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The stationary phase method is applied to diffusion by a potential barrier for an incoming

wave packet with energies greater than the height of the barrier. It is observed that
a direct application leads to paradoxical results. The correct solution, confirmed by
numerical calculations is the creation of multiple peaks as a consequence of multiple
reflections. Lessons concerning the use of the stationary phase method are drawn.
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The stationary phase method (SPM), first introduced to physics by Stokes and

Kelvin,1 provides an approximate way to calculate the maximum of an integral. It

represents a standard calculation tool for physicists, biologists, economists, etc.2

Below, we shall briefly introduce the method. One of its main attractions is the

apparent insignificance of details of the integrand with the exception of its phase.

Under its description, a series of limitations and assumptions has been made. While

these are known to the experts, they are often assumed implicitly and tested indi-

rectly a posteriori by the results obtained.

Recently, much interest in the physics community has been stirred up by the re-

sults of this method applied to tunneling times.3 This has resulted in predictions of

super-luminal velocities, or more precisely to tunneling times which, in the so-called

opaque limit, are independent of the barrier widths4 and of the distance between
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the barriers.5,6 Now, while not addressing this question directly in this paper, we

investigate what we consider a simpler but related problem: the (nonrelativistic) dif-

fusion of an incoming single wave packet with energy spectrum completely above the

barrier height. We first show that a direct application of the SPM analogous to the

tunneling case (energy spectrum below the barrier height) also leads to surprising

paradoxical results. We have then performed numerical calculations which clearly

display secondary reflected and transmitted peaks. This stimulates the assumption

of multiple reflections which, when combined with the SPM, yields excellent agree-

ment with our numerical calculations. The primary lesson that we draw is that the

SPM, without additional knowledge such as the number of wave packets existing,

is ambiguous and whence meaningless. For diffusion problems the conservation of

probabilities can in principle be used to eliminate this ambiguity.

Consider a complex integral over an unspecified range of the form

I =

∫

F (k)dk =

∫

|F (k)| exp[iθ(k)]dk , (1)

for which |F (k)| has a single maximum within the range of integration at k = k0.

If θ(k) varies sufficiently smoothly within the interval where |F (k)| is appreciable,

we can expand θ(k) about the point k = k0 in a Taylor series

θ(k) = θ0 + (k − k0)θ
′
0 +O[(k − k0)

2] ,

where

θ0 ≡ θ(k0) and θ′0 ≡ dθ(k)

dk

∣

∣

∣

∣

k=k0

.

If the modulus of F (k) is sufficiently sharply peaked, we can neglect the second and

higher order terms in the above series. This allow us to approximate the integral in

Eq. (1) by

I ≈ exp[iθ0]

∫

|F (k)| exp[i(k − k0)θ
′
0]d(k − k0) . (2)

If θ′0 is large, the function of k which is to be integrated oscillates rapidly and,

consequently, this integral will be practically null. Thus, a significant contribution

only occurs when

θ′0 = 0 . (3)

In this study, we consider a modulated plane wave and are interested in the

configuration space wave function in one dimension x,

ψ(x, t) =

∫

|F (k)| exp[iλ(k)] exp[i(kx−Et)]dk (4)

with E = k2/2m (nonrelativistic quantum mechanics). The F (k) may be a Gaussian

or similar modulation function. The total phase is

θ(k;x, t) = kx− k2

2m
t+ λ(k) , (5)
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and the condition θ′0 = 0 then gives the spacetime dependence of the maximum (or

peak) of |ψ(x, t)|. For example, when λ(k) = 0 we obtain the group velocity result

for a free wave packet, i.e.

x =
k0

m
t . (6)

The existence of a λ(k) produces a time or space shift,

x =
k0

m
t− λ′0 =

k0

m

(

t− mλ′0
k0

)

=
k0

m
(t− ∆t) .

It is exactly this type of analysis which leads to a delay time in the reflection of an

incoming wave packet (with momentum or energy spectrum completely below the

step height) impacting upon a step potential.7 A similar analysis has been used for

tunneling times.8

The standard procedure in these (one-dimensional) potential problems is to find

the stationary plane wave solutions with the appropriate continuity conditions and

then pass to a normalized wave packet by means of a modulating function. While the

plane waves exist at all times in an infinite range of x, the wave packet is predicted

by the SPM to exist for the incoming wave for say t < 0 while the reflected wave

and other waves exist only for t > 0. Around t = 0, we will have interference effects

due to the simultaneous presence of both incoming and reflected wave, and for the

below barrier case we also have, over this transitory period, a wave function within

the classically forbidden barrier region.

In the following figure, we show the potential barrier divided into three regions

I (x < 0), II (0 < x < l) and III (x > l). The dotted line indicates the mean energy

6
V (x)

- x

Region I Region II Region III

0 l

.....................................................

V0

E0

V (x) =

{

0 , x < 0 or x > l ,

V0 , 0 < x < l ,

of the incoming wave,

Ψinc(x, t) =

∫ ∞

√
2mV0

g(k) exp[i(kx−Et)]dk , (7)

with g(k) a truncated Gaussian or similar, peaked at k0 (E0 = k2
0/2m). Truncation

is needed, at least for small k as indicated in Eq. (7) since we wish to avoid any
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tunneling phenomena. The x-dependence of the plane wave solutions in the three

regions are given by

Region I : x < 0 , exp[ikx] +R(k) exp[−ikx] [k =
√

2mE] ,

Region II : 0 < x < l , A(k) exp[iqx] +B(k) exp[−iqx] [q =
√

2m(E − V0)] ,

Region III : l < x , T (k) exp[ikx] .

(8)

R(k) and T (k) are the reflected (region I) and transmitted (region III) amplitudes

and the coefficients A(k) and B(k) are the right and left going amplitudes in re-

gion II. All the amplitudes are to be modulated by the function g(k). Continuity

of Ψ(x, t) and its derivative at x = 0 and x = l determines the coefficients A, B, R

and T . Explicitly,

A(k) = k(k + q) exp[iλ(k) − iql]/D(k) ,

B(k) = k(q − k) exp[iλ(k) + iql]/D(k) ,

R(k) = (k2 − q2) sin[ql] exp

[

iλ(k) − i
π

2

]/

D(k) ,

T (k) = 2kq exp[iλ(k) − ikl]/D(k) ,

(9)

where

D(k) = {4k2q2 + (k2 − q2)2 sin2[ql]} 1

2

and

λ(k) = arctan{(k2 + q2) tan[ql]/2kq} .

To apply the SPM in what we would call the naive way, we must multiply each of

the above amplitudes by the appropriate plane wave phases. For example, in the

simplest case of real g(k)-function, we obtain

θinc(k) = kx−Et , (10)

θR(k) = λ(k) − π

2
− kx−Et ,

θA(k) = λ(k) + q(x− l) −Et ,

θB(k) = λ(k) + q(l − x) −Et ,

θT (k) = λ(k) + k(x− l) −Et .

(11)

The presence of the phase term λ(k) implies a delay time in the reflected wave

analogous to what happens for the step potential when E < V0. Since the phase

of the incoming wave contains only the plane wave factors, the incoming peak

reaches the barrier at x = 0 at time t = 0. For the reflected wave, we find the

position of the peak at

x = λ′(k0) − (k0/m)t , (12)
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with

λ′(k0) =

[

2

q

(k2 + q2)k2ql − (k2 − q2)2 sin[ql] cos[ql]

4k2q2 + (k2 − q2)2 sin2[ql]

]

k=k0

. (13)

Note that only x < 0 is physical in this result since the reflected wave, by definition,

lies in region I.

The above expression for the position of the reflected peak simplifies around the

“resonance” values for k0 (q0) where

sin[q0l] = 0 , i.e. q0l = nπ ,

with n a non-negative integer. Let us assume, for simplicity, a sharp spectrum for

g(k) peaked at one of these resonance values,

λ′res(k0) ≈
(k2

0 + q20)l

2q
2

0

> 0 . (14)

This predicts a delay time for the reflected wave given by

∆tresR =
m

k0

λ′res(k0) ≈
(k2

0 + q20)ml

2k0q20
. (15)

Now consider the corresponding “delay times” for the A, B and T waves. In par-

ticular, for the A-wave we find

∆tresA =
m

k0

[λ′res(k0) − q′(k0)l] = ∆tresR − m

q0
l ≈ (k0 − q0)

2ml

2k0q20
. (16)

This is the delay time at x = 0. We can also calculate a delay time for the B-wave

at x = 0. However, this time is later than the time at which the B-wave reaches

the position x = l, this is a consequence of the q(l−x) factor in Eq. (10). Suffice it

to say that it arrives at x = 0 at a later time than the departure times of either the

R or A wave peaks. For completeness the transmitted T wave packet has its peak

at the start of region III, x = l, at the time

tresT = tresR .

Now one may be somewhat surprised to note that the appearance of the trans-

mitted wave coincides with that of the reflected wave. However, the above results

become paradoxical as soon as one realizes that for the time interval from t = 0 to

t = ∆tresA < ∆tresR this solution is devoid of any maximum (R, A, B or T ). During

this time, at least, we are clearly in contradiction with probability conservation

since the incoming wave peak has disappeared at time t = 0. By choosing the wave

packet dimensions small enough, we can say that there is an interval of time in

which the naive SPM says that there are no significant amplitudes anywhere in x.

Note, however, that this is only a heuristic argument since a peaked configuration

space packet runs counter to the above resonance approximation (peaked momen-

tum distribution). There are also other incongruities in this naive application of the

SPM. If one recalls the well-known step case with E > V0, single peak reflection
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occurs instantaneously (zero delay time). One might expect that our results tend

to this case in the limit l → ∞. This is not the case. It is also possible in some

off-resonance cases to find negative “delay times”. In these latter cases the maxi-

mum of the reflected wave and incoming wave would exist contemporaneously. This

situation also implies problems with probability conservation.

Numerical calculations automatically conserve probabilities, at least to within

the numerical errors. So to understand what is happening we performed such cal-

culations and an example of these is shown in Fig. 1, where a complex Gaussian

modulation function

g(k) =

(

a2

8π3

)
1

4

exp

[

− a2(k − k0)
2

4

]

exp[−ikx0]

has been used. It is to be noted that the choice of including a phase factor in g(k)

simply shifts all times by a constant mx0/k0 at resonance. These figures display the

wave function in the proximity of the barrier for suitably chosen times. One clearly

sees in these figures the appearance of multiple peaks due to the two reflection

points at x = 0 and x = l. This observation suggested the following analysis and

imposed the subsequent interpretation.

The R, A, B and T amplitudes may be rewritten as series expansions by con-

sidering multiple reflections and transmission in the potential discontinuity points,

R =
∞
∑

n=1

Rn = R1 +R2

[

1 −
(

k − q

k + q

)2

exp[2iql]

]−1

,

A =

∞
∑

n=1

An = A1

[

1 −
(

k − q

k + q

)2

exp[2iql]

]−1

,

B =
∞
∑

n=1

Bn = B1

[

1 −
(

k − q

k + q

)2

exp[2iql]

]−1

,

T =

∞
∑

n=1

Tn = T1

[

1 −
(

k − q

k + q

)2

exp[2iql]

]−1

,

(17)

with

R1 =
k − q

k + q
, A1 =

2k

k + q
, B1 =

2k(q − k)

(k + q)2
exp[2iql] ,

T1 =
4kq

(k + q)2
exp[i(q − k)l] , R2 =

q

k
A1B1 ,

Rn+2

Rn+1

=
An+1

An

=
Bn+1

Bn

=
Tn+1

Tn

=

(

k − q

k + q

)2

exp[2iql] n = 1, 2, . . . .

(18)



October 25, 2004 16:19 WSPC/146-MPLA 01587

Above Barrier Potential Diffusion 2723

0
 

0.2
 

0.4
 

0.6
 

0.8
 
 
  

0.2
 

0.4
 

0.6
 

0.8
 
 
  

0.2
 

0.4
 

0.6
 

0.8
 
 
  

0.2
 

0.4
 

0.6
 

0.8
 
 
  

0.2
 

0.4
 

0.6
 

0.8
 
 

 -10     0     10     20  
0
 

0.2
 

0.4
 

0.6
 

0.8
 
 
  

0.2
 

0.4
 

0.6
 

0.8
 
 
  

0.2
 

0.4
 

0.6
 

0.8
 
 
  

0.2
 

0.4
 

0.6
 

0.8
 
 
  

0.2
 

0.4
 

0.6
 

0.8
 
 

 -10     0     10     20  
0
 

0.2
 

0.4
 

0.6
 

0.8
 
 
  

0.2
 

0.4
 

0.6
 

0.8
 
 
  

0.2
 

0.4
 

0.6
 

0.8
 
 
  

0.2
 

0.4
 

0.6
 

0.8
 
 
  

0.2
 

0.4
 

0.6
 

0.8
 
 

 -10     0     10     20  
0
 

0.2
 

0.4
 

0.6
 

0.8
 
 
  

0.2
 

0.4
 

0.6
 

0.8
 
 
  

0.2
 

0.4
 

0.6
 

0.8
 
 
  

0.2
 

0.4
 

0.6
 

0.8
 
 
  

0.2
 

0.4
 

0.6
 

0.8
 
 

 -10     0     10     20  
0
 

0.2
 

0.4
 

0.6
 

0.8
 
 
  

0.2
 

0.4
 

0.6
 

0.8
 
 
  

0.2
 

0.4
 

0.6
 

0.8
 
 
  

0.2
 

0.4
 

0.6
 

0.8
 
 
  

0.2
 

0.4
 

0.6
 

0.8
 
 

 -10     0     10     20  
0
 

0.2
 

0.4
 

0.6
 

0.8
 
 
  

0.2
 

0.4
 

0.6
 

0.8
 
 
  

0.2
 

0.4
 

0.6
 

0.8
 
 
  

0.2
 

0.4
 

0.6
 

0.8
 
 
  

0.2
 

0.4
 

0.6
 

0.8
 
 

 -10     0     10     20  
0
 

0.2
 

0.4
 

0.6
 

0.8
 
 
  

0.2
 

0.4
 

0.6
 

0.8
 
 
  

0.2
 

0.4
 

0.6
 

0.8
 
 
  

0.2
 

0.4
 

0.6
 

0.8
 
 
  

0.2
 

0.4
 

0.6
 

0.8
 
 

 -10     0     10     20  
0
 

0.2
 

0.4
 

0.6
 

0.8
 
 
  

0.2
 

0.4
 

0.6
 

0.8
 
 
  

0.2
 

0.4
 

0.6
 

0.8
 
 
  

0.2
 

0.4
 

0.6
 

0.8
 
 
  

0.2
 

0.4
 

0.6
 

0.8
 
 

 -10     0     10     20  
0
 

0.2
 

0.4
 

0.6
 

0.8
 
 
  

0.2
 

0.4
 

0.6
 

0.8
 
 
  

0.2
 

0.4
 

0.6
 

0.8
 
 
  

0.2
 

0.4
 

0.6
 

0.8
 
 
  

0.2
 

0.4
 

0.6
 

0.8
 
 

 -10     0     10     20  
0
 

0.2
 

0.4
 

0.6
 

0.8
 
 
  

0.2
 

0.4
 

0.6
 

0.8
 
 
  

0.2
 

0.4
 

0.6
 

0.8
 
 
  

0.2
 

0.4
 

0.6
 

0.8
 
 
  

0.2
 

0.4
 

0.6
 

0.8
 
 

 -10     0     10     20  

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

t

m a2 = 0
t

m a2 = 0
t

m a2 = 0
t

m a2 = 0
t

m a2 = 0
t

m a2 = 0
t

m a2 = 0
t

m a2 = 0
t

m a2 = 0
t

m a2 = 0

t

m a2 = 0.01
t

m a2 = 0.01
t

m a2 = 0.01
t

m a2 = 0.01
t

m a2 = 0.01
t

m a2 = 0.01
t

m a2 = 0.01
t

m a2 = 0.01
t

m a2 = 0.01
t

m a2 = 0.01

t

m a2 = 0.02
t

m a2 = 0.02
t

m a2 = 0.02
t

m a2 = 0.02
t

m a2 = 0.02
t

m a2 = 0.02
t

m a2 = 0.02
t

m a2 = 0.02
t

m a2 = 0.02
t

m a2 = 0.02

t

m a2 = 0.03
t

m a2 = 0.03
t

m a2 = 0.03
t

m a2 = 0.03
t

m a2 = 0.03
t

m a2 = 0.03
t

m a2 = 0.03
t

m a2 = 0.03
t

m a2 = 0.03
t

m a2 = 0.03

t

m a2 = 0.04
t

m a2 = 0.04
t

m a2 = 0.04
t

m a2 = 0.04
t

m a2 = 0.04
t

m a2 = 0.04
t

m a2 = 0.04
t

m a2 = 0.04
t

m a2 = 0.04
t

m a2 = 0.04

←

←

←

←

←

←

←

←

←

←

←

←

←

←

←

←

←

←

←

←

←

←

←

←

←

←

←

←

←

←

←

←

←

←

←

←

←

←

←

←

→

→

→

→

→

→

→

→

→

→

→

→

→

→

→

→

→

→

→

→

→

→

→

→

→

→

→

→

→

→

→

→

→

→

→

→

→

→

→

→

→

→

→

→

→

→

→

→

→

→

x
a
x
a
x
a
x
a
x
a
x
a
x
a
x
a
x
a
x
a

∣

∣

∣

Ψ(x,t)
Ψ(x0,0)

∣

∣

∣

2
∣

∣

∣

Ψ(x,t)
Ψ(x0,0)

∣

∣

∣

2
∣

∣

∣

Ψ(x,t)
Ψ(x0,0)

∣

∣

∣

2
∣

∣

∣

Ψ(x,t)
Ψ(x0,0)

∣

∣

∣

2
∣

∣

∣

Ψ(x,t)
Ψ(x0,0)

∣

∣

∣

2
∣

∣

∣

Ψ(x,t)
Ψ(x0,0)

∣

∣

∣

2
∣

∣

∣

Ψ(x,t)
Ψ(x0,0)

∣

∣

∣

2
∣

∣

∣

Ψ(x,t)
Ψ(x0,0)

∣

∣

∣

2
∣

∣

∣

Ψ(x,t)
Ψ(x0,0)

∣

∣

∣

2
∣

∣

∣

Ψ(x,t)
Ψ(x0,0)

∣

∣

∣

2

a

√

2m

�2 V0 = 10
3

a

√

2m

�2 V0 = 10
3

a

√

2m

�2 V0 = 10
3

a

√

2m

�2 V0 = 10
3

a

√

2m

�2 V0 = 10
3

a

√

2m

�2 V0 = 10
3

a

√

2m

�2 V0 = 10
3

a

√

2m

�2 V0 = 10
3

a

√

2m

�2 V0 = 10
3

a

√

2m

�2 V0 = 10
3

10
-3

a

√

2m

�2 E10
-3

a

√

2m

�2 E10
-3

a

√

2m

�2 E10
-3

a

√

2m

�2 E10
-3

a

√

2m

�2 E10
-3

a

√

2m

�2 E10
-3

a

√

2m

�2 E10
-3

a

√

2m

�2 E10
-3

a

√

2m

�2 E10
-3

a

√

2m

�2 E

E0 = 2V0E0 = 2V0E0 = 2V0E0 = 2V0E0 = 2V0E0 = 2V0E0 = 2V0E0 = 2V0E0 = 2V0E0 = 2V0

l = 10 al = 10 al = 10 al = 10 al = 10 al = 10 al = 10 al = 10 al = 10 al = 10 a

× 2× 2× 2× 2× 2× 2× 2× 2× 2× 2

× 10
-1

× 10
-1

× 10
-1

× 10
-1

× 10
-1

× 10
-1

× 10
-1

× 10
-1

× 10
-1

× 10
-1

×
1
2 10

-1

×
1
2 10

-1

×
1
2 10

-1

×
1
2 10

-1

×
1
2 10

-1

×
1
2 10

-1

×
1
2 10

-1

×
1
2 10

-1

×
1
2 10

-1

×
1
2 10

-1

×
1
2 10

-1

×
1
2 10

-1

×
1
2 10

-1

×
1
2 10

-1

×
1
2 10

-1

×
1
2 10

-1

×
1
2 10

-1

×
1
2 10

-1

×
1
2 10

-1

×
1
2 10

-1

×
1
3 10

-2
×

1
3 10

-2
×

1
3 10

-2
×

1
3 10

-2
×

1
3 10

-2
×

1
3 10

-2
×

1
3 10

-2
×

1
3 10

-2
×

1
3 10

-2
×

1
3 10

-2

× 10
-4

× 10
-4

× 10
-4

× 10
-4

× 10
-4

× 10
-4

× 10
-4

× 10
-4

× 10
-4

× 10
-4

× 10
-3

× 10
-3

× 10
-3

× 10
-3

× 10
-3

× 10
-3

× 10
-3

× 10
-3

× 10
-3

× 10
-3

Fig. 1. The square of the amplitude modulus for different time frames. Only a fixed region in
x close to the barrier is shown. Each figure should be multiplied by the adjacent factor, where it

exists, to obtain the true curve. The parameters chosen for the plot are listed in the first frame.

These sums reproduce exactly the expressions in Eq. (9). In this form the interpre-

tation is easy. R1 represents the first reflected wave (it has no time delay since it

is real). R2 represents the second reflected wave. As a consequence of continuity, it

is the sum, in region II, of the first left-going wave (B1) and the second right-going

amplitude (A2), i.e.

R2 = A2 +B1 ≡ q

k
A1B1 .
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This structure is that given by considering two “step functions” back-to-back.

Thus at each interface the “reflected” and “transmitted” waves are instantaneous,

i.e. without any delay time. Indeed the SPM applied separately to each term in

the above series expansion for R yields delay times which are integer multiples of

2(dq/dE)0l = 2(m/q0)l. This agrees perfectly with the fact that since the peak

momentum in region II is q0, the A and B waves have group velocities of q0/m

and hence transit times (one way) of (m/q0)l. The first transmitted peak appears

(according to this version of the SPM) after a time (m/q0)l, in perfect agreement

with the above interpretation.

Let us re-express what is happening. The incoming wave peak reaches the first

potential discontinuity at x = 0. It instantaneously yields a first reflected peak (R1)

and right-moving (A1) peak in region II. When this wave packet reaches at time

t = (m/q0)l, the second discontinuity at x = l, a part T1 is transmitted into region

III (x > l) while a part B1 is turned back and eventually gives rise to the second

reflected peak and so forth. Is this compatible with probability conservation? It is

because of the following identity

∞
∑

n=1

(|Rn|2 + |Tn|2) = 1 . (19)

This result is by no means obvious since it coexists with the well-known result,

from the plane wave analysis,

|R|2 + |T |2 =

∣

∣

∣

∣

∣

∞
∑

n=1

Rn

∣

∣

∣

∣

∣

2

+

∣

∣

∣

∣

∣

∞
∑

n=1

Tn

∣

∣

∣

∣

∣

2

= 1 . (20)

In Fig. 2 we have re-plotted for various times the numerical calculations displayed

in Fig. 1 and also the separate integral calculations based upon the above multiple

pole model i.e. for particularRn(Tn). The latter wave packets are represented by the

curves. The former un-decomposed numerical calculations are plotted by various

bullets. Agreement is excellent.

In conclusion, the results of the SPM depend critically upon the manipulation

of the amplitude prior to the application of the method. A posteriori this seems

obvious. If we consider an amplitude say

z(k;x, t) = |z| exp[iα]

the SPM will yield one peak position for each given time. If we write the identity

z = z1 + z2 ,

where z1 = z − w and z2 = w, and treat separately these terms, then the same

approach will yield two peaks and so forth. The method is inherently ambiguous

unless we know, by some other means, at least the number of separate peaks in-

volved. Our above barrier analysis is simply a particular example of this ambiguity,

for which we have presented a simple resolution, based upon multiple reflections,

confirmed in detail by numerical calculations.
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Fig. 2. Plots of the first few reflected and transmitted waves at corresponding times. The bullets
are from the numerical convolution of the plane-wave solution. The curves are from the sepa-
rate convolution integrals of the first three Rn and Tn. Again the true figures are obtained by
multiplying by the listed factors.
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