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Abstract

The Schrödinger equation on a circle with an initially localized profile of the wave
function is known to give rise to revivals or replications, where the probability density
of the particle is partially reproduced at rational times. As a consequence of the convo-
lutional form of the general solution it is deduced that a piecewise constant initial wave
function remains piecewise constant at rational times as well. For a sphere instead, it
is known that this piecewise revival does not necessarily occur, indeed the wave function
becomes singular at some specific locations at rational times. It may be desirable to study
the same problem, but with an initial condition being a localized Dirac delta instead of a
piecewise constant function, and this is the purpose of the present work. By use of certain
summation formulas for the Legendre polynomials together with properties of Gaussian
sums, it is found that revivals on the sphere occur at rational times for some specific
locations, and the structure of singularities of the resulting wave function is characterized
in detail. In addition, a partial study of the regions where the density vanishes, named
before valley of shadows in the context of the circle, is initiated here. It is suggested that,
differently from the circle case, these regions are not lines but instead some specific set of
points along the sphere. A conjecture about the precise form of this set is stated and the
intuition behind it is clarified.

Keywords: Talbot effect, quantum revivals, Gaussian sums

1. Introduction

The Talbot effect is an image replication phenomena which has its origins in optics. The
mathematical characterization of this effect in terms of Fresnel diffraction leads to a wider
characterization of this replication or revival phenomena in physics, which ranges in its appli-
cation from quantum mechanics to statistical physics and solid state scenarios. This revival
phenomena is characteristic of dispersive equations.
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1.1 Origins in optics

In 1836, Sir M. F. Talbot observed that, when coherent light passes through a diffraction
grating, the diffraction pattern at integral multiples of certain distance replicates the structure
of the grating. This phenomena was reported in a purely descriptive paper in [1]. Later on,
this effect was explained theoretically by Lord Rayleigh [2] in 1881, and it was shown that it is
a natural consequence of the Fresnel diffraction formulas. The diagram of the diffraction wave
intensity at different distances of the grating has a fractal-like structure known as Talbot carpet.
The theoretical achievement of Lord Rayleigh is to give an explicit expression dn = nα2/λ, with
n an integer, for the distances from the grating where the image revival occurs. Here λ is the
wavelength of the light, assumed to be monochromatic, and α a constant describing the spacing
of the grating (see below). In addition to the reconstruction images, several other images can
be seen, which are known in the optics terminology as Fresnel images. These last ones are
approximations, that is, they are not exact replicas of the initial object.

To build a simple mathematical, but not completely precise, intuition of the situation,
consider the slits in the diffraction grating as an infinite set of point like holes at integers spaced
values y = nd of the Y -axis. If a monochromatic plane wave of frequency ν and wavelength
λ � 1 enters the diffraction grating from the left half plane, each hole acts as a source of
spherical waves. By employing the abbreviation e(x) = e2πix, we can model the diffracted wave
far enough from the holes as a sum of cylindrical waves of the form

u(x, t) =
∑
k

e
(
|k|rn − νt

)
√
rn

with |k| = λ−1 and k2 ∈ Z.

Here k is the wave vector as used in crystallography and it differs in a factor 2π from the
standard one in physics. The quantity rn denotes the distance of the observation point to the
slit located at the position n. The square of the absolute value of this quantity is related to
the intensity, which is explicitly given at distance r =

√
x2 + y2 by I(r) with

I(r) =
∣∣∣∑

n

cos

(
2π
λ

√
x2 + (y − nd)2

)
√
rn

∣∣∣2

+
∣∣∣∑

n

sin

(
2π
λ

√
x2 + (y − nd)2

)
√
rn

∣∣∣2.
At y = 0 the maximum intensity is found by requiring that the cosine terms are all equal to
one. This implies that

2π

λ

√
x2 + (nd)2 = mπ.

Assume for a moment that the large distance condition (nd/x)2 << 1 is satisfied. Then by
Taylor expanding the square root it is found that

2x

λ
− n2d2

xλ
∼ m.

As a simplifying assumption consider the case when 2x = kλ with k an integer. If in addition
xλ = d2 then the last equation is satisfied for all n. In other words, the position x = d2/λ
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is a maximum for all the terms. This is the position found by Lord Rayleigh [2] where the
replication takes place. For x = 2d2/λ several but not all the holes have a maximum, the
resulting replication becomes partial, and the replication becomes worse for x = ld2/λ with l
an integer such that l > 2. In addition for x = d2/lλ the Talbot effect may appear at fractional
distances, an issue which was studied in [3]. However, if the distance becomes small, then the
large distance approximation becomes not completely reliable. The analysis of this paragraph is
suggestive, although not completely rigorous, and we refer the reader to the original references
for further details. See, for instance, the classic review [43].

In the above description the grating is composed by simple holes. It is more realistic to
assign a certain width w to each slit and then the waves in the preceding sum are damped by
the Fourier transform of the characteristic function of an interval (the sinc function), according
to Frauenhofer diffraction theory. Then, we represent the diffraction intensity pattern by the
time independent formula

|u(x, y, t)|2 =

∣∣∣∣ ∑
|n|≤λ−1

sin(nπw)

nπ
e
(
x
√
λ−2 − n2 + ny

)∣∣∣∣2.
It seems natural to assume that the biggest contribution to the sum corresponds to greater
amplitudes, or equivalently, to smaller values of n. Under this assumption, the mathematical
explanation of the replication of the structure of the grating in the Talbot effect is very simple.
It reduces to √

λ−2 − n2 − λ−1 ∼ λ

2
n2,

which fits in the paraxial approximation of the geometrical optics. Then the expression

u(x, y, t)e(−λ−1x),

is expected to be near invariant by x 7→ x + 2λ−1 and we see a periodicity in the diffraction
pattern. If we consider fractional multiples of this Talbot length 2λ−1 then we have to take into
account the cancellation encoded in the quadratic Gauss sums [3]. More technical details of
the optical setting of this effect may be found in [4], [5], [6].

As a final aside, although the Talbot effect is very old as an optical phenomenon, it is
not so simple to observe clearly. In [7] is described how to witness the Talbot carpet in a
classroom experiment with water waves. On the other hand, it is fairly simple to write a
computer program to simulate numerically Talbot effect with the preceding exponential sum1.
For instance, Figure 1 was obtained as the density plot of |u(x, y, t)| for λ−1 = 100 and w = 0.1
using 300 × 300 values of (x, y). The width is the Talbot length and we observe a perfect
replication on the right side the three hot spots on the left representing three slits. They appear
shifted at halfway and we see a copy scaled by a factor 1/2 at 1/4 of the Talbot distance. The
Talbot effect has been studied for several different grating profiles, and the replication of images
is characteristic as well (see [8] for conditions for this replication).

Even though the above discussion gives a general idea about the Talbot effect, it is of interest
to describe it in the context of Fresnel diffraction. We make a brief discussion, and we again

1In http://matematicas.uam.es/~fernando.chamizo/dark/d_talbot.html there are some Talbot
carpet simulations and code to generate them and in https://demonstrations.wolfram.com/

TheTalbotCarpetInTheCausalInterpretationOfQuantumMechanics/ there is an interactive applet.

3

http://matematicas.uam.es/~fernando.chamizo/dark/d_talbot.html
https://demonstrations.wolfram.com/TheTalbotCarpetInTheCausalInterpretationOfQuantumMechanics/
https://demonstrations.wolfram.com/TheTalbotCarpetInTheCausalInterpretationOfQuantumMechanics/


Figure 1: Simulation of an optical Talbot carpet with λ = 0.01 and w = 0.1.

refer the reader to technical details to the original references. In a two dimensional setting, the
Talbot effect is described by the Helmhotz equation

∇2u+ k2u = 0,

where the two dimensional Laplace operator is related to the coordinates x and y, where x is
the distance from the grating and y is the one dimensional coordinate for the one dimensional
wall (a line), where the holes are located. The initial condition for point like holes is given by

u(0, y) =
∞∑

n=−∞

δ(x− nd) =
1

d

∞∑
n=−∞

e

(
ny

d

)
. (1.1)

The solution with this initial condition is given by

u(x, y) =
1

d

∞∑
n=−∞

e

(
x

λ

√
1−

(
dn

λ

)2)
e

(
ny

d

)
.

In the paraxial approximation described above, this solution may be approximated by

u(x, y) = e

(
x

λ

)
v(x, y),

where the following function was introduced

v(x, z) =
1

d

∞∑
n=−∞

e

(
x

2λ

(
dn

λ

)2)
e

(
ny

d

)
. (1.2)

This function satisfies a Schrödinger like equation

vx = icvyy,

where c is a constant depending on the lengths of the problem, and with the initial conditions
(1.1). This motivates the study of the fractal properties of the Schrödinger equation, even in
the context of optics. In the present case the role of the time is played by the coordinate x.
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1.2 Applications in general wave phenomena

The description given about the Talbot effect suggests a connection with the Schrödinger equa-
tion, there came to light that such replication or revival phenomena is characteristic of linear
hyperbolic differential equation. An example is of course the Schrödinger equation itself 2. In
this case a single particle concentrated initially in some location is concentrated again near
some orbital numbers at certain specific times. The Schrödinger equation is a particular case of
dispersive equations [9], [10], in which the revival phenomena was found in form of dispersively
quantized cusps at rational times in several contexts.

The Talbot effect has attracted the attention in mathematics as well, mainly due to the
conjecture in [3], [11] about the fractal nature of the real and imaginary parts of the function
(1.2) and its generalization for different gratings. Some mathematically founded results can be
found in [12], [13], [14], [15], [16] and references therein. There is a connection to variations on
the so called Riemann’s example, a Fourier series that according to Weierstrass was proposed by
Riemann as an example of continuous and nowhere differentiable function which has interesting
fractal and self-similar properties [17], [18] [19].

In addition, it was understood later on that the Talbot effect is a particular case of replication
phenomena, with a wide application in physics. Replications in the context of relativistic Dirac
equations are more difficult to be observed, nevertheless some theoretical basis was provided
in [20]. The replication phenomena in Dirac equation in fact may have applications in the
physics of graphene [21]. There are theoretical works about revival phenomena in conformal
field theories [22], [23], in tight binding models [24], Loschmidt echoes [25]-[29] or in quantum
walks on cycles [30]. In addition, this effect was studied for non linear generalizations of
the Schrödinger equation which describes the dynamics of vortex filaments in [31], [32]. The
connection with Riemann’s example reappears here.

A recent broad review considering the classic and the quantum settings and entering into
the applications is [44].

1.3 Brief outline of the present work

The present work is aimed for the characterization of the revivals of a quantum particle on a
sphere, under the assumption that the initial wave function is a delta function. Although there
exists related work about this problem, namely [33], the initial conditions that are considered
differ from other works on the literature. The goal is to clarify the structure of singularities of
the wave function, which requires some specific summation formulas and general properties of
Gauss sums. In addition, some emphasis is placed on the classification of the shadow regions,
that is, the spatial set for which the probability density vanish identically.

The present work is organized as follows. In section 2, the mathematical problem to be
solved is stated. In section 3 and 4 some useful identities related to Legendre polynomials and
Gauss sums are reviewed, which are of importance in the subsequent analysis. In section 5 and
6 the solution is found explicitly for certain rational times, and the singular structure of this
solution is explicitly characterized. In section 7 the notion of valley of shadows introduced in
[12] for the circle is reviewed, and a conjecture generalizing these statements to the spherical
case is presented. Section 8 shows a link of the presented results to the Talbot effect and section
9 contains a discussion of the results.

2From the mathematical point of view, the Schrödinger equation is not included in the classification due to
the fact that its coefficients are not real. When it is included, it is classified as parabolic, not hyperbolic.
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2. The quantum setting

The quantum version of the Talbot effect is related to the so called quantum revivals. The
Schrödinger equation is a kind of imaginary heat equation and then we may expect dispersion
when the time goes by (as a manifestation of uncertainty). In some geometric situations
however, we expect to recover, fully or approximately, the initial state.

We consider here the unit sphere S2 as the base space. The Schrödinger equation on it,
after adjusting the units, is

i
∂Ψ

∂t
= −∇2

S2Ψ with ∇2
S2 =

1

sin2 θ

((
sin θ

∂

∂θ

)2
+

∂2

∂ϕ2

)
.

The eigenfunctions of −∇2
S2 are eimϕ(sin θ)|m|P

(|m|)
` (cos θ), with −` ≤ m ≤ ` and P` the Leg-

endre polynomials [34, §VII.5.3]. The corresponding eigenvalues are `(` + 1) with multiplicity
2`+ 1 due to the restriction −` ≤ m ≤ `. Then any polar solution (meaning not depending on
the azimuthal angle) admits an expansion

Ψ(θ, t) =
∞∑
`=0

a`P`(cos θ)e−i`(`+1)t. (2.3)

Note that `(` + 1) is always even, then Ψ is π-periodic in time and we have a trivial integral
Talbot effect, meaning that for k ∈ Z these solutions satisfy Ψ(θ, t) = Ψ(θ, t+ kπ).

In [33] the singularities appearing in the fractional Talbot are studied under the initial
condition Ψ(θ, 0) = sgn(π/2− θ). The choice of this particular example is not well motivated.
In fact, in [33] we can read The most fundamental case to investigate would be the time evolution
of a single point δ-function initial wavefunction [. . . ] but this would be more involved [. . . ].
Here we take the challenge of studying the problem for an initial condition whose associated
probability density becomes the Dirac δ in the limiting case. More precisely, we are going to
consider a problem of the form

i
∂Ψ

∂t
= −∇2

S2Ψ with Ψ(θ, 0) = fr(θ) (2.4)

where fr is a certain regular function depending on the parameter 0 < r < 1 and |fr|2 tend to
the Dirac δ at the north pole of the sphere as r → 1−.

3. An approximation of the identity

Historically, the Legendre polynomials appeared as the coefficients in the multipole expansion
of the Newtonian potential. Namely, if r = |x| < 1 and |y| = 1 we have [34, §VII.5.5]

1

|x− y|
=
∞∑
`=0

r`P`(cos θ) with θ = ]x,y.

Indeed this formula can be related to the spectral properties of P` [35, §8.4]. If x is on the
z-axis then θ is the polar angle of the spherical coordinates of y and we have |x − y|2 =
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(r − cos θ)2 + sin2 θ. The formula can be analytically extended in r to the open unit disk in C
to get for |z| < 1

F (z, θ) =
∞∑
`=0

z`P`(cos θ) with F (z, θ) =
1√

(z − cos θ)2 + sin2 θ
, (3.5)

which is nothing other than the generating function of the Legendre polynomials [36, §4.4].
The branch of the square root is determined imposing that, as usual, it is real positive for real
positive values. More concretely, we limit the argument to α ∈ (−π, π] and take in this range
eiα/2 to be the square root of eiα.

Let us define for 0 < r < 1

fr(θ) = crF (r, θ) with cr =
(2π

r
log

1 + r

1− r

)−1/2
. (3.6)

A calculation proves that this function is normalized as a function on the sphere since∫
S2

|fr|2 = 2π

∫ π

0

∣∣fr(θ)∣∣2 sin θ dθ = 1.

Note that for each 0 < θ ≤ π, when r → 1−, cr → 0 and fr(θ) → 0. This and the
previous integral imply that |fr|2 tends to the Dirac delta on the north pole of the sphere. As
a matter of fact, these calculations are very similar to those showing that the Poisson kernel is
an approximation of the identity [37].

The function
∣∣F (1, θ)

∣∣2 sin θ defined above has a singularity ∼ θ−1 when θ → 0+ and this

singularity moves to α behaving as ∼ (2|θ − α|)−1 when we consider
∣∣F (eiα, θ)

∣∣2 sin θ with
0 < α < π. In Figure 2 there are some plots showing this singular behavior.

(a) (b) (c)

Figure 2: The dashed line corresponds to
∣∣F (eiα, θ)

∣∣2 sin θ and the dotted line to the approxi-

mation of the singularity s(θ). (a) α = 0, s(θ) = θ−1; (b) α = π
3
, s(θ) = 1

2

∣∣θ − π
3

∣∣−1; (c) α = 3π
4

,

s(θ) = 1
2

∣∣θ − 3π
4

∣∣−1.
These singularities will play a role to study the peaks of the Talbot carpet in the quantum

setting. Note that
∣∣F (eiα, θ)

∣∣ =
∣∣F (e−iα, θ)

∣∣. This implies that we can extend the range to
−π < α < π by just changing α by |α|. On the other hand, by the symmetry F (1, θ) =
F (−1, π − θ), we can also include the case α = π.

One can ask what is the aspect of the Talbot carpet for the quantum Talbot effect on
the sphere. Figure 3 corresponds to the density plot of the square root of |Ψ(θ, t)|2 sin θ for
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r = 0.95 in our choice of fr. The vertical axis is θ ∈ [0, π] and the horizontal axis t ∈ [0, π].
The resolution is of 210 points on each axis. The computation of Ψ was done through the first
1000 terms of a series expansion. Namely, (5.12) with ` < 1000.

Figure 3: Quantum Talbot carpet for the sphere.

4. The generalized quadratic Gauss sums

Before going about the analysis of the Talbot effect in detail, it is convenient to review some
formulas that will be helpful for computing the wave function at special times. Consider three
numbers a, b, q ∈ Z with q > 0 and a coprime. Corresponding to these numbers we introduce
the generalized quadratic Gauss sum

G(a, b; q) =

q−1∑
n=0

e
(an2 + bn

q

)
. (4.7)

As we will show below, the set of values for which it vanishes admits a simple characterization.

Proposition 1: The quadratic Gauss sum

G(a, b; q) = 0 if and only if 4 | 2(b+ 1) + q. (4.8)

Here, the notation d | A means d divides A.

Proof: The proof of (4.8) can be divided in two steps. First, one has to prove that

∣∣G(a, b; q)
∣∣2 =

{
q if q is odd,

q
(

1 + e
(aq/2+b

2

))
if q is even.

(4.9)

The last identity is well known in the context of number theory, but it may be instructive to
review its proof below. By assuming that this identity is already proven, then (4.8) follows from
here because the only way to cancel the latter big parenthesis is to have aq/2 + b odd, which
is equivalent to q/2 + b odd, because a and q are coprime, and 2(b+ 1) + q = 2(q/2 + b+ 1) is
multiple of 4 if and only if q is even and q/2 + b odd.
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The last discussion shows that the only remaining step is to deduce the identity (4.9). For
this purpose, write the sum as∣∣G(a, b; q)

∣∣2 =

q−1∑
m=0

e
(−am2 − bm

q

) q−1∑
n=0

e
(an2 + bn

q

)
.

The inner sum is invariant by translations n 7→ n + k, then we can safely change n by n + m
and switch later the order of summation to get

q−1∑
m=0

q−1∑
n=0

e
(a(2mn+ n2) + bn

q

)
=

q−1∑
n=0

e
(an2 + bn

q

) q−1∑
m=0

e
(2nam

q

)
.

If q - 2n then 2na/q 6∈ Z and the innermost sum is zero. If q is odd, the divisibility only occurs

in the case n = 0 and
∣∣G(a, b; q)

∣∣2 = q is deduced. If q is even the divisibility also holds for
n = q/2 and then, in this case,∣∣G(a, b; q)

∣∣2 = q + qe
(aq2/4 + bq/2

q

)
,

giving the result (Q. E. D).

The formula (4.9) gives of course information about the modulus of the Gaussian sums
G(a, b; q), however it does not says anything about their phase. This quantity depends on some
deeper arithmetic properties linked to the quadratic reciprocity ([38, §3], cf. [39, §9.10]). In a
next section it will be important to know its variation in terms of b. Here we give a statement
enough for our purposes. First, we introduce the notation a∗ to mean the inverse modulo q i.e.,
a∗ ∈ Z and q divides a∗a − 1. Of course, the existence of a∗ requires a and q to be coprime.
In particular (4a)∗ does not make sense if q is even (and it is 4∗a∗ if q is odd). Let us redefine
(4a)∗ as a∗/4 when q is even. In this way, we have

(4a)∗4a− 1 ∈ Z and q | (4a)∗4a− 1 (4.10)

irrespective of the parity of q.
After this notation, we claim that there exists Ga,q 6= 0 not depending on b such that

e
((4a)∗b

2

q

)
G(a, b; q) =

{
0 if 4 | 2b+ q,
Ga,q if 4 - 2b+ q.

(4.11)

The first case is covered by (4.8) then we assume 4 - 2b + q + 2. If q is odd, (4.11) comes
from completing squares modulo q. Note that in this case 2∗ ∈ Z and we have

an2 + bn ≡ a(n2 + 2a∗2∗bn) ≡ a(n+ 2∗a∗b)
2 − 4∗a∗b

2 (mod q).

The definition (4.7) is invariant by any integral translation n 7→ n+ k and taking k = 2∗a∗b we
have the result for 2 - q with Ga,q = G(a, 0; q).

On the other hand, if 2 | q and 4 - 2b+ q + 2, necessarily b+ q/2 is even. Write in this case

an2 + bn ≡ a
(
n+ a∗

b+ q/2

2

)2
− q

2
n− a∗

(b+ q/2

2

)2
(mod q).

The last expression can be rearranged as

a
(
n+ a∗

b+ q/2

2

)2
− q

2

(
n+ a∗

b+ q/2

2

)
+
a∗q

2

16
− a∗b

2

4
.

Applying the translation n 7→ n + a∗(b + q/2)/2 in (4.7), we get the result with Ga,q =
e(a∗q/16)G(a,−q/2; q).
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5. A finite form of the solution

After this digression about Gauss sums, let us consider the task of solving the Schrödinger
equation (2.4). Substituting a` = crr

l in (2.3), by (3.6) and (3.5), we have that the solution of
(2.4) is given by

Ψ(θ, t) = cr

∞∑
`=0

r`P`(cos θ)e−i`(`+1)t. (5.12)

The sum does not admit for general t a closed expression (actually it is related to integral
transforms of elliptic functions) but it can be shown that it does for fractional times t = 2πa/q
with a/q an irreducible fraction, by employing the properties of the Gauss sums described in
the previous section. We noticed before the time periodicity Ψ(θ, t) = Ψ(θ, t+ π) then we can
restrict ourselves to the case 0 ≤ a/q < 1/2.

For ` modulo q the map ` 7→ e
(
`(` + 1)/q

)
is well defined and consequently it can be

expanded into a finite Fourier series

e
(`(`+ 1)

q

)
=

q−1∑
n=0

ane
(
− ln

q

)
.

The coefficients an are given by the discrete Fourier transform (DWT) and they become a
generalized quadratic Gauss sum, except for a normalizing factor,

an =
1

q

q−1∑
`=0

e
(`(`+ 1)a+ n`

q

)
=

1

q
G(a, a+ n; q).

Hence

Ψ

(
θ,

2πa

q

)
=
cr
q

∞∑
`=0

q−1∑
n=0

G(−a,−a− n; q)r`e
(`n
q

)
P`(cos θ).

By (3.5), it admits a completely explicit expression

Ψ

(
θ,

2πa

q

)
=
cr
q

∑
−q/2<n≤q/2

G(−a,−a− n; q)F

(
re

(
n

q

)
, θ

)
. (5.13)

The change in the range of n is harmless due to the q-periodicity and it will be convenient later
for some calculations. Disregarding the normalizing factor cr, this formula makes sense if we
take formally r = 1. In fact, crG(−a,−a− n; q)F

(
re(n/q

)
can be written explicitly as

G(−a,−a− n; q) eiαn√
2π

[
(r2−1)2

r
+ 4r(cos2 θ + cos2 2πn

q
)− 4(r2 + 1) cos θ cos 2πn

q

]
log 1+r

1−r

, (5.14)

where

tanαn =
r2 cos 4πn

q
− 2r cos θ cos 2πn

q
+ 1

r2 sin 4πn
q
− 2r cos θ sin 2πn

q

By direct inspection it can be seen that if cos θ = cos 2πn
q

then in the limit r → 1− the

denominator in the first expression (under the square root) involves an indeterminate form
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0 · ∞, which is solved to give zero. Thus, at these angles the wave function becomes singular.
For cos θ 6= cos 2πn

q
the limit r → 1− gives zero. This shows the distributional behavior of the

resulting function, as the support is located at finite points defined by θ = ±2πn
q

, with weights

G(−a,−a − n; q). A more detailed analysis of this behaviour will be done in the following
sections.

Even though we are interested in the limit r → 1−, it is interesting to study the case
0 < r < 1. By the regularity of the solution, we could evaluate Ψ(θ, t) at any t approximating
t/(2π) by rationals. This requires some arithmetic considerations. Given t/(2π) 6∈ Q, it is
known that there exist infinitely many irreducible fractions such that

ε = q2
∣∣∣ t
2π
− a

q

∣∣∣ verifies ε < 1.

In fact, this can be improved to ε < 1/
√

5 and not beyond (for general t) according to Hurwitz’s
theorem and that the best approximations are given by the convergents in the continued fraction
[40, §7.9]. By the mean value theorem

Ψ(θ, t)−Ψ

(
θ,

2πa

q

)
= O

(
εq−2|Ψt(θ, 2πξ)|

)
(5.15)

for some ξ between t/(2π) and a/q, in particular |ξ − a/q| < 1/q2. Thus, the error requires an
estimation of Ψt(θ, 2πξ). This can be achieved by using the standard integral representation of
the Legendre polynomials [41, 8.913], which gives in (5.12) the following

Ψt(θ, 2πξ) = −cr
i
√

2

π

∫ π

θ

∑∞
`=0 `(`+ 1)r` sin((`+ 1/2)u)e(−ξ`2 − ξ`)√

cos θ − cosu
du.

The terms `(` + 1)r` grow until ` is of order (1 − r)−1 and decrease exponentially later due
to the effect of r` (recall that 0 < r < 1 and we have in mind r close to 1). Then the main
contribution to the sum comes from the terms with ` comparable to (1−r)−1 for which `(`+1)r`

is comparable to (1− r)−2. In this context, by use of the classical work [42] it can be deduced
(see [38, Th. 6] for a clear statement)

M+N∑
n=M

e(ξn2 + xn) = O
( N
√
q

+
√
q
)

for any x ∈ R. (5.16)

Of course, if q > N2, the trivial bound O(N) is better. The application of this formula shows,
by partial summation, that the sum inside the integral is of the order

O
(

(1− r)−2
((1− r)−2
√
q

+
√
q
))

if q ≤ (1− r)−2 (5.17)

and
O
(
(1− r)−3

)
if q ≥ (1− r)−2. (5.18)

On the other hand, it is not difficult to prove, by taking into account that cos θ − cosu >
C(u2 − θ2) for 0 ≤ θ ≤ u ≤ π/4, that∫ π

θ

du√
cos θ − cosu

= O
(
| log θ|

)
. (5.19)

11



The substitution of (5.17)-(5.19) into (5.15) leads to the estimation

Ψ(θ, t) = Ψ(θ,
2πa

q
) +O(E) (5.20)

with

E = εcr| log θ|
q−1/2 + min

(
(1− r)√q, 1

)
(1− r)3q2

.

Probably the log θ factor can be avoided with a more careful analysis because |P`(cos θ)| ≤ 1
cannot be achieved with our integral estimation.

To illustrate the situation we plot
∣∣Ψ(θ, t)

∣∣2 sin θ in Figure 4. For t = 2π/
√

14 we get the

first plot. If we approximate t/2π = 1/
√

14 by 4/15, which is a convergent in its continued
fraction of 1/

√
14, we get the second plot.

(a) (b)

Figure 4: Graph of
∣∣Ψ(θ, t)

∣∣2 sin θ for (a) t = 2π/
√

14 and (b) t = 8π/15.

Clearly the approximation misses the details and it suggests to take the next two convergents
27/101 and 31/116, as shown in Figure 5. The last one is barely distinguishable from the
original.

(a) (b)

Figure 5: Graph of
∣∣Ψ(θ, t)

∣∣2 sin θ for (a) t = 54π/101 and (b) t = 31π/58.
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6. Analysis of the singularities

We have suggested below (5.14) that the limit r → 1− of the solution is singular. We would
like here to describe this singularity in a more explicit form. After (5.13), we

Sa/q(θ) =
∑

− q
2
<n≤ q

2

G(−a,−a− n; q)F
(
e
(n
q

)
, θ
)

(6.21)

captures the behaviour of the wave function when r → 1− at a fixed time t = 2πa/q ∈ [0, π]
with a/q an irreducible fraction. We are going to study the singularities of this function for
θ ∈ [0, π].

Note that F (eiα, θ) is singular exactly at θ = |α| for α ∈ (−π, π] then the only possible
singularities occur at θ = 2πk/q with 0 ≤ k ≤ q/2. We want to show

lim
θ→ 2πk

q

+
|Sa/q(θ)| =∞, ∃ lim

θ→ 2πk
q

−
Sa/q(θ) if G(a, a+ k; q) 6= 0 (6.22)

and
∃ lim
θ→ 2πk

q

Sa/q(θ) if G(a, a+ k; q) = 0. (6.23)

Here ∃ means that the limit exists and is finite. Of course, one of the lateral limits does not
make sense in the extreme points 0 and π.

A preliminary remark is that F
(
e(n/q), θ

)
has a not so difficult polar form

F
(
e
(n
q

)
, θ
)

= ReiA with R
(n
q
, θ
)

= 2−1/2
∣∣∣ cos

2πn

q
− cos θ

∣∣∣−1/2 (6.24)

and

A(
n

q
, θ) =

 −
πn
q

if 2π|n|
q

< θ < π,

sgn(n)π
2
− πn

q
if 0 ≤ θ < 2π|n|

q
.

(6.25)

These formulas may be found by taking limits in (5.14). A more practical approach is the

following. First note that
(
e(n

q
)− cos θ

)2
+ 1− cos2 θ is a first order polynomial in cos θ which

vanishes for θ = 2πn/q, then it must be divisible by cos(2πn/q)− cos θ, resulting(
e

(
n

q

)
− cos θ

)2

+ sin2 θ = 2e

(
n

q

)(
cos

(
2πn

q

)
− cos θ

)
.

From here, the formula for R becomes obvious, recalling the definition of F . If 2π|n|/q < θ < π
the latter big parenthesis is positive and then F

(
e(n/q), θ

)
/R = e(−n/2q) giving the first case

in (6.25). On the other hand, if 0 ≤ θ < 2π|n|/q, it is negative and we recover the positivity
introducing a factor e(±1/2). To keep the argument of e(±1/2 + n/q) in the range (−π, π], we
choose the minus sign if and only if n is positive. Then F

(
e(n/q), θ

)
/R = e

(
− 1

2
(sgn(n)/2+n/q)

)
and the second case of the formula is deduced.

Now we prove (6.22) and (6.23). Note that G(−a,−a−k; q) = 0 if and only if G(a, a+k; q) =
0 because both are complex conjugates. Let us discuss first the extreme cases. If θ → 0+ then
F (1, θ) ∼ θ−1 and we have in (6.21)

Sa/q ∼ G(−a,−a; q)θ−1 + constant terms,
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giving the result. When θ → π− the only possible singular term in (6.21) is that with n = q/2
that only exists if 2 | q, but G(−a,−a− q/2; q) = 0 by (4.8) and the singularity is suppressed.

Consider now the remaining cases θ → 2πk/q with 0 < k < q/2. The possible singularity
comes from

G(−a,−a+ k; q)F
(
e(−k/q), θ

)
+G(−a,−a− k; q)F

(
e(k/q), θ

)
. (6.26)

If G(−a,−a − k; q) = 0 then G(−a,−a + k; q) = 0 by (4.8) because −a − k and −a + k have
the same parity. Then there is no singularity when G(a, a+ k; q) = 0 and we get (6.23).

If G(a, a+ k; q) 6= 0, applying (4.11), (6.24) and (6.25) to (6.26), we see that (6.22) follows
if we prove

e
((4a)∗(a− k)2

q
+
n

2q

)
+ e
((4a)∗(a+ k)2

q
− n

2q

)
6= 0

and

e
((4a)∗(a− k)2

q
+
n

2q
− 1

4

)
+ e
((4a)∗(a+ k)2

q
− n

2q
+

1

4

)
= 0 (6.27)

because, except for a nonzero constant, these are the results of dividing (6.26) by R(k/q, θ)
when θ is, respectively, to the right and to the left of 2πk/q. It is enough to prove

(4a)∗(a− k)2

q
+
n

2q
−
((4a)∗(a+ k)2

q
− n

2q

)
∈ Z

because it means that the complex exponentials are equal in the first case and have opposite
sign in the second case as a result of the arguments in (6.27) differing in a half-integer. Opening
the squares, we have

−(4a)∗4ak

q
+
k

q
= −

(
(4a)∗4a− 1

)
k

q

and this is an integer by (4.10).

7. The “valleys of the shadows”

The work [12] formalizes the mathematical study of the evolution under the Schrödinger equa-
tion on the circle (equivalently, on the real line under periodic conditions) of wave functions Ψ
such that the probability density |Ψ|2 tends to the periodic Dirac delta δp(x) =

∑
n δ(x−n) at

the initial time t = 0. In that work, the author considers generic periodic
√
δ families, which

are functions fε(x) parametrized by a real quantity ε in such a way that

lim
ε→0

∫ 1

0

|fε(x)|2g(x)dx = g(0),

for every function g(x) continuous in the interval [0, 1]. Clearly, this condition states that
f(x) = limε→0 fε(x) imitates the behaviour of the square root of a Dirac delta distribution. An
example of such is

fε(x) = (2πε2)−
1
4 e−

x2

2ε ,

however the results of that reference do not rely in any particular family. The only distinction
is that the family can be even or odd, according fε(−x) equals fε(x) or −fε(x), respectively,

14



and the even families are denoted
√
δ+ and the odd ones

√
δ−. In general, a given distribution

ρ(f) is the weak limit of ρ(fε) if for every continuous and compactly supported g in the circle
T

lim
ε→0

∫
T
ρ(fε)g dµ =

∫
T
ρ(f)g dµ,

with µ the standard Lebesgue measure on the circle. For the particular case of the Schrödinger
equation, the distribution ρ(f) represents the probability density |Ψ|2 evolving in time with
initial data f .

In the terms of the quantities defined above, by assuming that the limit f(x) does not
depend on the choice of the family, one of the main results of the reference [12] is the following

Proposition 2: Consider the straight lines

La,b = {(x, t) ∈ R2 | x+ at = b}, LTa,b = {(x, t) ∈ R2 | ax+ t = b},

and let ρ(
√
δ, C) denote the restriction of the density to a set C ⊂ R2. Given N and M integers,

then
ρ(
√
δ±, LN,M

2
) = 1± (−1)MN .

Furthermore if N is rational and not integer then

ρ(
√
δ, LN,ξ) = ρ(

√
δ, LT0,τ ) = ρ(

√
δ,R2 = 1,

for ξ real and τ real irrational.

Some comments about this proposition are in order. The identities given there should be
interpreted in weak sense [12]. The formula for ρ(

√
δ±, LN,M

2
) shows that if the family is even,

then for M and N both odd or even, the density vanishes. For odd families instead, one integer
should be even and the other odd. The corresponding lines LM,N

2
are denominated in the

terminology of that reference as valley of shadows. The presence of these valleys is a feature
that was observed by numerical simulations, see [12] and reference therein. It is important to
remark that the position of these valleys depends on the choice of the approximating family. It
may be natural to employ an even family for modeling the Dirac delta.

In addition, it is proved [12, Th. 1, Lem. 1] that the vanishing of the generalized Gauss sum
G(a, b; q) with a/q and b/q related to time and position assures that the corresponding point
belongs to the valleys of the shadows.

The arguments of [12] cannot adapted changing the circle by the sphere to cover our case,
mainly by two reasons. First, the eigenfunctions for the sphere have nothing to do with the
pure complex exponentials and in particular they do not share their additive properties linked
to standard operations with the classic Fourier expansion. On the other hand, in some sense
(not explicitly mentioned in [12]), if the time is a rational multiple of 2π, Ψ tends to a sin-
gle generalized quadratic Gauss sum when working on the circle, while (5.13) shows that an
arbitrarily large number of these sums, depending on the denominator, contribute to Ψ when
working on the sphere.

Despite the problem for generalizing the results of [12] given above, there is a characteri-
zation that can be expressed in mathematical terms as follows. First, we define the rational
valleys of shadows (meaning the valleys of the shadows at times given by rational multiples of
2π) by the formula

V =
{

(θ, t) ∈ [0, π]2 : t =
2πa

q
, Sa/q(θ) = 0

}
. (7.28)
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Here, as before, a/q represents an irreducible fraction. Keeping in mind the formula (5.13),
V corresponds to empty zones when r → 1−. In some sense, it is a quantum counterpart of
the shadowed zones that appear in the classical diffraction setting. We will see later how it is
reflected in the numerical calculations.

Taking into account the subtle arithmetic information appearing in the exact evaluation of
G(a, b; q) (see [38, §3]) and that F (z, θ) does not seem to share any arithmetic significance, it is
hard to expect a simple characterization of V . Surprisingly, using our study on the singularities,
we can state a neat conjecture and to verify it except for a thin set. First, a proposition is
needed.

Proposition 3: The following set inclusion

V ⊃ V0 where V0 =
⋃

0≤a
q
≤ 1

2

4|q

[0,
2π

q
)× {2πa

q
}, (7.29)

is true.

Our conjecture is that V = V0, more precisely the following statement.

Conjecture: Each time slice (
V − V0

)
∩
(
[0, π]× {2πa

q
}
)

(7.30)

contains at most finitely many points.

Proof of proposition 3: First, take q such that 4 | q. Then

G(−a,−a− n; q) 6= 0,

if and only if n is odd, by (4.11), and we can arrange Sa/q(θ) as

Sa/q(θ) =

q/2−1∑
k=1

2-k

(
G(−a,−a+ k; q)F

(
e(−k

q
), θ
)

+G(−a,−a− k; q)F
(
e(
k

q
), θ
))
.

The function under the sum is (6.26) and we had proved with (6.27) that it vanishes when θ is
to the left of 2πk/q. As k ≥ 1 any 0 ≤ θ < 2π/q cancel all the terms and we obtain (7.29) (Q.
E. D).

The next step is to motivate the conjecture given above. The functions F
(
e(k/q), θ

)
are

real analytic except for the singularities described in the previous sections. From there it is
concluded that Sa/q(θ) is analytic in each open interval I = (2πk1/q, 2πk2/q) where 2πk1/q and
2πk2/q are consecutive singularities of Sa/q. By (6.22) we know that Sa/q goes to ∞ in the
left extreme of I, then we can find α ∈ I such that Sa/q(θ) 6= 0 for θ ∈ (2πk1/q, α]. On the
other hand, (6.27) shows that Sa/q(θ) could be redefined to the right of 2πk2/q in an analytic
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way just setting (6.26) to zero. Then Sa/q is analytic in [α, 2πk2/q]. The non identically zero
analytic functions defined on finite closed intervals can only have a finite number of zeros, then
the same can be said for Sa/q(θ) in I and the same argument applies for the right half-open
extreme interval of the form (2πk1/q, π].

Summing up, if we take the union of all of these intervals, we have that Sa/q has a finite
number of zeros in [2πk0/q, π] with 2πk0/q the first singularity. Since (4.8), G(a, a, q) 6= 0 if
and only if 4 - q and G(a, a + 1, q) 6= 0 if 4 | q and (6.22) shows k0 = 0 in the first case and
k0 = 1 in the second, proving that (7.30) contains finitely many points (conjecturally none).
This is basically the motivation for stating that conjecture.

Except in symbolic computation environments, it is impossible to distinguish with a com-
puter 0 from nearly 0. A method to try to approximate the valleys of the shadows is to select
atypically small values with certain tolerance.

Figure 6 displays in black the points in the quantum Talbot carpet of §2 (recall that r = 0.95)
having values less than a 5% and a 2.5% of the maximum value. Although we do not obtain
very clear pictures, the peaks [0, 2π/q) × {2πa/q} in V0 with 4 | q for small q are apparent in
the bottom part.

(a) (b)

Figure 6: In black, points in the Talbot carpet with values below (a) 5% and (b) 2.5% of the
maximum.

8. The fractional quantum Talbot effect

As is well known, the study of Gauss sums prove to be fruitful for studying optics, in particular
the celebrated Talbot effect about image revivals in a diffraction setting, as described in [3].
This replication translated to the Schrödinger context can be interpreted as follows. We know
that G(a, a+ k; q) = 0 if and only if q/2 + a+ k + 1 is an even integer. If not, (6.22) assures a
singularity of Sa/q(θ) at θ = 2πk/q. Recalling (5.13), this can rephrased as the following form
of the Talbot effect:

The singularity of the initial condition of (2.4) reflected as a peak ∼ θ−1 at θ = 0
when r → 1− in |fr(θ)|2c2r sin θ, reappears (at different scale) in its solution for
t = 2πa/q at θ = 2πk/q, with 0 ≤ k < q/2 exactly when 2(a + k + 1) + q is not a
multiple of 4.

We see that both in the optics and the Schrödinger case the singularities result in a partial
replication of the initial profile. There are some remarks to make. The factor cr in (5.13)
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goes to zero and it was not included in (6.21). It does not kill the singularities because cr ∼(
− 2π log(1− r)

)−1/2
and

∣∣F (re(n/q), θ)
∣∣ = (1− r)−1/2

(
1 + r2 − 2r cos(2θ)

)−1/2
for θ =

2πn

q
.

One may also ask whether the singularity of Sa/q(θ) at θ = 0+ when 4 - q disappears when we

consider the density
∣∣Ψ(θ, 2πa/q)

∣∣2 sin θ. Of course, it takes the value zero at θ = 0 for any
r < 1, but

∣∣F (1, θ)
∣∣ ∼ θ−1 suggests a behavior like θ−1 to the right (see §3).

In all the cases, (6.22) predicts a bias to the right of the singularity that it is reflected in
the numerical calculations.

When q is odd the condition in the previous statement is always fulfilled and then we have
singularities at θ = 0, 2π/q, 4π/q, . . . , π(q − 1)/q.

In Figure 7 there are some examples of the graph of |Ψ(θ, 2πa/q)|2 sin θ for q odd. Note
that increasing the value of r makes the peaks more noticeable.

(a) (b) (c)

Figure 7: Graph of |Ψ(θ, 2πa/q)|2 sin θ corresponding to (a) a/q = 2/7, r = 0.9; (b) a/q = 2/7,
r = 0.95; (c) a/q = 7/15, r = 0.97.

When q is even, the condition means that n and q/2 have different parity. Hence, if q is a
multiple of 4, the singularities are located exactly at θ = 2π/q, 6π/q, . . . , π − 2π/q and if q is
not, they appear at 0, 4π/q, 8π/q, . . . , π−2π/q. The extreme point θ = π is never a singularity,
as mentioned in §6.

Figure 8 contains some examples for q even. The last plot illustrates the smoothing of the
peaks when r is not close to 1. The flat left part of the first plot is in agreement with our
considerations about the valleys of the shadows.

(a) (b) (c)

Figure 8: Graph of |Ψ(θ, 2πa/q)|2 sin θ corresponding to (a) a/q = 1/12, r = 0.97; (b)
a/q = 3/14, r = 0.97; (c) a/q = 3/14, r = 0.8.
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9. Conclusions

In the present work the Schrödinger equation for a particle in a two dimensional sphere was
studied, by assuming an initial profile which tends to the Dirac delta in certain limit of the
parameters. The structure of singularities at rational time was clarified and it was shown that
the density becomes localized at certain point along the sphere at those specific times. It is
obtained a set in which the density vanishes and it is conjectured that this set is indeed, with
minor variations, the zero set of the density, but a proof is still missing. It is noticeable that the
whole analysis has an arithmetic flavor and number theoretical questions enters in our analysis.
It may be desirable to make a more formal classification of these vanishing regions. In the
circle case, the vanishing regions are one dimensional lines. In the present case, it is a sort of
analogous situation, since these regions are numerable unions of segments. We leave this issue
of a better understanding of this region for a future publication.
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