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Abstract

Peatlands contain approximately one third of all soil organic carbon (SOC). Warming can alter above- and below-

ground linkages that regulate soil organic carbon dynamics and C-balance in peatlands. Here we examine the multi-

year impact of in situ experimental warming on the microbial food web, vegetation, and their feedbacks with soil

chemistry. We provide evidence of both positive and negative impacts of warming on specific microbial functional

groups, leading to destabilization of the microbial food web. We observed a strong reduction (70%) in the biomass of

top-predators (testate amoebae) in warmed plots. Such a loss caused a shortening of microbial food chains, which in

turn stimulated microbial activity, leading to slight increases in levels of nutrients and labile C in water. We further

show that warming altered the regulatory role of Sphagnum-polyphenols on microbial community structure with a

potential inhibition of top predators. In addition, warming caused a decrease in Sphagnum cover and an increase in

vascular plant cover. Using structural equation modelling, we show that changes in the microbial food web affected

the relationships between plants, soil water chemistry, and microbial communities. These results suggest that warm-

ing will destabilize C and nutrient recycling of peatlands via changes in above- and belowground linkages, and there-

fore, the microbial food web associated with mosses will feedback positively to global warming by destabilizing the

carbon cycle. This study confirms that microbial food webs thus constitute a key element in the functioning of peat-

land ecosystems. Their study can help understand how mosses, as ecosystem engineers, tightly regulate biogeochemi-

cal cycling and climate feedback in peatlands
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Introduction

Ongoing global warming is causing ecological com-

munities to rapidly change, resulting in modifications

to their interactions, and to ecosystem functioning

and services. Climate warming can directly affect

aboveground communities, by changing plant com-

munity composition, carbon allocation patterns, or

the quality of plant-derived organic matter, which

indirectly affect soil biota (Wardle et al., 2004, 2012;

Veteli et al., 2007; De Deyn et al., 2008). The response

of the microbial subsystem may in turn directly or

indirectly create feedbacks on plant communities by

breaking down plant-derived organic matter (Wardle

et al., 2004; Bardgett et al., 2008; Singh et al., 2010).

Unfortunately, despite recent interest in linkages

between aboveground-belowground subsystems in

driving ecosystem functioning (Wardle, 2006; Ward

et al., 2007; Kardol & Wardle, 2010; Wardle et al., 2012),

much remains unknown about the impacts of climate

change on these linkages (Singh et al., 2010; Eisenhauer

et al., 2012). Understanding warming-induced changes

on both plants and soil organisms is thus relevant to

predict future impacts on above- and belowground ter-

restrial ecosystem processes (Bardgett &Wardle, 2010).

Peatlands dominated by Sphagnum mosses store

more C than any other terrestrial ecosystem owing to
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imbalance between litter inputs and C outputs from

soil respiration (Clymo et al., 1998; Davidson &

Janssens, 2006; Dise, 2009). Complex linkages between

above- and belowground communities regulate this

C-sequestration, which may decrease or even reverse in

response to warming, leading to a positive feedback to

global warming (Bardgett et al., 2008; Dorrepaal et al.,

2009; Fenner & Freeman, 2011). However, despite

recent interest in peatlands response to warming as

potential carbon source (Dorrepaal et al., 2009), only a

limited number of warming experiments dealing with

above- and belowground linkages have been conducted

(Fenner et al., 2007; Weedon et al., 2012). Knowledge of

how climate warming impacts above- and below-

ground linkages in peatlands is currently insufficient.

Indeed, changes in linkages at one level of organization

(e.g. species characteristics and interactions, commu-

nity composition or carbon storage) can affect above-

and belowground biota, and their linkages, at other

levels of organization, thus potentially destabilizing

peatland functioning.

Sphagnum mosses, as well-known ecosystem engi-

neers, create unfavourable conditions for the growth of

vascular plant that they then can partly out-compete by

efficiently accumulating nutrients, producing recalci-

trant litter, and modifying the chemical and physical

conditions of the soil (van Breemen, 1995; Turetsky,

2003). On the other hand, Sphagnum can also stabilize

the vegetation by encroaching on vascular plant space

in response to climate warming (Keuper et al., 2011).

These mosses are also tightly linked to microbial com-

munities through a variety of both direct and indirect

mechanisms that ultimately exert control on peatland

ecosystem C dynamics (Lindo & Gonzalez, 2010).

Microbial communities living in Sphagnum mosses con-

stitute a crucial detrital network for nutrient and C

cycling, where protozoans (and especially testate amoe-

bae) play a central role (Gilbert et al., 1998; Mitchell

et al., 2003; Lindo & Gonzalez, 2010). Sphagnum also

produces organochemical compounds such as polyphe-

nols, which are known to have a strong inhibitory effect

on microbial breakdown of organic matter, therefore

favouring peat accumulation (Verhoeven & Toth, 1995).

For instance, a reduction in polyphenol content may

stimulate bacterial and microbial enzymatic activity

(Fenner & Freeman, 2011; Jassey et al., 2011a). How-

ever, despite the global significance of microbial com-

munities in SOC dynamics of peatlands, their

sensitivity to climate change has so far received little

attention (Jassey et al., 2011b; Kim et al., 2012; Tsyganov

et al., 2012; Weedon et al., 2012) and considerable gaps

remain in our understanding of the impacts of warming

on aboveground-belowground relationships in peat-

lands following changes in microbial components.

Long-term global warming is expected to considerably

alter peat-forming areas, potentially involving substan-

tial C loss due to modifications in microbial processes

linked to Sphagnummosses (Dorrepaal et al., 2009; Dela-

rue et al., 2011; Fenner & Freeman, 2011; Jassey et al.,

2011a,b). Understanding key mechanisms behind the

changing Sphagnum–microbial–vascular plant interac-

tions in responses to climate change, is obviously

needed to better understand ongoing processes and to

predict more accurately future changes in the function-

ing of peatlands.

Here we focus on the ways in which warming affects

above- and belowground subsystems as key compo-

nents of C fluxes in Sphagnum peatlands. Specifically,

we analyse the effect of climate warming on key above-

and belowground components in a Sphagnum peatland

in the Jura Mountains (France) to explore whether

changes in peatland properties will be brought by plant

communities, microbial communities, or by interactions

between the two. Our aims were as follows (1) to quan-

tify over the course of two years how the soil microbial

food web (biomass of bacteria, fungi, protozoans, and

metazoans), plant communities (species composition

and diversity), Sphagnum-polyphenols and soil water

chemistry composition changed in response to warm-

ing, and (2) to clarify whether or not climate warming

destabilized the functioning of the peatland by chang-

ing plant-soil-microbial interactions, including poly-

phenol phytochemical interactions. Linkages among

these variables were investigated using a path-relation

network and structural equation models (SEM) to gain

a mechanistic understanding of how warming effects

materialized on above- and belowground linkages.

Materials and methods

Field site and experimental design

The experimental site is an undisturbed Sphagnum-dominated

peatland situated in the Jura Mountains (The Forbonnet peat-

land, north-eastern France, 46°49′35″N, 6°10′20″E). Above-

(mosses, vascular plants, polyphenols produced by Sphagnum)

and belowground (soil water chemistry, microbial communi-

ties living in Sphagnum carpet) components were measured

across a transitional fen-bog area in June 2008, 2009, and 2010

(beginning of the warming experiment April 2008). The exper-

imental site has an area of 30m x 30m and the vegetation con-

sists of a mosaic of hummocks and lawns (Jassey et al., 2011a).

The moss layer is dominated by S. fallax in lawns and by a

mixture of Sphagnum fallax, S. magellanicum and S. palustris in

hummocks whereas the evergreen dwarf shrubs Eriophorum

vaginatum and Andromeda polifolia, the deciduous dwarf shrubs

Vaccinum oxycoccus and the graminoids Calluna vulgaris and

Carex rostrata characterize the field layer. We chose 12 sam-

pling plots (six ambient and six warmed plots) across the area
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placed so as to cover all the possible microforms along the gra-

dient. Six plots were placed in lawns and six plots in hum-

mocks, and in each area three plots were assigned as AMB

and three as warmed conditions. We used open-top chambers

(OTC) to simulate the regional climate expected for the com-

ing decades (IPCC, 2007; Jassey et al., 2011a). The OTCs signif-

icantly increased mean air temperature in spring and summer

by up to about 1.3 °C, and decreased the water content of

Sphagnum in summer by up to about 30% (Delarue et al., 2011;

Jassey et al., 2011a). The water table depth did not change with

warming and was ranged from 13.4 to 20.8 cm between 2008

and 2010.

Belowground measurements

We analysed the entire microbial community using a morpho-

type functional group approach rather than focusing on a

given group, such as bacteria or fungi. Samples of S. fallax

were collected for the study of microbial communities from 10

permanent markers in each plot and the average altitude (mic-

rotopography) was measured. This sampling design allowed

for multiple sampling over time and collection of a composite

sample from each plot, avoiding any bias due to spatial heter-

ogeneity (Mitchell et al., 2000a). Microbial communities were

analysed from surface (0–3 cm) and litter (3–6 cm) layers of

Sphagnum shoots. Microbial samples were fixed in glutaralde-

hyde (2%) and extracted following the standard method

described in Jassey et al. (2011b). We used direct observation

by inverted microscopy (x200 and x400 magnification) to

determine precisely the abundance and biomass of individual

microbial functional groups (fungi, microalgae, ciliates, testate

amoebae, rotifers, and nematodes). Flow cytometry (FAC-

SCalibur flow cytometer, Becton Dickinson) was used for bac-

terial counts. Fluorescent microbeads (Molecular probes) of

diameter 1 lm were added to each sample as an internal

standard. Bacterial samples were stained with SYBR Green I

(1/10,000 final conc.) for 15 min in the dark and run at med-

ium speed (ca 40 lL min�1). For each specimen, the average

biovolume (lm3) was estimated by assuming geometrical

shapes using image analysis and converted to biomass using

conversion factors (Gilbert et al., 1998). Data were expressed

as micrograms of carbon per gram of Sphagnum dry mass

(lg C g�1 DM).

The trophic position of each testate amoeba species was esti-

mated by measuring their body size and their shell-aperture

size. We chose these two specific morphological traits because

they are linked to their feeding habit. Species with a low shell-

aperture size over body size ratio (shell-aperture size/body

size < 0.18) were considered as having a low trophic position

(i.e. primarily bacterivores and algivores), and species with a

high one (shell-aperture size/body size > 0.18) as having a

high trophic position (i.e. primarily predators of other protists

and micro-metazoan) in the microbial food web (Yeates &

Foissner, 1995; Mitchell et al., 2003; Jassey et al., 2012a).

Water chemistry (20 mL) was analysed in each sampling

plot at 10 cm depth from piezometers during each sampling

campaign. Total dissolved nitrogen (DN) and dissolved

organic carbon (DOC) of peatland water were determined

with a SHIMADZU SSM-5000A total C and N analyser (Shi-

madzu Schweiz, Reinach, Switzerland). Ammonium (NH4
+),

nitrates (NO3
�) and phosphates (PO4

3� and total phosphorus)

were analysed colorimetrically using a continuous flow analy-

ser (FLOWSYS; Systea, Roma) after filtering the bog water at

0.45 lm.

Aboveground measurements

We performed vegetation surveys by the point-intercept

method (Buttler, 1992; Keuper et al., 2011). We used a

50 9 50 cm Plexiglas frame placed above a permanently

marked quadrat by means of four adjustable poles. A ruler

with 20 holes was moved along 20 different positions to obtain

400 measuring points. A metal pin with a 1 mm diameter tip

was lowered through each hole in the ruler and each contact

of the pin with green living vegetation was recorded by spe-

cies until the pin reached the moss substrate. Moss and vascu-

lar plant abundances were expressed as percentage of mean

number of hits (%). Moreover, we measured the average

microtropography of the marked vegetation quadrat.

Total water-soluble Sphagnum-polyphenols were quantified

in living segments of Sphagnum shoots (0–6 cm) during each

sampling campaign using Folin methods and gallic acid as

standard (see Jassey et al., 2011b for details). These samples

were collected around the same 10 permanent markers used

for microbial communities for each plot.

Numerical analyses

We carried out linear mixed effects models and ANOVAs to test

for differences between treatments and years in the following

variables: (i) biomass of individual microbial groups; (ii) abun-

dance of individual testate amoeba species; (iii) individual

water chemical components; (iv) total abundance of plants

(mosses and vascular plants) and abundance of individual

moss and vascular plant; and (v) polyphenol content in Sphag-

num. Linear mixed effects were used to assess the effects of

warming (difference of temperature between ambient and

warmed plots, delta TC), time, and microtopography (fixed

effects) on measured of biotic and abiotic variables while

accounting for the temporal repeated measurements in each

plot on three dates. We fitted all models including plot as a

random effect on the intercept, i.e. we corrected for the infla-

tion of the residual degrees of freedom that would occur if we

were using repeated measurements as true replicates (Pinhe-

iro & Bates, 2000). Then ANOVAs were applied on the different

models to test the fixed effects, and differences among the lev-

els of the fixed effects in the final model were determined

using multiple comparison post hoc analyses (general linear

hypothesis test). Finally, we used the F-values from ANOVA to

quantify the impact of warming on the abundance of

individual testate amoeba species. Higher F-values indicated

stronger warming effect on the individual testate amoeba

species.

We evaluated the warming effect on plant species, micro-

bial community, and water chemistry composition using the

principal response curve (PRC) method (van den Brink & ter
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Braak, 1999). PRC was used to focus on the time-dependent

treatment effect and applied on the Hellinger-transformed

vegetation and microbial assemblages and the standardized

water chemistry matrix, including the response of individual

plant species, microbial groups or chemical components. In

diagrams, the curves represent the time trajectory for the con-

trols as a horizontal line maintained to 0 (dashed line) and

deviation of biotic or abiotic matrices compositions in warmed

plots in course of 2 years (solid line). This is achieved by tak-

ing the control treatment as the reference against which the

other treatments are contrasted and by defining “time” as the

horizontal axis of the diagram. With the help of the species

weights on the right Y-axis, the PRC can be used to infer about

the response of individual species to warming. The species

scores on the right Y-axis allow an interpretation at the species

level, i.e. values indicate the contribution of individual spe-

cies/group/component to the deviation of the community

structure observed in warmed plots. Individual group with

positive scores on right Y-axis are inferred to show a negative

effect of warming, whereas groups with negative scores show

a positive response to warming. A group near zero scores

either show no response or a response unrelated to the pattern

shown in PRC. Higher values (positive or negative) on the

right Y-axis indicate stronger warming effect on the individual

species/group. Permutation tests with 1,000 permutations,

stratified by year, were performed for every canonical axis. In

addition, we compared the respective effect of microtopogra-

phy, time, and warming (i.e. delta air temperature between

ambient and warmed plots) on each biotic and abiotic matri-

ces using variance partitioning in redundancy analyses (RDA)

and adjusted R2. The significance of the each explanatory vari-

able included in RDA was tested using 1,000 permutations.

Above- and belowground data were organized into a path-

relation network and subjected to structural equation model-

ling (Grace et al., 2010). This enabled us to explore simulta-

neous influences of several potentially important drivers of

peatland functioning that may be affected by warming, and

thereby identify their relative importance to obtain a better

understanding of peatland response to warming. SEM was

based on the overall data set and predicted causal relation-

ships between variables were based upon prior knowledge,

theory, and past experience on the role of above- and below-

ground factors in peatland functioning. The adequacy of the

model was determined via several tests, i.e. v2 tests, goodness

fit index (GFI), Akaike value (AIC), root square mean error of

approximation (RMSEA), and root mean square residual

(RMR) (Jonsson & Wardle, 2010; Eisenhauer et al., 2012). Ade-

quate model fits are indicated by nonsignificant v
2 tests

(P > 0.05), high GFI (0.8 < GFI < 1), low AIC, low RMSEA

(< 0.05), and low RMR (RMR < 0.05) (Grace et al., 2010). Models

were built and separately tested for ambient and warmed

plots based on the biomass of individual microbial groups in

surface and litter, abundances of mosses and vascular plants,

polyphenol content, and a subset of four variables (DOC,

NH4
+, NO3

�, and PO4
3�) retained by stepwise selection from

the water chemistry matrix. We used RV-coefficients from

multiple factor analysis (MFA) to construct our correlation

matrices used in SEM (Grace et al., 2010). MFA symmetrically

linked the six groups of descriptors described above. MFA

was selected because it allowed the simultaneous coupling of

several groups or subsets of variables defined on the same

objects and assess the general structure of the data (Escofier &

Pages, 1994). RV-coefficients (Pearson correlation coefficient)

were used to measure the similarities between two data matri-

ces (Josse et al., 2008). SEM was performed using Amos 5

(Amos Development Corporation, Crawfordville, FL, USA).

For each analysis, R2 values were obtained for each dependent

matrix, showing the amount of the variance explained by the

model (Grace et al., 2010; Jonsson & Wardle, 2010).

All statistical analyses were performed with R 2.10.1 using

the lme, vegan, and FactoMineR packages (Husson et al., 2009;

Oksanen et al., 2010; R Development Core Team, 2010).

Results

Belowground subsystem

Microbial network structure. The structure of microbial

communities clearly responded to warming as showed

by PRCs (Fig. 1 a and b). Microbial community struc-

ture in warmed plots significantly deviated from ambi-

ent plots at the surface layers (F = 4.6, P = 0.02)

whereas the same, but weaker warming effect was

recorded at the litter layers (F = 3.1, P = 0.05). The

response of warmed plots clearly appeared in 2009 in

both sampling depth, one year after the beginning of

the warming experiment (Fig. 1 a and b). The respective

effects of microtopography, time, and temperature

increase on the variation of microbial communities liv-

ing at the surface layers were of 13.7%, 6.6%, and 10.5%

respectively (Table 1), while their respective effects at

the litter layers were of 0.6%, 24.7%, and 14.3% respec-

tively. Only some microbial groups were affected by

microtopography variations (e.g. microalgae and testate

amoebae) along Sphagnum shoots (Table S1). Further-

more, variance partitioning revealed that the interaction

between microtopography and warming was not signif-

icant along Sphagnum shoots (Table 1), highlighting a

similar warming effect among lawns and hummocks.

The detailed examination of the time-dependent

warming effect on individual microbial groups

revealed a strong negative effect on testate amoebae,

especially at the surface layers (Fig. 1 a; Table S1). This

effect was largely due to a decline of the biomass of the

testate amoebae with high trophic level (F = 5.6,

P = 0.002) of 40% and 75%, after one and two warming

years respectively. The total biomass of this category

of species decreased from 440 lgC g�1 DM to

131 lgC g�1 DM in warmed conditions over two years

(Table S1). Although the decrease in the biomass of tes-

tate amoebae with high trophic level was not significant

at the litter layers (F = 3.9, P = 0.063), the trend of their
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response followed that of testate amoebae in surface

layers with a decrease in 28% and 41% of their biomass

after one and two warming years respectively (Table

S1). Moreover, we recorded that the warming effect on

the abundance of main testate amoeba species was pos-

itively correlated to the ratio shell-aperture size over

body size at the surface layers (r = 0.68, F = 4.25,

P < 0.04; Fig. 1 c). Here again, such trend was

nonsignificant in the litter (r = 0.36, F = 2.3, P = 0.17).

We further observed that the microbial network from

surface and litter became increasingly enriched in bac-

teria and depleted in top predators with warming. The

relative biomass of bacteria in the surface layers signi-

ficantly increased from 31% in ambient plots to 45% in

warmed plots, and from 29% to 36% in the litter layers

(Fig. 2, Table S1). In parallel, the relative biomass of tes-

tate amoebae with high trophic level decreased from

31% in ambient plots to 12% in warmed plots in the

surface layers and from 21% to 11% in the litter layers

respectively. Consequently, the decrease in testate

amoebae with high trophic level explained 10%

(F = 4.86, P = 0.03) and 16% (F = 7.91, P < 0.01) of the

rise of the relative bacterial biomass in warmed plots

from surface and litter respectively.

Water chemistry composition. The PRC analysis showed

that water chemistry composition was not affected by

warming (F = 2.1, P = 0.11). Time, mainly explained

the variance in water chemistry composition with

19.8% of the total variation. However, variance parti-

tioning revealed a slight, but significant, interaction

between time and temperature increase on water chem-

istry composition with 21.9% of the variance (Table 1).

Warming slightly affected water chemistry composition

over two years. Elevated temperatures modified the

annual dynamic of some chemical components such as

DOC, and NO3
� (Table 2), even if these variations

remained very low. Most importantly, we found in

warmed plots that nitrates (r = �0.64, F = 8.4, P < 0.01)

and DOC (r = �0.66, F = 3.8, P = 0.05) were negatively

correlated to the decrease in the biomass of testate

amoebae with high trophic levels, whereas no such

relationships were found in ambient plots (Fig. 3 a–c).

In the same way, no such relationships were found for

the biomass of the testate amoebae with low trophic

levels, both in ambient and warmed plots.

Aboveground subsystem

Mosses and vascular plants abundances. Plant species

composition was stable across years and did not

respond to warming over the course of the two years,

as showed by the PRC (F = 0.61, P = 0.96). Redundancy

analysis showed that vegetation species composition
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Fig. 1 Microbial community response to climate warming in

a Sphagnum-dominated peatland. Principal response curve

diagrams with scores for microbial functional groups living in

the surface (a) (P = 0.02) and the litter (b) (P = 0.05) layers of

the Sphagnum carpet. (c) Warming effect on testate amoeba

species in relation to the size of their shell-aperture over their

body size. The warming effect was determined using the

F-value from ANOVA tests. Testate amoebae that contributed

to less than 3% of maximum abundance in all samples were

removed from the data set to reduce the influence of rare

taxa in this analysis. Line is regression line significant at

**P < 0.01 level (ANOVA test).
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strongly responded to microtopography variations

(F = 12.8, P = 0.001; Table 1). The detailed examination

of the warming effect on vegetation structure in lawns

and hummocks showed that the total abundance of

vascular plants significantly increased with warming in

both micro-types (F = 5.1, P = 0.032, ANOVA) and that of

Table 1 Summary of RDA on microbial, plant and water chemistry data sets and environmental factors: fraction of variance

explained and significance of individual variables taken alone or in interaction

Microbial communities

(top)

Microbial communities

(inter) Plant communities

Water chemistry

composition

% F-value (P-value) % F-value (P-value) % F-value (P-value) % F-value (P-value)

Microtopography (Alt) 13.7 8.6 (P = 0.001) 0.6 1.2 (P = 0.35) 26.0 12.8 (P = 0.001) 3.6 3.0 (P = 0.04)

Time 6.6 3.7 (P = 0.007) 24.7 8.7 (P = 0.001) 0.6 1.2 (P = 0.30) 19.8 8.3 (P = 0.001)

delta T °C 10.5 6.1 (P = 0.001) 14.3 7.9 (P = 0.001) 2.0 0.3 (P = 0.89) 1.7 2.3 (P = 0.096)

delta T °C*Year 16.5 2.1 (P = 0.06) 33.8 4.1 (P = 0.002) 5.4 0.6 (P = 0.63) 21.9 2.9 (P = 0.04)

delta T °C*Alt 22.5 0.44 (P = 0.83) 12.6 0.71 (P = 0.63) 24.5 1.1 (P = 0.30) 4.2 0.4 (P = 0.82)

*Percentage of variance explained (adjusted R2).
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mosses decreased in lawns (F = 7.15, P = 0.019, ANOVA).

Total vascular plant abundance increased from 29% of

mean number of hits to 31% in lawns and from 37% of

mean number of hits to 41% in patterns of hummocks

and hollows (Fig. 4 a). Such an increase was due to a

rise in the abundance of the evergreen low shrub

Andromeda polifolia (F = 8.37, P < 0.01; Fig. 4 c). The

abundance of other evergreen vascular plants (Eriopho-

rum vaginatum, Vaccinium oxycoccus), graminoids (Carex

limosa, C. rostrata, C. pauciflora) and forbs (Drosera rotun-

difolia) did not respond to climate warming. Total moss

abundance decreased in lawns from 55% to 45% after

two warming years (Fig. 4 b), especially Sphagnum fal-

lax, which significantly decreased from 49.0% to 42.9%

(F = 4.1, P = 0.03; Fig. 4 d). Other moss species such as

S. magellanicum and S. palustris did not respond to

warming.

Sphagnum-polyphenols. Total water-soluble poly-

phenol content ranged between 0.5 mg g�1 DM and

2.5 mg g�1 DM (Table 2). Phenolic content was not

Table 2 Mean (� SE) of water chemical variables measured in a Sphagnum-dominated peatland subjected to experimental warm-

ing (WAR) or ambient conditions (AMB) in 2008, 2009 and 2010. Significant warming effects are shown in bold (ANOVA tests)

2008 2009 2010 F-value (P -value)

AMB WAR AMB WAR AMB WAR warming time microtopography

pH Mean 3.88 3.41 4.54 4.23 3.96 3.91 1.97 (P = 0.17) 0.76 (P = 0.39) 4.2 (P = 0.07)

SE 0.03 0.17 0.30 0.26 0.05 0.07

DOC (mg L�1) Mean 42.0 40.2 40.7 40.5 47.3 48.5 4.2 (P = 0.001) 87.2 (P = 0.001) 3.2 (P = 0.11)

SE 4.3 0.8 1.1 0.7 1.0 0.8

DN (mg L�1) Mean 1.00 0.7 0.74 0.63 0.7 0.71 0.88 (P = 0.35) 1.8 (P = 0.19) 0.2 (P = 0.90)

SE 0.20 0.03 0.11 0.01 0.01 0.02

PO4
3- (mg L�1) Mean 1.9 2.3 11.5 10.5 10.1 9.7 8.93 (P = 0.001) 28.2 (P = 0.001) 0.17 (P = 0.69)

SE 0.2 0.7 2.3 0.2 0.3 0.3

Ptot (mg L�1) Mean 12.4 13.4 20.3 19.6 11.7 13.5 0.24 (P = 0.78) 0.25 (P = 0.61) 0.55 (P = 0.47)

SE 0.4 0.8 2.2 2.2 0.5 2.0

NH4
+ (mg L�1) Mean 55.0 50.2 43.4 51.5 43.2 40.2 1.1 (P = 0.31) 5.23 (P = 0.03) 4.32 (P = 0.07)

SE 6.2 1.7 2.6 2.8 2.2 9.3

NO3
- (mg L�1) Mean 8.7 7.7 10.3 4.4 25.7 28.0 6.23 (P = 0.02) 21.2 (P = 0.001) 0.29 (P = 0.59)

SE 2.0 1.5 4.4 2.6 1.6 1.8

Phenol (mg g�1 DM) Mean 1.20 1.11 1.00 0.95 1.49 2.31 0.03 (P = 0.87) 5.49 (P = 0.03) 10.4 (P = 0.001)

SE 0.06 0.07 0.09 0.13 0.20 0.22
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affected by warming over the 2 years, but a significant

negative link between phenolics and air temperatures

was found (r = �0.38, F = 4.3, P = 0.034). Furthermore,

we found a negative relationship between water-soluble

polyphenol and the biomass of testate amoebae with

high trophic levels in warmed plots (r = �0.6, F = 9.9,

P < 0.001) whereas the same relationship in ambient

plots was not significant (r = �0.2, F = 1.7, P = 0.21)

(Fig. 5). Moreover, variance partitioning revealed that

water-soluble polyphenols and temperature increase

explained 13% (F = 6.2, P = 0.02) and 19% (F = 8.9,

P = 0.005) of the decrease in the biomass of testate amoe-

bae with high trophic levels at the surface layers respec-

tively. Such a relationship was neither found for testate

amoebae with low trophic levels, nor in the litter layers.

Effect of warming on above- and belowground linkages. The

use of a path-relation network showed that warming

affected above- and belowground interactions (Fig. 6).

The final models adequately fitted the data under ambi-

ent (v2 7 = 6.51, P = 0.51; AIC = 34.19; GFI = 0.88; RMSEA

< 0.001; RMR = 0.14) and warmed conditions (v2 7 = 1.00,

P = 0.99; AIC = 29.03; GFI = 0.98; RMSEA < 0.001; RMR =

0.034). Under ambient conditions, the model showed

that microbial community structure in surface layers had

significant links to microbial community structure in lit-

ter (P < 0.01), and that Sphagnum-polyphenols were neg-
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atively linked to microbial community structure in

surface and litter (P = 0.09) (Fig. 6 a). Significant associa-

tions were further found between microbial communi-

ties living in litter and water chemistry composition

(P < 0.01; Fig. 6 a). The model also showed a strong

negative association between moss community and vas-

cular plant community (P < 0.01). The ambient model

explained a low proportion of the variance in mosses

(8%) and microbial community structure at the surface

(2%), whereas it explained 17.5%, 25.5%, and 46.4% of

microbial community structure in litter, water chemistry,

and vascular plant community respectively (Fig. 6 a).

In warmed plots, treatment effect on testate amoebae

with high trophic levels significantly increased the link

of microbial communities living in surface with moss

community structure (P < 0.01; Fig. 6 b). The link

between Sphagnum-polyphenols and microbial commu-

nities also increased and shifted from a negative associ-

ation in ambient plots to a positive association in

warmed plots, especially on microorganisms living

in surface layers. This analysis also revealed a decrease

in the negative association between mosses on vascular

plants community structure in warmed conditions.

Moreover, the model showed that the relationships

between water chemistry and microbial communities

increased with warming, especially in litter layers (P <

0.01). The SEMmodel on warmed plots explained a larger

proportion of the variance in moss community structure
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(19.4%), water chemistry (49.7%), microorganisms in

surface (13%), and litter (27.3%) layers, whereas that of

vascular plants diminished (19.5%) (Fig. 6 b).

Discussion

Our results from a field manipulation experiment in a

Sphagnum peatland showed that warming affected the

structure and functioning of soil microbial communi-

ties, as well as total vascular plant and moss abun-

dances so resulting in a modification of linkages

between above- and belowground subsystems.

Warming effect on microbial communities resulted in

rapid trophic alteration in the microbial food web. The

impact of warming on microbial structure decreased

with depth; the response of microbial communities was

highly significant in the surface layers, similar but

weaker in the litter layers. Such a result is in line with

previous observations of a weak warming effect on

Sphagnum-polyphenol, enzymatic activities and water-

extractable organic matter at this depth (Delarue et al.,

2011; Jassey et al., 2011a, 2012b). Warmed communities

disproportionately lost top predators and omnivores,

and became increasingly dominated by decomposers

and autotrophs (Fig. 2). These results suggested that

the stability of the microbial food web was affected by

warming, as it was demonstrated in other studies in

different contexts (Petchey et al., 1999; Dossena et al.,

2012; Heckmann et al., 2012). More specifically, warm-

ing impacted testate amoebae with a large body size

and shell-aperture size, key organisms of the structure

and functioning of microbial network due to their posi-

tion at the top of the food web (Mitchell et al., 2003;

Wilkinson & Mitchell, 2010; Jassey et al., 2012a). This

decrease was linked and coincided with an increase in

the relative biomass of bacteria, both in the surface and

litter layers. Such changes in the relative distribution of

microbial group among trophically defined levels may

potentially alter ecosystem functioning beyond (Pet-

chey et al., 1999; Dossena et al., 2012). For example and

although it was not explored here, warming has been

recognized to alter the structure of bacterial communi-

ties by favouring bacterial communities over methano-

gens, which may result changes in balance between

CO2 and CH4 fluxes from peatlands (Kim et al., 2012).

Furthermore, the strong impact of climate warming on

testate amoebae is of particular interest because they

link mosses and microbial heterotrophic producers (i.e.

fungi and bacteria) via the microbial loop. This loop

describes a trophic pathway in microbial food web

where dead organic matter is returned to higher trophic

levels via its incorporation into bacterial biomass

coupled with the microbial food chains (e.g. bacteria?

ciliate ? testate amoebae; Gilbert et al., 1998). This

recycles C and nutrients from dead organic matter to

plant communities (Mitchell et al., 2003). The decline of

testate amoebae with high trophic levels probably led

to the loss of a trophic level (top-predators) in the

microbial network leading to a shortening of microbial

food chains, as showed in aquatic systems in another

context (Hansson et al., 2012). Such food chain shorten-

ing should greatly affect the microbial food web stabil-

ity and structure, which further could destabilize

ecosystem processes they control (Petchey et al., 1999;

Mitchell et al., 2003; Wilkinson & Mitchell, 2010; Heck-

mann et al., 2012). Indeed, testate amoebae with large

shell-aperture consume a wide range of prey such as

small testate amoebae, ciliates, rotifers, and small nem-

atodes, typically bacterivores and algivores species

(Gilbert et al., 2003; Wilkinson & Mitchell, 2010; Jassey

et al., 2012a). Their decrease could accelerate the turn-

over of microbial biomass due to the diminution of

their top-down control (predation), speeding up carbon

and nutrient recycling via the microbial loop in long

term (Petchey et al., 1999; Mitchell et al., 2003; Dossena

et al., 2012). Such modifications of microbial structure

and stability suggest that climate warming will impact

belowground subsystem functioning, as suggested by

Allison & Martiny (2008).

Interestingly, in other Sphagnum-dominated peat-

lands, summer warming was shown to accelerate N

cycling due to changes in the belowground subsystem

(Weedon et al., 2012). In our study, the largest differ-

ences in water chemistry composition were found

among sampling years. Annual variations in soil mois-

ture, evapotranspiration, and oxido-reduction pro-

cesses associated with the water table position probably

explained these variations (Proctor, 1994; Andersen

et al., 2010; Macrae et al., 2012). Although water chemi-

cal response to warming was inconsistent across years–

probably due to soil moisture variations (Macrae et al.,

2012), our results highlighted that water chemistry

composition responded to warming in interaction with

annual variations by slightly increasing nutrient (as

NO3
�) and C-exports (as DOC) levels in the soil solu-

tion after 2 years. Reasons of such slight warming effect

may be explained by the fact that microorganisms liv-

ing in surface layers are exposed to the chemistry of

capillary water rather than water deeper in the peat

(i.e. water table) (Lamentowicz et al., 2010). As a conse-

quence of this vertical gradient, the relationships

between bryophyte and water deeper in the peat are

not optimal (Mitchell et al., 2000b; H�ajkov�a & H�ajek,

2004). Nevertheless, increasing amount of DOC and

NO3
� in warmed plots, even varying annually, may be

interpreted as an indication of a slight destabilization of

the belowground functioning of peatland (Evans et al.,

2005; Carrera et al., 2009; Weedon et al., 2012). Moreover,
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the actual amount of C and nutrient fluxes from

the microbial loop is dependent of the length of food

chains in microbial food webs (Pomeroy, 2000). Thus,

the negative correlations between NO3
�/DOC and the

biomass of testate amoebae with high trophic levels

suggest that the trophic alteration of the microbial

structure due to a shortening of microbial food chains

affected these biogeochemical fluxes.

We clearly showed that warming affected the

belowground subsystem, however, this phenomenon

is often indirectly linked to changes in aboveground

communities (Wardle et al., 2004). A growing number

of studies have showed how changes in plant com-

munities affect soil communities (Wardle et al., 1999;

Kardol & Wardle, 2010) and how the soil biota in turn

affects the plant community structure, leading to feed-

backs between the plant and soil subsystems (Kardol

et al., 2006; De Deyn et al., 2008; Wardle et al., 2012).

The increase in vascular plants and the decrease in

Sphagnum in response to warming probably modified

the quantity and/or quality of plant-derived organic

matter, which in turn affected microbial communities

such as decomposers (Delarue et al., 2011). In addi-

tion, we revealed significant relationships between

Sphagnum-polyphenols and microbial communities in

warmed plots, suggesting that these aboveground fac-

tors interact in driving belowground subsystem

(Fig. 6). Polyphenols released by plants have been rec-

ognized as playing a fundamental ecological role in

the regulation of soil microbiota and hence of micro-

bial processes by way of chemical interactions (Hat-

tenschwiler & Vitousek, 2000; DA Inderjit et al., 2011;

Jassey et al., 2011a). For the first time, we found that

warming greatly impacted polyphenol-microbial com-

munity interactions by a shift from a negative to a

positive effect in warmed conditions (Fig. 6), and that

the amount of Sphagnum-polyphenols have a similar

influence than warming on key microorganisms such

as testate amoebae. The strong negative correlation

between polyphenols and testate amoebae with high

trophic levels in warmed conditions revealed a poten-

tial inhibitory effect of phenols on this category of

microorganisms in context of warming (Jassey et al.,

2011b). Even if warming did not directly impact the

total amount of Sphagnum-polyphenols, warming

effects on qualitative production are quite possible, as

previously showed in dwarf shrubs ecosystems (Han-

sen et al., 2006). Such findings strongly suggest that

polyphenols produced by Sphagnum play a key role in

the regulation of testate amoeba community structure,

as well as in the microbial network stability in ways

that can positively affect decomposition (Inderjit et al.,

2011; Jassey et al., 2011b). Indeed, by their inhibitory

effect on top predators, Sphagnum-polyphenols may

indirectly enhance C and nutrient mineralization, thus

favouring Sphagnum nutrient uptake. Bacterial growth

and microbial OM breakdown could be stimulated by

such inhibition of top-predators, leading to an

increase in nutrient levels and C release in peatlands,

which further would destabilize the productivity of

plant communities and peatland carbon stock (Fenner

& Freeman, 2011; Jassey et al., 2011a).

Reciprocally, we also assume that direct effects of cli-

mate warming on the microbial food web modify the

linkages between above- and belowground communi-

ties. Warming effect on microbial food webs could

greatly influence aboveground productivity and plant

community structure through the stimulation of nutri-

ent dynamics, which indirectly influence nutrient

uptake of aboveground consumers such as vascular

plants (Mitchell et al., 2003; Kardol & Wardle, 2010).

The rise of temperature involved a decrease in the neg-

ative link between mosses and vascular plants, high-

lighting a reduction of Sphagnum mosses repression on

vascular plant life (Fig. 6), as shown in response to

other perturbations such as fertilization and drainage

(Berendse et al., 2001; Lang et al., 2009). Even if vegeta-

tion species composition did not change overall with

warming, we recorded significant changes in total vege-

tation structure in course of two years of warming

(Fig. 4). The observed slight increases in nutrient and C

levels in soil solution are likely to alter the competition

between mosses and vascular plants (Berendse et al.,

2001; Keuper et al., 2011). Sphagnum mosses are known

to be efficient at absorbing nitrogen, preventing deep-

rooted vascular plants growing in a dense Sphagnum

carpet (van Breemen, 1995; Turetsky, 2003), but exces-

sive tissue nitrogen accumulation due to warming

effect on the microbial food web should exacerbate the

decline of Sphagnum and the increase in vascular plants

(Limpens & Berendse, 2003; Breeuwer et al., 2008,

2009). Such a warming-induced increase in vascular

plant cover would further contribute to diminishing

carbon sequestration in Sphagnum peatlands due to a

plant litter more easily degradable (Verhoeven & Toth,

1995).

We conclude that climate warming greatly destabi-

lizes peatland functioning by changing the interac-

tions between plant and microbial communities.

These results imply that warming changes peatlands

directly by modifying the structure of microbial com-

munities with the loss of top predators and the increase

in bacteria and indirectly by changing ecosystem

functions via modifications of plant-soil-microbial

interactions through the increase in nutrients cycling

and the positive and/or negative effect of Sphagnum-

polyphenol on the microbial food web. Our observa-

tions support the hypothesis that microbial food web
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associated with mosses positively contribute to global

warming by controlling ecosystem feedbacks (Lindo

& Gonzalez, 2010; Singh et al., 2010; Jassey et al.,

2011b). Consequently the moss-microbiota system

exerts a strong control over the structure and dynam-

ics of peatland ecosystems. Furthermore, the interplay

between Sphagnum-polyphenols and microbial com-

munities adds another crucial new contributor to the

list of mechanisms by which mosses, as ecosystem

engineers, may tightly regulate biogeochemical cycling

and climate feedback in peatlands (van Breemen,

1995; Cornelissen et al., 2007; Gornall et al., 2007;

Keuper et al., 2011).
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Table S1. Average biomass (� SE) and average relative
abundance (%) of microbial groups in a Sphagnum-domi-
nated peatland subjected to experimental warming (WAR)
or ambient conditions (AMB) in 2008, 2009, and 2010. Signif-
icant warming effect appears in bold (ANOVA tests).
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