Above-bandgap voltages from ferroelectric photovoltaic devices

S. Y. Yang, Jan Seidel, Jan Seidel, Byrnes Steven J ...+11 more authors

Institutions: University of California, Berkeley, Lawrence Berkeley National Laboratory, University of Cambridge

Published on: 01 Feb 2010 - Nature Nanotechnology (Nature Publishing Group)

Topics: Photovoltaic effect, Anomalous photovoltaic effect, Depletion region, Photovoltaics and Semiconductor

Related papers:
- Switchable ferroelectric diode and photovoltaic effect in BiFeO3.
- Perovskite oxides for visible-light-absorbing ferroelectric and photovoltaic materials
- Bulk Photovoltaic Effect at Visible Wavelength in Epitaxial Ferroelectric BiFeO3 Thin Films
- Photovoltaic effects in BiFeO3
- Role of domain walls in the abnormal photovoltaic effect in BiFeO3
Above-bandgap voltages from ferroelectric photovoltaic devices.

Title
Above-bandgap voltages from ferroelectric photovoltaic devices.

Permalink
https://escholarship.org/uc/item/6831m90k

Journal
Nature nanotechnology, 5(2)

ISSN
1748-3387

Authors
Yang, SY
Seidel, J
Byrnes, SJ
et al.

Publication Date
2010-02-01

DOI
10.1038/nnano.2009.451

Peer reviewed
Above-bandgap voltages from ferroelectric photovoltaic devices

S. Y. Yang¹*, J. Seidel², S. J. Byrnes², P. Shafer¹, C.-H. Yang³, M. D. Rossell⁴, P. Yu³, Y.-H. Chu⁵, J. F. Scott⁶, J. W. Ager, III², L. W. Martin² and R. Ramesh¹,²,³

In conventional solid-state photovoltaics, electron-hole pairs are created by light absorption in a semiconductor and separated by the electric field spanning a micrometre-thick depletion region. The maximum voltage these devices can produce is equal to the semiconductor electronic bandgap. Here, we report the discovery of a fundamentally different mechanism for photovoltaic charge separation, which operates over a distance of 1–2 nm and produces voltages that are significantly higher than the bandgap. The separation happens at previously unobserved nanoscale steps of the electrostatic potential that naturally occur at ferroelectric domain walls in the complex oxide BiFeO₃. Electric-field control over domain structure allows the photovoltaic effect to be reversed in polarity or turned off. This new degree of control, and the high voltages produced, may find application in optoelectronic devices.

The conversion process of light energy to electrical energy in photovoltaic devices relies on some form of built-in asymmetry that leads to the separation of electrons and holes. The fundamental physics behind this effect (for example, in silicon-based cells) is charge separation using the potential developed at a p–n junction, or heterojunction.¹⁻³ This suggests the following question—are there other pathways to accomplish charge separation in materials to enable the next generation of photovoltaics? In the past, anomalous photovoltaic effects in polar materials have been found to arise from two mechanisms: (i) granularity and (ii) the inherent non-centrosymmetry in the bulk material, that is, the absence of an inversion centre of symmetry.⁶⁻⁹ The former mechanism inevitably suffers from the granular interface being poorly controlled, and the latter is typically seen in wide-bandgap semiconductors (E_g > 2.5 eV), which absorb very little of the visible spectrum. In this paper, we describe a new mechanism of charge separation and photovoltage generation that occurs exclusively at nanometre-scale ferroelectric domain walls in a model ferroelectric, BiFeO₃ (BFO), under white-light illumination. In contrast to semiconductor-based photovoltaics,¹⁰,¹¹ the photovoltages observed here are significantly higher than the electronic bandgap.

The rhombohedrally distorted perovskite structure of BFO leads to eight ferroelectric polarization directions along the pseudocubic 111-directions, corresponding to four structural variants. The possible domain pattern formation in (001)-oriented epitaxial rhombohedral perovskite ferroelectric films and their control has been well established by earlier theoretical and experimental studies.¹¹⁻¹³ To eliminate confusion, we use the notation set prescribed in ref. 11. Domain walls in such materials are typically 1–2 nm wide.¹⁴ Additionally, recent studies have demonstrated that BFO has a direct bandgap of ~2.67 eV (~465 nm) and has been previously shown to display a conventional photovoltaic effect (open-circuit voltage V_OC ~ E_g) and photoconductivity.¹⁵

The details of the growth of the BFO thin films used in our study are given in the Methods. Piezoresponse force microscopy (PFM) reveals that ordered arrays of 71° (Fig. 1a and schematically depicted in Fig. 1b) and 109° domain walls with two in-plane variants (Fig. 1c and schematically in Fig. 1d) have been created through such a careful heteroepitaxial growth process. X-ray diffraction studies (insets of Fig. 1a,c) confirm the presence of these two different types of domain wall.¹⁷ Additional X-ray diffraction reciprocal-space-mapping studies (Supplementary Fig. S1) reveal the high quality of these ordered stripe domains. In both cases, there is a net polarization aligned in the plane of the film, that is, perpendicular to the projection of the domain wall plane on the (001) film surface (Fig. 1b,d). Transmission electron microscopy (TEM) images of the two different domain structures show that the 71° domain walls (Supplementary Fig. S2a) lie along 101-type planes, whereas the 109° domain walls (Supplementary Fig. S2b) lie along 100-type planes, consistent with theoretical predictions.¹¹ Detailed analyses of the atomic structure at these domain walls reveal a wall width of 1–2 nm, consistent with previous work.¹⁴,¹⁸ Such nanoscale domain-wall features are the focus of this work.

Photovoltaic device measurements

Test structures, based on symmetric platinum top electrodes with a length of 500 μm and an inter-electrode distance of 200 μm, were fabricated on top of 100-nm-thick films by photolithography in two geometries: electrodes for electric transport measurements (i) perpendicular (DW⊥) and (ii) parallel (DW∥) to the domain walls (DW, Fig. 2a,b, respectively). Current–voltage (I–V) characteristics of samples in the two geometries, with ordered arrays of 71° domain walls, were measured under saturation illumination (Supplementary Fig. S3) on the same film in both dark- and white-light illumination (285 mW cm⁻²) and reveal strikingly different photovoltaic behaviours (Fig. 2c,d). In the DW⊥ direction, a large photo induced V_OC of 16 V was measured, with in-plane short-circuit current density J_sc ~ 1.2 × 10⁻⁴ A cm⁻². In contrast, dark and light I–V curves measured in the DW∥ direction exhibit a significant photocconductivity, but no photo induced V_OC-

¹Department of Materials Science and Engineering, University of California, Berkeley, Berkeley, California 94720, USA, ²Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA, ³Department of Physics, University of California, Berkeley, California 94720, USA, ⁴National Center for Electron Microscopy, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA, ⁵Department of Materials Science and Engineering, National Chiao Tung University, HsinChu, Taiwan 30010, ⁶Department of Earth Sciences, University of Cambridge, Cambridge CB2 3EQ, UK.

*email: syyang@berkeley.edu
The photo-induced voltages were found to increase linearly in magnitude as the electrode spacing was increased (Fig. 3a). Most importantly, a single domain sample (that is, with no domain walls between the platinum contacts; black curve, Fig. 3a) show negligible levels of photovoltage, which rules out a ‘bulk’ photovoltaic effect arising from non-centrosymmetry. In turn, this strongly suggests the prominent role of domain walls in creating the anomalous photovoltages. In fact, the magnitude of the overall potential drop varies linearly with the total number of domain walls between the electrodes (Fig. 3a).

Figure 1 | Model domain-wall architectures. a, Piezoresponse force microscopy image of ordered arrays of 71° domain walls. Inset: corresponding X-ray rocking curves, along two orthogonal crystal axes, demonstrating the high quality of the films. b, Schematic of the 71° domain-wall arrays. The various arrows map out the different components of polarization (both in-plane and out-of-plane) as well as the net polarization direction (large arrow) in the samples. Samples are found to have net polarization in the plane of the film. c, Piezoresponse force microscopy image of ordered arrays of 109° domain walls. Inset shows the corresponding X-ray rocking curves, along two orthogonal crystal axes. d, Schematic of the 109° domain-wall arrays.

Figure 2 | Light and dark I–V measurements. a, b, Schematics of the perpendicular (DW⊥) (a) and the parallel (DW∥) (b) device geometries. c, d, Corresponding I–V measurements of the DW⊥ (c) and DW∥ (d) devices, respectively.
Figure 3 | Role of domain-walls in the photovoltaic response. a, Study of the evolution of V_{OC} as a function of electrode spacing for four different samples: 71° domain-walls samples with thicknesses of 100 nm (red), 200 nm (blue) and 500 nm (green) as well as a monodomain BFO film having no domain walls (black). A clear correlation between the number of domain walls and the magnitude of V_{OC} is observed. b, The potential drop in relation to domain-wall width is essentially constant regardless of the spacing between domain walls. The dashed line represents the theoretically predicted potential drop per domain wall from ref. 21.

Photovoltage provides another route to verify this conclusion, because the wall density scales inversely with film thickness19,20. From PFM analysis we have calculated the average domain spacing and used this to calculate the potential drop for each domain wall to be \sim10 mV, irrespective of the domain width (Fig. 3b). This value is quite close to the theoretically predicted 20 mV potential drop across 71° domain walls in BFO (ref. 21).

Model for the photovoltaic effect

Figure 4a–d shows our proposed model for the effect described above. Figure 4a is a schematic of the model domain structure showing a series of 71° domain walls. Figure 4b shows the corresponding position of the valence (VB) and conduction (CB) bands in dark conditions. Recent ab initio calculations suggest that ferroelectric domain walls have built-in potential steps14,21 arising from the component of the polarization perpendicular to the domain wall. The associated charge density, $\rho = -\nabla \cdot P$, forms an electric dipole, leading to an electric field within the wall and a potential step from one side to the other. In a strongly correlated, polar system such as BFO, the photo generated exciton is expected to be localized and tightly bound. Therefore, such an exciton in the bulk of the BFO (Fig. 4b(i)), is expected to quickly recombine, resulting in no net photo effect. If the light is incident at the domain wall (Fig. 4b(ii)), the significantly higher local electric field enables a more efficient separation of the excitons, creating a net imbalance in charge carriers near the domain walls and resulting in the band diagram shown in Fig. 4c. This effect (analogous to the type-II band alignment that drives polymeric solar cells) means that, under illumination, a net voltage is observed across the entire sample, resulting from the combined effect of the domain walls and the excess charge carriers created by illumination (Fig. 4d). Photo excited electron–hole pairs are separated and drift to either side of the domain wall, building up an excess of charge. A close inspection of the effects at a given domain wall (Fig. 4) reveals a similar picture to a classic p–n junction. The key difference is the magnitude of the electric field that drives charge separation. In a classic silicon-based system ($V_{\text{OC}} \approx 0.7$ V; depletion layer thickness, \sim1 μm), an effective electric field of \sim7 kV cm$^{-1}$ is obtained (compared with the BFO system, with a field of \sim50 kV cm$^{-1}$) for each domain wall. In open-circuit illuminated conditions, the electric field across the domain walls should decrease relative to its thermal-equilibrium value, creating a drift–diffusion current equal and opposite to the photocurrent described above. The domains themselves maintain the same electric field as in thermal equilibrium, because this is already the correct field for zero net current. Therefore, a net electric field would build up across the sample (Fig. 4c).

To validate this model, we first rule out the bulk photovoltaic effect previously observed in other ferroelectric crystals such as LiNbO$_3$ (LNO). It is useful to make comparisons with known results on periodically poled LNO, because BFO and LNO have the same symmetry and LNO is an extensively studied photovoltaic ferroelectric material22. There have been no reports of large photovoltages being generated in undoped LNO and, because LNO and BFO both have a bulk symmetry R_{3c}, this implies that such high-voltage output in the latter is very unlikely to be a bulk property. Additionally, despite possessing the same bulk symmetry, the domain structures in LNO and BFO are very different. LNO has a rhombohedral–rhombohedral crystal class-preserving ferroelectric phase transition. As a result, it cannot be ferroelastic, and only 180° domain walls can exist23. These apparently play no part in any large photovoltage output. In contrast, BFO has a rhombohedral–orthorhombic transition at its Curie temperature. This is a ferroelastic phase transition with 71°, 109° and 180° domain walls. Thus, quantitative differences in photovoltaic response suggest the role of either 71° or 109° domain walls.

Finally, we note that the bulk photovoltaic tensor is generally third-rank and non-diagonal in R_{3c} materials such as LNO (ref. 24). Thus, application of an optical field is, in general, affected not only by the r_{33} Photovoltaic coefficient22, but also by the r_{15} coefficient22. In a typical experiment on LNO (refs 26,27), this off-diagonal term produces a field of 40 kV cm$^{-1}$ perpendicular to the threefold polar axis for 500 mW of 514.5 nm laser light weakly focused to a 50-μm spot diameter. This number may be compared with those in the present study and suggests that a fully quantitative analysis must involve the full off-diagonal photovoltaic tensor. This was suggested earlier for puzzling results regarding the photovoltaic response in YBaCuO high-T_c materials28. We also note that the photovoltaic response perpendicular to the polar threefold axis can be compensated or enhanced by a strong thermal gradient29,31. Because certain domain walls conduct electricity in BFO, this could involve local heating31. Thus, comparison of the present data with those for LNO supports the argument that the new effects reported here cannot be bulk in nature.

Final evidence of a completely new photovoltaic mechanism comes from the fact that the direction of the measured J_{SC} in our BFO films is parallel to the net in-plane polarization. This current direction is opposite to what has been observed for granular ferroelectric materials5. In turn, we have observed that there is a drop in the potential in the direction of the net in-plane polarization in these epitaxial BFO films. The expected magnitude of J_{SC} can be
predicted, and is consistent with measurements (details of the calculation are given in the Supplementary Information).

Control of the photovoltaic response by electric fields

To demonstrate an additional level of control of the photovoltaic effect in these films, we have studied the evolution of photovoltaic properties as a function of domain switching in planar device structures. $I-V$ characterization of an as-grown device structure in the DW$_{||}$ geometry is shown in Fig. 5a. Consistent with data in Fig. 2, there is no observable photovoltaic effect, as grown. On rotation of the domain structure to the DW$_{\perp}$ configuration after application of ± 200 V voltage pulses to the in-plane device structure, a photovoltaic effect is observed. Using a device spacing of 10 nm, we can then apply voltage pulses of 200 V between the two in-plane electrodes to induce ferroelectric domain switching. Following application of such a field ($E \approx 200$ kV cm$^{-1}$) for a pulse of 100 μs, a corresponding rotation of the ferroelectric domain structure was observed, thereby creating a system with the DW$_{\perp}$ geometry. Subsequent light $I-V$ measurements reveal the formation of an anomalous photovoltaic effect in this film (red curve, Fig. 5a). This is explained by a change in the direction of the net, in-plane polarization of the BFO film (Fig. 5b, bottom panel).

Our earlier theoretical work showed that the magnitude of the potential step is higher in the case of 109° domain walls (150 mV, compared to 20 mV for 71° domain walls). We were constrained in terms of a macroscopic measurement of the 109° domain samples due to the presence of a random distribution of the two in-plane variants. We therefore carried out microscopic measurements (details of measurements are given in Supplementary Fig. S4), which revealed an $\sim 4 \times$ larger potential drop per domain wall compared to the 71° walls.

Conclusion

In summary, we have shown that a photovoltaic effect in BFO thin films arises from a unique, new mechanism—namely, structurally driven steps of the electrostatic potential at nanometre-scale domain walls. These potential steps, which had been hypothesized,
had never before been observed directly. By controlling the domain structure in such BFO films we can, in turn, gain control over the photo properties of these materials.

Methods

Thin-film growth. BFO films with thicknesses between 100 and 500 nm were grown on single-crystalline (110) DyScO$_3$ (DSO) substrates by metal–organic chemical vapour deposition (MOCVD). Annealing treatments of the DSO substrates (1,200 °C for 3 h in flowing O$_2$) produced ordered arrays of unit-cell-high terraces on the substrate surface. Growth on such annealed substrates results in ordered arrays of 71° domain walls, and growth on un-annealed substrates gives rise to ordered arrays of 109° domain walls.

Received 23 September 2009; accepted 16 November 2009; published online 10 January 2010

References

Acknowledgements

The work at Berkeley was performed within the Helios Solar Energy Research Center, which is supported by the Director, Office of Science, Office of Basic Energy Sciences, Materials Sciences and Engineering Division, of the US Department of Energy under contract no. DE-AC02-05CH11231. J.S. acknowledges support from the Alexander von Humboldt Foundation. Y.H.C. would like to acknowledge the support of the National Science Council, R.O.C., under contract no. NSC 98-2119-M-009-016.

Author contributions

Additional information

The authors declare no competing financial interests. Supplementary information accompanies this paper at www.nature.com/naturenanotechnology. Reprints and permission information is available online at http://npg.nature.com/reprintsandpermissions. Correspondence and requests for materials should be addressed to S.Y.Y.