 
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1110 GERHARD JAGER AND BARBARA PRIMO 

for all S a Jf. Since A\X, x] is X-positive, FA is a monotonic operator in the sense 
that r^Si) c rA(S2) if St a S2. For each such FA we define the following subsets 
of Jf by transfinite recursion on the ordinals: 

1T-={)1A, rA:={ne^:^^A[_ir,n% 
«<« 

a n d w e s e t / . ^ U ^ o n ^ -
We say that the set lA is inductively defined by the ^-positive arithmetic formula 

A[X,x~], and it is well known that IA is the least fixed point of the operator rA. 
For detailed information about inductive definitions we refer for example to 
Moschovakis [10]. 

The famous theory IDt provides a natural framework for studying the proof-
theoretic aspects of least fixed points of inductive definitions in a first order exten­
sion of Peano arithmetic. A good source for more information about the proof 
theory of both the single and the iterated form of inductive definability is provided 
by Buchholz, Feferman, Pohlers and Sieg in [2]. 

In this paper we shift our interest from theories for least fixed points of induc­
tive definitions to (weaker) formalisms which formalize the idea of arbitrary fixed 
points. For this end we extend our language L2 to a language L\ by adding a new 
unary relation symbol PA for every Z-positive arithmetic L2 formula ,4[X,x]. 
According to our previous conventions, an L2 formula is then called arithmetical if 
it contains no bounded set variables. 

The strength of formal theories is often measured in terms of their proof-theoretic 
ordinals, whose definition is based on the following notions. Let -< be a binary 
primitive recursive relation and R< the corresponding relation symbol of L2. In 
the following we write (s < t) for R^s, t), (Vx < t)F(x) for (Vx)(i^(x, t) -> F(x}), 
and (3x -< t)F(x) for (3x)(K_<(x, t) A F(X)). The principle of transfinite induction 
for a formula F along -< is expressed in a second order context by the formula 
TI(-<,F); we call -< well-founded if we have transfinite induction along -< for all 
sets. Specifically, 

TI«, F) :o (Vx)[(V>> < x)F(y) -+ F(x)] -+ (Vx)F(x), 

WF«):o(VX)TI«,X). 

If Th is a theory in L2 or an extension of L2, then an ordinal a is called provable 
in Th if there exists a primitive recursive well-ordering -< of order type a so that 
Th I- WF(«<). The proof-theoretic ordinal of Th is often defined to be the least ordi­
nal which is not provable in Th; it is denoted by |Th|. 

The theories in L2 will be assumed to contain all axioms and rules of classical 
predicate calculus with equality in the first sort. The theory FP-ACA0 is given by 
the following additional axioms. 

I. Primitive recursion. The usual axioms for 0, successor and the defining equa­
tions for the primitive recursive functions and relations. 

II. Axiom of induction on the natural numbers. 

O E I A (Vx)(x eX^x'eX)^ (Vx)(x e X). 
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PROOF-THEORETIC ORDINALS OF FIXED POINT THEORIES 1111 

III. Arithmetic comprehension AC A. For all arithmetic formulas A(x) of h\: 

(3Z)(Vx)(x e X <-• 4(x)). 

IV. Fixed point axioms. For all X positive arithmetic formulas / l[X,x] of L2: 

(Vx)(A[PA,x]~PA(x)). 

Axiom IV formalizes that PA represents a fixed point of the operator TA. Hence 
we denote the relation symbols PA as fixed point constants. FP-ACA is the exten­
sion of FP-ACA0 which is obtained by replacing the axiom of induction on Jf by 
the corresponding scheme of complete induction on the natural numbers 

F(0) A (Vx)(F(x) - F(x')) - (Vx)F(x) 

for arbitrary L j formulas. Finally, FP-ACA(1) is the restriction of FP-ACA to the 
first order language L\ which results from L j by deleting all formulas which con­
tain set variables. 

If Th is a theory containing FP-ACA0, then we call the set 

ProvPartTh(^) := {n e Jf: Th h PA(n)} 

the provable part of the inductive definition (represented by) A with respect to Th. 
It is often the case that ProvPartTh(v4) = IA* for some countable a. 

The theory FP-ACA corresponds to the fixed point theory ID^ of Beeson [1], 
and FP-ACA'1] agrees with the fixed point theory lb ! of Feferman [3]. Its rela­
tionship to FP-ACA0 is characterized by the following theorem. 

THEOREM 1. FP-ACA0 is a conservative extension of FP-ACAW with respect to 
all Li formulas. 

It is obvious that FP-ACA0 is an extension of FP-ACA(1). The property of being 
conservative can be established by an easy model-theoretic argument: One shows 
that every (first order) model Jl of FP-ACA*X) can be extended to a second order 
model Ji(1) of FP-ACA0 by choosing the collection of all first order definable sub­
sets of the universe \Jt\ of Ji as the range of the set variables of FP-ACA0. Then 
we have 

M |= F -*> J(m \= F 

for all Li sentences F. Hence by completeness the provability of an Ll sentence F 
in FP-ACA0 implies its provability in FP-ACA(1). A detailed proof of a result sim­
ilar to Theorem 1 is given in Feferman [4]. 

§2. The infinitary system FP-ACA*. The proof-theoretic bounds of FP-ACA0 

and FP-ACA will be established by embedding these formal theories into the in­
finitary system FP-ACA* which admits the proof of a cut elimination and bounded-
ness theorem. FP-ACA* is infinitary with respect to the ranks of its formulas and 
the length of its derivations and is related to the system RA* of Schiitte [12]. 

We assume familiarity with a standard notation system for predicative mathe­
matics. For all countable ordinals a we can define ordinal functions <p<x by the fol­
lowing recursion: cpO£ is ct^; for a > 0, cpa.1; is the £th simultaneous fixed point of 
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1112 GERHARD JAGER AND BARBARA PRIMO 

all functions q>[l with fi < a. Then <plO is the ordinal e0, i.e. the least £ such that 
<»* = £. 

We now set up the infinitary system FP-ACA*. The language L* of FP-ACA* 
starts out from the fragment of L\ without free number variables. Hence the num­
ber terms of L* are the closed number terms of h\ and each number term s of L* 
has a canonical value V(s) e Jf. Now let F be an atomic formula of L* of the form 
Rz(s!,...,sn), where Rz is the relation symbol for the primitive recursive relation 
Z. Then F is called a true atomic formula if Z(V{sl\..., V(s„)) is true; otherwise F 
is called false. Two atomic formulas of L* are called equivalent if they differ in 
number terms with identical values only. 

The set terms and formulas of L* are generated by the following inductive 
definition: 

1. Every set variable of L j is a set term of L*. 
2. Every atomic formula of L\ without free number variables is an (atomic) L* 

formula. 
3. If S is a set term of L* and s a number term of L*, then (s e S) is an L* formula. 
4. If F is an L* formula, then —i F is an L* formula. 
5. If F and G are L* formulas and _/ is a binary junctor of L2, then (F j G) is an 

L* formula. 
6. If F(x) is an L* formula, then (Vx)F(x) and (3x)F(x) are L* formulas. 
7. If F(X) is an L* formula, then (VX)F(X) and (3X)F(AT) are L* formulas. 
8. If F(x) is an L* formula without bound set variables, then {x: F(x)} is a set 

term of L*. 
The collection of all L* formulas without set terms and without negative occur­

rences of fixed point constants PA is denoted by ^(9^, and the collection of all L* 
formulas without set terms and without positive occurrences of fixed point con­
stants PA by JfS<S\ a formula is called positive if it belongs to 0>(Sy and negative 
if it belongs to JTS(§. We write 0>Jf for the collection of positive and negative for­
mulas, i.e. 0>Jf = 0><9y u JTSIS. It is obvious that we have F e 0>(9Sf if and only 
if - i F e Jf£% and G e JfS'S if and only if - i G e POtf. 

The complexity of L* formulas F is measured by their rank rn(F), which is in­
ductively defined as follows. 

1. If F belongs to 0>JT, then rn(F) := 0. 
2. For L* formulas not in &Jf we define their rank according to the following 

rules (where Q stands for existential or universal quantifiers): 

rn(s e X) 

rn(s E {x: F(x)}) 

rn(—iF) 

m ( F ; G ) 

rn((Qx)F(x)) 

m((QX)F(X)) 

= 1, 
= rn(F(0)) + 1, 

= rn(F) + 1, 

= max(rn(F), rn(G)) + 1, 

= rn(F(0)) + 1, 

= max(co,rn(F(0))+ 1). 

This definition immediately yields that 0 < rn(F) < a> + a> for all L* formulas 
F; it is also clear that rn(F) = 0 if and only if F £ &Jf. If F does not belong to 
SP^V, then the rank of each subformula of F is smaller than rn(F); in particular we 
have rn(F(S)) < m{{QX)F(X)) for all set terms S. 
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PROOF-THEORETIC ORDINALS OF FIXED POINT THEORIES 1113 

The proof system of FP-ACA* is an extension of the usual Gentzen sequent cal­
culus LK (cf. e.g. Girard [6] and Takeuti [14]). The capital Greek letters r, A, E,... 
denote finite sequences of L* formulas, and sequents are formal expressions of the 
form r => A. 

The axioms and rules of FP-ACA* comprise (i) the axioms, (ii) the structural 
rules, (iii) the rules for the propositional connectives, and (iv) the cut rule of LK, 
and also include the following additional number-theoretic axioms and rules for 
quantification and fixed point constants. 

Number-theoretic axioms. For all atomic formulas Ft and F2 which are equiva­
lent, for all true atomic formulas G and all false atomic formulas H we choose as 
number-theoretic axioms: 

FX^F2, 3 C , H=>. 

Set-theoretic rules. For all L* formulas F(x) without bound set variables and all 
number terms s of L* we have as set-theoretic rules: 

r=>4,F(s) r,F(s)zDA 
r => A, s e {x: F(x)}' Fse{x:F(x)}^A' 

Quantifier rules. Formulated for universal quantifiers; the corresponding rules 
for existential quantifiers must also be included. 

r => A, F(s) for all s r, F(s) => A for some s 

r => A,(\/x)F(x) ' r,(Vx)F(x) 3 A ' 

r=>A,F(S) for allS r,F(S)=>A for some S 
r => A,(VX)F(X) ' r,(VX)F{X)^A 

Fixed point rules. For all X-positive arithmetic formulas A [X, x] of L2 and all 
number terms s of L* we have as fixed point rules: 

r^A,A[,PA,s-] r^A,PA(s) 

r^A,PA(s) r=>A,AlPA,s] 

The notion FP-ACA* \-"p r => A is used to express that the sequent F => A is 
provable in FP-ACA* by a proof of length a so that all cut formulas have rank less 
than p; it is inductively defined as follows: 

1. If r ZD A is an axiom of FP-ACA*, then we have FP-ACA* h£ T => A for all 
ordinals a and p. 

2. If FP-ACA* I-"' r, => A, and a, < a for every premise T, => A, of an FP-ACA* 
rule or a cut with a cut formula F so that rn(F) < p, then we have FP-ACA* \-"p 

r=> A. 
Hence the sequent r => A is cut-free provable in FP-ACA* if there exists an or­

dinal a with FP-ACA* \-% r => A. On the other hand, FP-ACA* \-\r-=> A means 
that r => A has a proof of length a so that all cut formulas belong to the collec­
tion ^JV. Because of the fixed point rules it is impossible to prove complete cut 
elimination for FP-ACA*. However, the principal formulas of the fixed point rules 
have rank 0. Therefore by applying the standard techniques of predicative proof 
theory as developed for example in Girard [6], Schiitte [12], or Takeuti [14], one 
obtains the following weaker result. 
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1114 GERHARD JAGER AND BARBARA PRIMO 

THEOREM 2 (Cut elimination theorem). For all sequents F r> A, all ordinals a and 
all ordinals p > 0: 

1. FP-ACA* hJ + 1 f D Z l => FP-ACA* \-f T => A; 
2. FP-ACA* \-'ar=>A => FP-ACA* \-fx r => A. 
It is an easy exercise to show that the formal theories FP-ACA, FP-ACA0 and 

FP-ACA(1) can be embedded into FP-ACA*. Complete induction is proved in the 
infinitary system with the help of the infinitary rule for the universal number quan­
tifier, arithmetic comprehension follows from the definition of set terms, and the 
existential rule for the set quantifiers and the fixed point axioms are a consequence 
of the fixed point rules. 

THEOREM 3 (Embedding theorem). 1. Let F[X,x] be an L\ formula which is 
provable in FP-ACA. Then there exist antx<e0 and ann<coso that for all set terms 
S and all number terms s of L* we have 

FP-ACA* l -« + ) 1 =F[S,s] . 

2. Let G[x] be an L± formula which is provable in FP-ACA0 and therefore— 
according to Theorem 1—also in FP-ACAa). Then there exist an a < e0 and an 
n < co so that for all number terms s of L* we have 

FP-ACA* h J a G P J 

As preparation for the boundedness theorem we have to introduce some further 
notation. If F is a positive or negative L* formula and a a countable ordinal, then 
F{a} denotes the result of substituting IA" for every occurrence of PA in F. Hence 
we have 

(*) >"NF{a}->F{j3} and / N G { f l - » G { « ) 

for every positive L* formula F, every negative L* formula G and all a < f$. For a 
finite sequence r of &Jf formulas, we write F9 for the set of all positive formulas 
which occur in F and F^ for the set of all formulas in F which do not belong to F9. 
Hence every formula which occurs in F belongs to F® u F^. If F => A is a sequent 
of 2PN formulas and if a and /? are countable ordinals, then {a}(r 3 A){fl} is de­
fined to be the formula 

V (-|F){«} v V (-> W } v V F(/*} v V *"{«}• 
FeT!? FeT-*~ FsA» Fed-* 

The following boundedness lemma and boundedness theorem are concerned 
with the provably accessible parts of the (least) fixed points IA in the infinitary fixed 
point theory FP-ACA*. The boundedness lemma is based on an asymmetric inter­
pretation of the positive and negative occurrences of the fixed point constants PA 

in the sequents r => A. 
LEMMA 4 (Boundedness lemma). Let r and A be finite sequences of 0>J/~ formu­

las. Then for all countable ordinals a and fi we have 

FP-ACA* \-\ r 3 A => JVV= {P}(r ID A){p + co*}. 

PROOF (by induction on a). If r => A is an axiom of FP-ACA*, then the asser­
tion is trivial. Otherwise r => A is the conclusion of a derivation rule. We concen­
trate on the three critical cases and leave the rest to the reader. 
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PROOF-THEORETIC ORDINALS OF FIXED POINT THEORIES 1115 

1. r => A is the conclusion of the fixed point rule 

r^i,pA(s) 

where A = Z, PA(s). Then there exists a y < a so that 

FP-ACA* \-\ r => Z,A[PA,s], 

and the induction hypothesis implies 

jf i= {^}(r ^ r){js + ©*} v x[/<"+»v,S]. 

By the definition of the sets IA we may conclude that 

Jf N {P}(r ^ £){/? + ( o ' } v s £ /£+ r a y , 

and the assertion follows by (*). 
2. r 3 /I is the conclusion of the fixed point rule 

r^z,A[pA,s] 

where A = Z,A[PA,s]. Then there exists a y < a so that 

FP-ACA* \-\r=>Z,PA(s), 

and the induction hypothesis implies 

Jf N {£}(r => Z){p + o ' } v s e /^+<fly. 

We know that Jf is a model of (s e / ^ -»A[IA
4,s]) for all £, so that we obtain 

Jf |= {0}(r ^ 2T){/3 + (o'} v AU</+0,\s']. 

In view of (*) this yields the assertion. 
3. r => A is the conclusion of a cut 

r => A,H r,H^A 
r^A 

with cut formula H. Then there exist yx,y2 < aso that 

(1) FP-ACA* hj1 T=> A,H, 
(2) FP-ACA* hpr,H=>/d, 

and rn(H) < 1. Hence H is an element of SPJf, and by symmetry we can assume 
without loss of generality that H belongs to 3P(9y. Therefore we can apply the in­
duction hypothesis to (1) and (2) and obtain from (1) 

(3) Jf \= {$\(T => A){b\ vH{<5} 

for 8 := P + (oy>. On the other hand, if we replace ft by d, then the induction hy­
pothesis applied to (2) gives 

(4) Jft={S}(r=> A){8 + a>n} v(-iH){5}. 
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1116 GERHARD JAGER AND BARBARA PRIMO 

Since 8 + coyi = j? + con + con < ft + co", we obtain from (3), (4) and (*) that 

JT \= {p}(r = A){P + CD"}. 

This finishes the proof of case 3. In the remaining cases the assertion follows 
from the induction hypothesis immediately. • 

A special case of this boundedness lemma for FP-ACA* is the boundedness the­
orem for FP-ACA*. 

THEOREM 5 (Boundedness theorem). For all fixed point constants PA, the corre­
sponding {least) fixed points IA and all natural numbers n, 

FP-ACA* \-\=PA(n) => nelT'-

§3. Proof-theoretic bounds. We begin this section with a general observation 
about the provable part of inductive definitions in FP-ACA0 and FP-ACA. This 
result is obtained by a combination of the embedding, cut elimination and bounded­
ness theorem for FP-ACA*. 

THEOREM 6. Let A[X,x] be an X-positive arithmetic L2 formula. Then: 
1. FP-ACA0 h PA(n) => n e 1^°. 
2. FP-ACA h PA(n) => n e IA"'Uo. 
PROOF. 1. Assume that FP-ACA0 proves PA(n). According to the embedding 

theorem there exist a < e0 and n < co such that 

FP-ACA* h* 3 PA(n) 

and hence by cut elimination (since e0 is closed under exp^) 

FP-ACA* \-{ ^ PA(n) 

for some /? < s0. The boundedness theorem then yields the assertion. 
2. If FP-ACA proves PA(n), then the embedding theorem implies that 

FP-ACA* \-'a+n ^ PA(n) 

for some a < £0 and n < co. As before we obtain by cut elimination that 

FP-ACA* hi ZD PA(n) 

for a suitable fi < e0. Again by cut elimination we can now conclude that 

FP-ACA* h* 1 ' => PA{n). 

Since cp is monotonic in its second argument, the assertion follows from the 
boundedness theorem. • 

Now the ground is prepared for determining the proof-theoretic ordinals of 
FP-ACA0 and FP-ACA. Their lower bounds are obvious since FP-ACA0 contains 
Peano arithmetic PA and FP-ACA contains the theory ACA of arithmetic com­
prehension. By standard results we therefore have that 

(A) £0 < |FP-ACA0|, 

(B) cpls0 < |FP-ACA|. 

The converse directions are proved with the help of Theorem 6. For this purpose 
we introduce for every primitive recursive well-ordering -< the X-positive arith-
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metic L2 formula ^ [ X , * ] defined by 

and we write P< for PA< as well as 7< for IA<. If the natural number n belongs 
to the field of -<, then \n\< denotes the order type of n with respect to -<; other­
wise we put |w|_< := 0. It is easy to show by induction on a that 

(C) nel^ => | « U < a 

for all natural numbers n. The fixed point constants generate arithmetic formulas 
of L2 and provably define sets in FP-ACA0 and FP-ACA. Therefore we obtain 
from the fixed point axiom for P< that 

(D) FP-ACA0 I- WF{<) - (Vx)P^(x) 

for all primitive recursive well-orderings •<. To sum up, we have the following result 
for F P - A C A Q and FP-ACA. 

THEOREM 7. 1. \FP-ACA0\ = s0. 
2. \FP-ACA\ = <ple0. 
PROOF. Let Th be the theory FP-ACA0 or FP-ACA. If the ordinal a is prov­

able in Th, then there exist a primitive recursive well-ordering -< and a natural 
number n such that 

Th I- WF«) and a = |BL,. 

Now we apply (D) and obtain Th h- P^ri). Hence Theorem 6 yields n e If for 
a = e0 if Th = FP-ACA0 and a = <ple0 if Th = FP-ACA. It follows immediately 
from (C) that a = \n\< < a. Together with (A) and (B) this gives |Th| = a. U 

§4. Discussion. Let Tht and Th2 be two consistent theories so that L1 c L(Th,) 
for i = 1,2. In the literature one often calls Thj proof-theoretically reducible to Th2, 
in symbols Thx < Th2, if there is an effective method to transform every L(Tht) 
formula F into an L(Th2) formula F* so that the following conditions are satisfied: 

(1) Th! h F => Th2 h F*, 

and 

(2) Th2 h G «-» G* 

for all L(Thj) sentences F and all Lx sentences G. Then the proof-theoretic equiva­
lence of Thx and Th2 is defined by 

Tht = Th2 : o Thx < Th2 and Th2 < Thx. 

In most interesting cases—and especially if the theories are natural and proof-
theoretically strong—one has for second order theories Tht and Th2 that 

I T h i l H T h ^ o T h ^ T h j , 

but in the general case there are counterexamples to both directions. So it is well 
known that 

|ACA0| = |ACA0 + Con(ACA0)| 

https:/www.cambridge.org/core/terms. https://doi.org/10.2307/2275451
Downloaded from https:/www.cambridge.org/core. University of Basel Library, on 30 May 2017 at 13:51:22, subject to the Cambridge Core terms of use, available at

https:/www.cambridge.org/core/terms
https://doi.org/10.2307/2275451
https:/www.cambridge.org/core


1118 GERHARD JAGER AND BARBARA PRIMO 

where ACA0 is the system of second order arithmetic with arithmetic comprehen­
sion and restricted induction1 and Con(ACA0) is the consistency statement for 
ACA0. Because of Godel's result we also have that ACA0 ^ ACA0 + Con(ACA0). 
A counterexample to the converse direction is provided, for example, by the theory 
FP-ACA0. 

Among other things, Feferman [3], following an idea due to Aczel, presents an 
interpretation of the fixed point theory IDj into the system (I[-AC) of second order 
arithmetic with the Z} axiom of choice, and because of Theorem 1 this interpreta­
tion immediately implies 

FP-ACA0 < FP-ACA(1) = IE*! < (Z}-AC). 

But it also follows from Feferman's paper that (Zj-AC) can be proof-theoretically 
reduced to ID1 ; so that 

(Z}-AC) < IDi = FP-ACA(1) c FP-ACA0. 

By Theorem 7 we also have |FP-ACA0| = e0. Since |(Z}-AC)| = (pso0 (cf. e.g. [2], 
[5], or [13]) and (peo0 > e0, we conclude that 

FP-ACA0 = (ZJ-AC) and |FP-ACA0| < |(Z}-AC)|. 

Hence the second order theories FP-ACA0 and (Zj-AC) are proof-theoretically 
equivalent although they have different proof-theoretic ordinals. The explanation 
of this unexpected relationship between proof-theoretic equivalence and proof-
theoretic ordinals is as follows: 

In the reduction of (Zj-AC) to IDj the fixed point axiom is used in order to 
define simultaneously: (i) a unary relation S and (ii) two binary relations e and £ 
for representing the (codes of the) sets, the element relation and the not-element 
relation.2 In this reduction the universal second order quantifier in WF«) is re­
placed by a first order quantifier (Vx)(S(x) ->•••) so that the formula WF(-<) is not 
carried over from (Zj-AC) to FP-ACA0. If (Zj-AC) h WF«), then T1«,Z) is 
provably true in FP-ACA0 for all sets Z coded by elements of S but not necessarily 
for all sets. 

If a "free" relation symbol R is adjoined to L2 and (Zj-AC) \- TI(<, R), then we 
can tailor the reduction of (ZJ-AC) to i d i so that IDi h T/(-<,R)and FP-ACA0 h 
T7(«<, R), provided that we allow R to occur in the definition clause of the fixed 
point which is needed for the definition of S, e and ^. Hence this R is a parameter 
in the definition clause of a fixed point axiom and cannot act as a free set variable. 
If we generalize our fixed point axioms to clauses with free set parameters, we obtain 
theories of greater proof-theoretic power. 
Added in proof. With regard to Question 1.6, we have recently shown that if K > a>, 
then the equation is consistent for any new. 

1ACA0 is a conservative extension of Peano arithmetic PA. 
2 Actually the precise argument is more complicated since the reduction of (Zj-AC) to ID, is via the 

intermediate theory EM0 + (J). 
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