
Citation: Xie, D.; Huang, H.; Feng, L.;

Sharma, R.P.; Chen, Q.; Liu, Q.; Fu, L.

Aboveground Biomass Prediction of

Arid Shrub-Dominated Community

Based on Airborne LiDAR through

Parametric and Nonparametric

Methods. Remote Sens. 2023, 15, 3344.

https://doi.org/10.3390/rs15133344

Academic Editor: Henning

Buddenbaum

Received: 14 May 2023

Revised: 24 June 2023

Accepted: 26 June 2023

Published: 30 June 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

remote sensing  

Article

Aboveground Biomass Prediction of Arid Shrub-Dominated
Community Based on Airborne LiDAR through Parametric and
Nonparametric Methods
Dongbo Xie 1,2, Hongchao Huang 1,2, Linyan Feng 1,2, Ram P. Sharma 3 , Qiao Chen 1 , Qingwang Liu 1

and Liyong Fu 1,2,*

1 Research Institute of Forest Resource Information Techniques, Chinese Academy of Forestry,
Beijing 100091, China

2 Key Laboratory of Forest Management and Growth Modelling, National Forestry and Grassland
Administration, Beijing 100091, China

3 Institute of Forestry, Tribhuwan Univeristy, Kritipur 44600, Nepal
* Correspondence: fuly@ifrit.ac.cn; Tel.: +86-10-62889126

Abstract: Aboveground biomass (AGB) of shrub communities in the desert is a basic quantitative
characteristic of the desert ecosystem and an important index to measure ecosystem productivity
and monitor desertification. An accurate and efficient method of predicting the AGB of a shrub
community is essential for studying the spatial patterns and ecological functions of the desert re-
gion. Even though there are several entries in the literature on the AGB prediction of desert shrub
communities using remote sensing data, the applicability and accuracy of airborne LiDAR data
and prediction methods have not been well studied. We first extracted the elevation, density and
intensity variables based on the airborne LiDAR, and then sample plot-level AGB prediction models
were constructed using the parametric regression (nonlinear regression) and nonparametric methods
(Random Forest, Support Vector Machine, K-Nearest Neighbor, Gradient Boosting Machine, and
Multivariate adaptive regression splines). We evaluated accuracies of all the AGB prediction models
we developed based on the fit statistics. Results showed that: (1) the elevation, density and intensity
variables obtained from LiDAR point cloud data effectively predicted the AGB of the desert shrub
community at a sample plot level, (2) the kappa coefficient of nonlinear mixed-effects (NLME) model
obtained was 0.6977 with an improvement by 13% due to the random effects included into the model,
and (3) the nonparametric model, such as Support Vector Machine showed the best fit statistics
(R2 = 0.8992), which is 28% higher than the NLME-model, and effectively reduced the heteroscedas-
ticity. The AGB prediction model presented in this paper, which is based on the airborne LiDAR data
and machine learning algorithm, will provide a valuable tool to the managers and researchers for
evaluating desert ecosystem productivity and monitoring desertification.

Keywords: aboveground biomass; LiDAR; shrub community; desert; nonparametric methods

1. Introduction

Desertification is one of the most threatening regional environmental problems at
present, which leads to the decline of vegetation productivity, severe soil degradation and
the release of carbon stored in the soil and vegetation into the atmosphere [1]. As one of
the most affected countries by desertification and severe wind and sand damage, China
has a desert area of 261.16 million sq km, or 27.2% of the total land area of the country. The
aboveground biomass (AGB) of the desert shrubs is the essential quantitative characteristic
of a desert ecosystem and an important index to measure ecosystem productivity and
desertification monitoring [2–4]. Although the vegetation biomass per unit area in the
desert is relatively low, it plays a significant role in monitoring the trend of global carbon
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sequestration, essential ecological services, and national green space carbon sequestra-
tion [3,5,6]. The root systems of desert shrubs penetrate deep into the soil, facilitating
the accumulation of organic matter and nutrients, and with the increase of vegetation
biomass, soil carbon sequestration capacity would increase [7,8]. Thus, an accurate estimate
of the AGB of a desert plant community would be vital to analyzing the global trends of
carbon sequestration.

Field sampling is the most reliable way to obtain the AGB of the desert plant community,
but it is inefficient and time-consuming [9] as it requires destructive sampling and measure-
ment, which could lead to the instability of a desert ecosystem [10]. Although destructive
sampling could be avoided in subsequent monitoring by allometric AGB modeling based
on the measured data, it has some limitations in vegetation monitoring on a large scale [10].
The development of remote sensing technology has filled the gap of the traditional methods
in time and space, as this can achieve systematic, efficient, and continuous monitoring at
different scales, and has become an essential technique for monitoring AGB.

Remote sensing data sources used for the prediction of AGB include optical remote
sensing, microwave radar, LiDAR technology, and terrestrial laser scanning [11–14]. They
have been widely used for plant biomass monitoring in the desert regions using satellite
data with coarse or medium resolution, such as Moderate Resolution Imaging Spectrora-
diometer [15], Landsat 8 OLI [16], and Sentinel-2 [17]. A wide range of image coverage and
simplicity of data acquisition would make the remote sensing widely used in a variety of
scales. Considering the sparse and dwarf distribution of vegetation in the desert, the use of
satellite data with low and medium resolutions would result in a significant uncertainty
and bias in the monitoring of AGB at a large scale [18,19]. Even though the high-accuracy
satellite imagery avoids such issues, it would be difficult to obtain the images. For the
preparation of the vmarker characterization of low height shrubs in the desert, remote
sensing satellite images cannot provide the entire vertical canopy information.

Due to an active remote sensing technology used, LiDAR data has a higher spatial reso-
lution [20] and its laser pulses can penetrate deeply into the canopy layer. This can provide
accurate information regarding desert vegetation phenotypic characteristics, particularly
vegetation height and canopy volume, which are essential for estimating biomass [21]. The
elevation, density and intensity features obtained from 3D point clouds provide reliable
parameters for the prediction of AGB [22]. Elevation reflects the height characteristics
of plant communities in various ways [23] and intensity variables reflect the intensity of
LiDAR pulse echoes generated at a particular location by assessing height characteris-
tics of plant communities. These data can be used for a variety of purposes including
tree classification [23], forest type classification [24], forest characterization and urban
ringing [25].

Traditional biomass estimation relies on the parametric regression method, which is
easy to use and has a straightforward interpretability [26]. The parameters are estimated by
fitting biomass data according to multiple theoretical models. The parametric regression
does not ensure the absence of a better model to form outside the range of candidate
models, and the least squares method used for parameter estimation requires the existence
of a normal distribution of the dependent variable or errors [27,28]. In contrast, the
nonparametric methods or machine learning techniques (e.g., Random Forest, Support
Vector Machine, K-Nearest Neighbor, Gradient Boosting Machine and so on) effectively
avoid such problems. It does not require a fixed model form, as there is no excessive
restriction on the variables, and can be used to estimate forest biomass quantitatively using
a wide range of variables [29]. The machine learning techniques are widely used for the
prediction of forest growth and yield [30,31], forest site quality assessment [32,33], forest
biomass prediction and so on. Several studies show no best modelling biomass technique
has existed, but depending on the scope and purpose of the investigation, some techniques
would likely be more suitable than others [29].

With the ability to collect information at regional and global scales, remote sensing
is the efficient method that can be used to estimate forest biomass over the large areas at
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the same time. At present, machine learning techniques and airborne LiDAR data have
been commonly used to predict forest biomass, but research on the shrub AGB in the desert
region is lacking. We constructed the AGB model applicable to the desert shrub community
AGB prediction based on the airborne LiDAR data and field survey data. We evaluated
both the parametric and non-parametric modeling approaches for predicting the AGB
of the shrub communities in the desert region. The main objectives of our study are to:
(1) identify the applicability of elevation, density and intensity variables for predicting
the shrub’s AGB in desert based on LiDAR data, (2) establish the nonlinear mixed-effects
AGB model with the random effects at sample plot level included, and (3) compare the
performance of parametric and non-parametric methods for predicting the AGB of the
desert shrub community and select the most accurate and efficient model method.

2. Materials and Methods
2.1. Study Area

The study area is located in Dengkou in the northeastern part of the Ulan Buh Desert
(106◦38′42′′E–106◦57′00′′E, 40◦17′24′′N–40◦28′36′′N) (Figure 1). The elevation ranges from
1048 to 1053 m above mean sea level. This area belongs to the mid-temperate arid cli-
mate zone; the average annual temperature of 7 ◦C~8 ◦C, average annual precipitation of
102~140 mm. The soil is composed of irrigated silt soil, gray desert soil, saline soil, aeolian
sandy soil and light brown calcium soil. Haloxylon ammodendron, Artemisia sphaerocephala
and Nitraria are the dominant vegetation in the area. The eastern edge of the Ulan Buh
Desert is the dividing line between the wasteland and steppe in central Asia, and it is also
a very important dividing line of the plant geography.
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2.2. Data Acquisition and Preprocessing
2.2.1. Field Survey

Twenty permanent sample plots (PSPs) of 100 m × 100 m and forty-eight PSPs of
30 m × 30 m were established to represent the clustered vegetation types in July through
September 2019. To facilitate subsequent calculations, the southwest corner of each
100 m × 100 m PSPs was used as a benchmark to divide the plot into nine subplots
of 30 m × 30 m. The spatial distributions of 228 PSPs are shown in Figure 1. The
shrub species found in the study area are Artemisia desertorum, Nitraria tangutorum,
Haloxylon ammodendron, Caragana korshinskii, Hedysarum scoparium, Tamarix ramosissima,
Elaeagnus angustifolia. Within each of the PSPs, all the standing live shrubs were measured
for basal diameter (BD), total height (H) and crown width in two perpendicular directions
(C1, C2). The location of the shrub community was measured using the Real-time Kine
Matic (RTK) system. The above ground biomass of the shrubs were obtained based on
the allometric equation of shrubs in the area (Table 1) [34]. The AGB for 228 PSPs was ob-
tained by adding up the plot-level biomass that ranged from 0.0054 ton ha−1 (0.54 g m−2)
to 5.428 ton ha−1 (542.80 g m−2). The average AGB of 228 PSPs was 1.1421 ton ha−1

(114.21 g m−2) and the standard deviation was 1.0646 ton ha−1 (106.46 g m−2).

Table 1. Allometric equation with known parameters of the shrub’s AGB.

Plant Species Formula Allometric Exponent

Artemisia desertorum AGB = 393.985 ∗V0.951 1.135
Nitraria tangutorum AGB = 131.268 ∗V0.611 0.945

Haloxylon ammodendron AGB = 688.379 ∗V0.832 1.007
Caragana korshinskii AGB = 414.792 ∗V1.130 1.014

Hedysarum scoparium AGB = 170.439 ∗ S1.474 0.816
Tamarix ramosissima AGB = 533.087 ∗V0.745 0.869

Elaeagnus angustifolia AGB = 317.905 ∗V1.013 1.071

S is the shrub’s crown area by S = π×
(

C1+C2
4

)2
, V is the crown volume by V = H × S.

2.2.2. LiDAR Data and Preprocessing

Airborne LiDAR data were collected by the CHCNAV AS-1300HL system with laser
scanner—Riegl VUX-1LR, which was produced by RIEGL company in Niederosterreich,
Austria. The average flight height was 200 m, and the average flight speed was 10 m s−1.
The scanner zenith angle was −33◦~33◦and the point cloud lateral overlap rate was 50%.

The original point cloud data was obtained by Co-pre (Figure 2). Extreme outliers were
removed by the spatial distribution algorithm. The improved progressive Triangulated
Irregular Network (TIN) densification was used for ground point classification [35]. The
laser point cloud data were normalized to remove the effects of the unleveled ground
surface by subtracting the elevation of the ground point from the elevation of the other
point. The point cloud density in the area was 68.6 pts m−2 after preprocessing.

Three groups of indices were calculated from LiDAR point cloud data: metrics based
on the elevation, density and intensity value of the points. We calculated 97 variables
using the Lidar 360 Tools to identify the applicability of variables for predicting the AGB of
shrubs in desert based on LiDAR data (Table 2).
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Table 2. Variables calculated based on LiDAR point data.

Variables Description Variables Description

CEP1, CEP5, CEP10, . . . ,
CEP90, CEP95, CEP99

Cumulative elevation
percentile of 15 different

statistical units

EMax, EMean, EMed, EStd,
EVar, IMax, IMin, IMean,

IMed, IStd, IVar

Maximum, Minimum, Mean,
Median, Standard Deviation

and Variance of Elevation
and Intensity

CIP1, CIP5, CIP10, . . . ,
CIP90, CIP95, CIP99

Cumulative intensity
percentile of 15 different

statistical units

EP1, EP5, EP10 . . . ,
EP95, EP99

Elevation percentile of 15
different statistical units

IP1, IP5, IP10, . . . ,
IP90, IP95, IP99

Intensity percentile of 15
different statistical units DM1, DM2 . . . , DM10 Point cloud density of 10

different statistical units

CEPIq, EIq, IIq
Percentile quartile spacing of

Cumulative Elevation,
Elevation and Intensity

EMAD, IMAD
Median absolute deviation of

the median Elevation and
Intensity

ECM, ESM Mean elevation of Cube
and Sqrt HAd, IAd Average absolute deviation of

Elevation and Intensity

ECv, ICv Coefficient of variation of
Elevation and Intensity CFd Canopy fluctuation rate

EKu, IKu Elevation kurtosis and
intensity kurtosis ESk, ISk Elevation Skewness and

Intensity Skewness

2.3. Parametric Regression Models
2.3.1. Base Model

Four commonly used candidate models were considered in this study as base models,
and they are the Linear model (Equation (1)), Logistic model (Equation (2)), Exponential
model (Equation (3)) and Richards model (Equation (4)) to fit data. The LiDAR variables
were screened by a stepwise regression and VIF (Variance Inflation Factor, VIF < 5) collinear-
ity test was performed to avoid interdependency among the multiple predictor variables.
The non-linear mixed-effects (NLME) AGB model was also developed using the best per-
forming base model. Min-Max Normalization of each variable was used to promote the
convergence of the models.

AGB = β1 + β2x1 + β3x2 · · · βnxm + ε (1)

AGB = β1/[1 + β2 exp(−β3x1 − β4x2 · · · − βnxm)] + ε (2)



Remote Sens. 2023, 15, 3344 6 of 18

AGB = β1 exp(−β2x1 − β3x2 · · · − βnxm) + ε (3)

AGB = β1[1− exp(−β2x1 − β3x2 · · · − βnxm)] + ε (4)

where xm is the stand parameter extracted by LiDAR; β1, β2, β3, β4, βn are parameters to be
estimated, and ε is an error term.

The best basic model was selected based on the following statistical criteria:

e = ∑ et/N =
N

∑
t=1

(
AGBt − ˆAGBt

)
/N (5)

σ2 =
N

∑
t=1

(et − e)2/(N − 1) (6)

TRE = 100 ∗
N

∑
t=1

(AGBt − AĜBt)
2/

N

∑
t=1

(AGBt)
2 (7)

R2 = 1−
N

∑
t=1

(AGBt − AĜBt)
2/

N

∑
t=1

(AGBt − AGB)2 (8)

RMSE =
√

e2 + σ2 (9)

where AGBt and AĜBt are the aboveground biomasses estimated by the allometric equation
and predicted by the newly developed AGB model, respectively, and AGB is the mean
aboveground biomass by the allometric equation; and N is the number of sample plots;
and e, σ2, R2, and RMSE are the mean bias, variance of bias, coefficient of determination,
and root mean square error, respectively. RMSE is defined as the combination of the mean
bias and its variance and is the most important evaluation criterion of the model.

2.3.2. Nonlinear Mixed-Effects Model

The mixed-effects model is based on the regression function on the fixed-effects
parameters and the random-effects parameters [36]. The general form of the single-level
mixed-effects model is:

yij = f (φi, Xij) + εij, i = 1, . . . , M, j = 1, . . . , ni,

φi = Aiβ+
K
∑

k=1
B(k)

i u(k)
i ,

u(k)
i ∼ N(0,ψ(k)), cov(u(k)

i , u(l)
i ) = 0, k 6= l, k = 1, . . . , K, l = 1, . . . K,

εi ∼ N(0, Ri), εi = (εi1, . . . , εini )
T

(10)

where yij is the jth observation on the ith subject for a dependent variable, M is the number
of subjects, ni is the number of observations on the ith subject, f (.) is a real-valued and
differentiable nonlinear function of a p × 1 vector of the subject-specific parameters φi

and a s × 1 covariate vector Xij, β is a p0 × 1 vector of fixed effects, u(k)
i is a q(k) × 1

vector of the random effects assumed to be normally distributed with a mean of zero and
a variance-covariance matrix ψ(k), and Ai and B(k)

i are design matrices. For different k,

l ∈ Ω (k 6= l), u(k)
i and u(l)

i are independent of each other. The error term εi = (εi1, . . . , εini )
is assumed to normally distributed with a mean of zeros and a covariance matrix of Ri,
independent of u(k)

i s. More detailed explanation of nonlinear mixed-effects modeling can
be found in Fu and Tang [37].

The shrub vegetation cover in the sample plots was used as a random effect factor
and is classified into three levels based on related studies: 0–40%, 40–60% and 60–100%.
The optimal NLME AGB model was determined by testing the combination of random-
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effect factors using AIC (Akaike information criterion, Equation (10)) and BIC (Bayesian
information criteria, Equation (11)). As both AIC and BIC give almost similar values, the
former, which is the most common one, can be used, rather than both. When the AIC of
any model is ≥2 than others, then former model can be considered significantly better than
that model [38]. The NLME model was implemented based on the ‘nlme’ package in R-4.2.

AIC = 2k− ln(L) (11)

BIC = k ln(N)− 2 ln(L) (12)

where k is the number of model parameters, N is the number of samples, L is the likelihood
function value.

2.4. Machine Learning Algorithms
2.4.1. Random Forest

Random Forest (RF) uses the majority voting method and the final results are derived
by combining the decision results of each tree [39]. The results can be expressed as:

H(x) = argmax
γ

k

∑
i=1

I(hi(x) = Y) (13)

where H(x) is the combinatorial model of classification or regression, representing the results
of RF. hi(x) is the single model of classification or regression, representing the result of CART
(Classification and Regression Tree). Y is the output variable. I(·) is the indicator function.

Key parameters of the random forest algorithm are the number of classification trees and
the number of node features. After parameter tuning, the Ntree (Number of decision tree) and
Mtry (Number of variables in the decision tree) values were 1000 and 13, respectively. The RF
classifier is implemented based on the ‘randomForest’ [40] package in R-4.2.

2.4.2. Support Vector Machine

A Support Vector Machine (SVM) has four main types of the kernel functions: Linear,
Polynomial, Radial Basis Function (RBF), and Sigmoid Kernels [41]. In our study, we
applied the RBF kernel for the AGB prediction, which has the optimization result in
applications [42]. The equation for RBF is:

K(x, xi) = exp(−γ ‖ x− xi ‖2), γ > 0 (14)

where x is the feature vector of the recognition sample; xi is the feature vector of the training
sample; γ is the parameter controlling the width of the Gaussian kernel.

SVM was modeled using the “e1071” package in R-4.2 to use the grid search method
to identify the optimal Gamma and Cost parameter combinations [43] The model accuracy
is the highest when Gamma is taken as 0.001 and Cost is 13.

2.4.3. K-Nearest-Neighbor

The traditional K-Nearest-Neighbor (KNN) algorithm was used to calculate distance
and similarities among all the labeled instances in the training set for each test instance [44].
Normally, Euclidean distance was used to measure distance. The Euclidean distance:

d(x, y) =

√
n

∑
i=1

(xi − yi)
2 =

√
(x1 − y1)

2 + (x2 − y2)
2 + · · ·+ (xn − yn)

2 (15)

where (xi, yi) are the coordinates of n points.
Using a comprehensive method, this study determines the optimal k value for the

KNN algorithm based on the exhaustive method. With a k value of 14, the accuracy of
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the model is optimal. The KNN model was constructed based on the ‘class’ package in
R-4.2 [45].

2.4.4. Gradient Boosting Machine

The Gradient Boosting Machine (GBM) is based on the principle of constructing new
base-learners relevant to the negative gradient of the loss function and associated with the
whole ensemble [46]. The goal is to obtain an estimate or approximation of F̂(x), of the
function F∗(x) mapping x on to y, that minimizes the expected value of some specified loss
function L(y, F(x)) over the joint distribution of all the (y, x) values,

F∗ = argmin
F

Ey,xL(y, F(x)) = argmin
F

expected y loss

Ex[
︷ ︸︸ ︷
Ey(L(y, F(x))) |x]︸ ︷︷ ︸

expectation over the whole dataset

(16)

In general, the choice of the loss function is up to the researcher and there are not only
a variety of loss functions, but also the possibility of implementing one’s own task-specific
loss [46]. A classic loss function, which is commonly used is the squared-error L2 loss
is: Ψ(y, f )L1

=
∣∣∣y− f

∣∣∣. The parameters n.trees, interaction.depth and shrinkage were set
as 4000, 1 and 0.001, respectively. The GBM algorithm was modeled based on the ‘gbm’
package in R-4.2 [47].

2.4.5. Multivariate Adaptive Regression Splines Model

Multivariate Adaptive Regression Splines (MARS) uses the tensor product of spline
function as the basic function and is divided into three steps: forward process, backward
pruning process and model selection. The MARS segments the data by adaptively selecting
nodes and generating the corresponding basic functions, and finally constructs the model
by adding basic functions, and the expression is:

f (x) = α0 +
N

∑
i=1

αi Hi(x) (17)

where f (x) is the predicted value of the target variable; α0 is the intercept; αi is the coefficient
corresponding to the i-th basic function; Hi(x) is the i-th basic function; N is the number of
basic functions. The basic function can be expressed as:

Hi(x) =
{

max(0, E− x)
max(0, x− E)

(18)

where E is the threshold value of the input variable; x is the predictor variable.
Two hyper-parameters “degree” and “nprune” need to be set in the modeled MARS.
The default value “1” of “degree” indicates that there is no interaction between indepen-
dent variables, and “nprune” represents the maximum number of items in the model, and
the value was determined as 12 by the test. The MARS model was constructed based on
the ‘caret’ package in R-4.2 [48].

2.5. Model Evaluation

In this study, the data set was divided into training and validation sets according to the
proportion of 7:3. Seventy percent of data was used for modeling and 30% for validation.
Both the basic model and the NLME model were evaluated by an independent dataset. The
predicted and observed AGB values were used to calculate prediction statistics (R2, RMSE
and TRE) using Equations (5)–(8). Based on the best model, utilizing the DSA (Data-based
Sensitivity Analysis) method, the importance of variables was explored.
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3. Results
3.1. Parametric Regression Models
3.1.1. Base Models

The Pearson correlation test showed that most LiDAR variables had high correlations
and positive relationships with shrub biomass. Fifteen predictor variables were obtained
by stepwise regression screening, and CEP30 (Cumulative Elevation Percentile of 30%),
EP40 (Elevation Percentile of 40%), ESk (Elevation Skewness), CIP1(Cumulative Intensity
percentile of 1%), and CIP95 (Cumulative Intensity Percentile of 95%) variables were then
selected from subsequent model fitting with the use of VIF (Variance Inflation Factor,
VIF < 5) as a collinearity test method(Figure 3).
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Figure 3. Correlation coefficients of the variables and screening index ((a) the variables with the top
20 correlation coefficients; (b) fifteen significant variables in a stepwise regression analysis, y-axis is
the p value; (c) x-axis is the VIF value).

The optimal inversion basic model was identified from the four biomass candidate
models based on the training data set. There was a similar level of accuracy among the four
basic models on the training set, with the logistic model having the best accuracy (Table 3).
The validation results, which were calculated using 30% data, showed the best accuracy of
the Exponential model (R2 = 0.6169 and TRE = 22.7290). Even though the training accuracy
of the Exponential model was slightly inferior to that of the Logistic model, which has six
parameters, the former model is simpler than the latter model, and the AIC difference < 2
was therefore selected as a basis for developing the NLME AGB prediction model.

Table 3. Fit statistics of four candidate basic models. (RMSE, root mean square error, units were
g m−2; R2, coefficient of determination; TRE, total system error; AIC, Akaike’s information criterion;
BIC, Bayesian Information Criterion).

Model Number of
Parameters

Training Data Validation Data
RMSE R2 TRE AIC BIC RMSE R2 TRE

Linear 6 60.9266 0.6362 20.2317 1771.09 1792.58 79.8046 0.5467 25.7699
Richards 6 57.2373 0.6789 17.4414 1751.23 1772.71 85.4208 0.4807 25.1191
Logistic 7 55.9541 0.6931 16.5402 1746.02 1770.57 74.8961 0.6006 23.2180

Exponential 6 56.5880 0.6861 16.9811 1747.60 1769.09 73.3495 0.6169 22.7290
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3.1.2. NLME Models

Considering the six parameters in the model (β1~β6), there were 63 different combina-
tions of the random effects for the basic Exponential model. Forty-two of all NLME model
variants converged with the meaningful parameter estimates, the smallest AIC was 1729.73
(combination of the parameter 4 and 5, Figure 4).
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Figure 4. Forty-two combinations of the random effects for the basic model 4. (1~6 refer to the
parameters needs to be included as random effects; + refer to the combinations of the random effects).

Through the performance of the models in the training set and validation set, the fol-
lowing NLME models had optimal fit statistics (training data: R2 = 0.7509, RMSE = 50.4077,
TRE = 13.0180; validation data: R2 = 0.6977, RMSE = 65.1613, TRE = 15.6269).

AGB = β1 exp
[
−β2 ∗ CEP30− β3 ∗ EP40− β4 ∗ ESk
−(β5 + µ5i) ∗ CIP1− (β6 + µ6i) ∗ CIP95

]
+ ε

where AGB is the aboveground biomass; β1~β6 are the fixed effects parameters; CEP30,
EP40, ESk, CIP1 and CIP95 refer to the cumulative elevation percentile of 30%, elevation
percentile of 40%, elevation skewness, cumulative intensity percentile of 1%, cumulative
intensity percentile of 95%; µ5i and µ6i are the random effects due to the shrub’s coverage
of the sample plots on β5 and β6, respectively.

3.1.3. Parameter Estimates

Most of the parameter estimates were significantly different from zero (p < 0.05), and
their magnitudes and signs could meet biological logics (Table 4). The NLME AGB model is:

AGB = 24.436 ∗ exp
[

0.106 ∗ CEP30 + 0.928 ∗ EP40 + 0.462 ∗ ESk
−(2.197 + 1.062) ∗ CIP1− (−2.272 + 0.586) ∗ CIP95

]
+ ε

where AGB is the aboveground biomass; CEP30, EP40, Esk, CIP1 and CIP95 are the param-
eters obtained by the airborne LiDAR: cumulative elevation percentile of 30%, elevation
percentile of 40%, elevation skewness, cumulative intensity percentile of 1%, cumulative
intensity percentile of 95%, respectively.
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Table 4. Parameter estimates of the nonlinear regression model including the NLME AGB model.

Parameter Variables Liner Logistic Richards Exponential NLME

β1 / −60.340 −182.121 −20.556 26.834 24.436
β2 CEP30 −29.370 −3.922 −0.336 −0.361 −0.106
β3 EP40 270.500 0.188 −1.059 −0.843 −0.928
β4 Eske 86.700 0.206 −0.834 −0.247 −0.462
β5 CIP30 −144.790 −0.102 1.901 2.555 2.197
β6 CIP95 192.47 −1.572 −2.327 −2.434 −2.272
β7 / / 1.117 / / /
µ5i / / / / / 1.062
µ6i / / / / / 0.586

“/” means that this parameter term does not exist in the model.

3.2. Machine Learning

Five machine learning algorithms were used to construct the AGB model for shrub
communities in the desert region. Based on the model training data, the SVM-model
achieved the best accuracy with the lowest values of RMSE and TRE, and the highest R2,
followed by Earth, KNN and GBM-models, respectively (Table 5) where RF-model scores
were lower for these indicators. Similar trends can be observed by comparing the predictive
performance of all the models in validation data. The SVM-model still scored the best (R2 =
0.8962, RMSE = 38.1919, TRE = 5.4063). However, the performance of the RF-model was
better than that of the MARS and GBM-model in the validation dataset, and the accuracy
of GBM model was the lowest.

Table 5. Fit statistics of machine learning models. (RF, random forest; SVM, support vector ma-
chine; KNN, K-Nearest Neighbor; MARS, Multivariate Adaptive Regression Splines; GBM, Gradient
Boosting Machine; Units of RMSE is g m−2).

Model
Training Data Validation Data

RMSE R2 TRE RMSE R2 TRE (g m−2)

RF 49.7021 0.7579 13.0055 62.8252 0.7191 14.4489
SVM 26.8635 0.9293 3.5050 38.1919 0.8962 5.4063
KNN 46.4816 0.7882 11.3961 63.5297 0.7128 16.5406

MARS 32.0995 0.8990 4.8997 60.8154 0.7367 10.4576
GBM 48.8357 0.7662 13.5585 74.0015 0.6103 23.2776

3.3. Model Evaluation

The performance of all the models were evaluated by an independent data set using
three statistical indicators (RMSE, R2 and TRE). It was found that the machine learning
algorithms had advantages over the traditional parametric model (Tables 1 and 3). The R2

of the best SVM-model increased by 20% and the TRE and RMSE reduced by 10% when
compared with the best traditional NLME model. At the same time, the stability of the
SVM-model in both the fitting data and validation data were much better than the NLME
model. Among the random distributions of the residuals produced, the SVM model and the
MARS model more effectively reduce the heteroscedasticity than other models (Figure 5).
The residuals of the six models were concentrated towards the zero line when biomass
was smaller, and residuals were relatively spread away from the zero line when biomass
increased. Figure 6 shows the AGB map of approximately one square kilometer drawn
based on the SVM model.
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3.4. Variables Importance

The SVM-model achieved the best accuracy, and the ten most important variables
of DSA results were Eku, Emea, Iku, EMAD, DM5, DM4, Isk, CEP5, DM6 and DM10
(Figure 7). Among them, Eku was the flatness of the height distribution of all the points
in the statistical unit and had the highest relative importance. Emea and EMAD also had
a high relative importance. These elevation variables were critical for the inversion of
biomass. In the cumulative height percentage, CEP5 was relatively high. Among the
intensity variables, the Iku and Isk of the response intensity appeared more important,
while the variables related to Intensity percentile and cumulative intensity percentage were
generally less important. Four of the ten density variables were ranked in the top ten, DM4
and DM5 in the mid-height slice were more important than others.

Remote Sens. 2023, 15, x FOR PEER REVIEW 14 of 20 
 

 

 
Figure 7. Lollipop plot with the importance of DSA (Data-based Sensitivity Analysis) variables for 
the SVM-Model. 

4. Discussion 
Based on the airborne LiDAR data, a shrub biomass prediction model for a sample 

plot-level in the desert was constructed by utilizing both the parametric regression and 
machine learning methods. This study indicates that the best prediction model (R2 = 
0.8962) can accurately predict shrub community biomass at the plot level. Modeling ap-
proaches employed to different forest biomass modeling studies might be largely differ-
ent, the number of predictor variables in the models used might be different, the amount 
of data or number of observations used in modeling might be also different, and so on. 
Thus, comparing any previously developed forest biomass models against our shrub bio-
mass model might not be relevant. However, to some extent, it would be useful if com-
pared. In most studies, vegetation biomass dynamics in the arid regions were monitored 
based directly on the ground survey data [15,16,49–51]. However, satellite-based biomass 
models were observed to be relatively inaccurate. Liang [49] found that the NDVI-based 
AGB model performed the best amongst all the single-factor models for the MODIS satel-
lite (R2 = 0.58), similar to Jin’s study [52] of the desert grassland of northern China (R2 = 
0.45~0.50). The accuracy of the satellite prediction model depends on the number and rep-
resentativeness of the samples, as well as the spatial consistency between the satellite pixel 
sizes and ground sampling area [2]. Compared to remote sensing data, LiDAR provides a 
more accurate reflection of shrub characteristics in three dimensions, which is important 
for the estimation of AGB [53]. LiDAR can provide more accurate information about the 
vertical structure of shrub communities compared to the point clouds produced by UAV 
photogrammetry [54]. Based on 35 statistical variables in ALS data, Li used the random 
forest regression model and a stepwise multiple regression model to estimate shrub 

Figure 7. Lollipop plot with the importance of DSA (Data-based Sensitivity Analysis) variables for
the SVM-Model.

4. Discussion

Based on the airborne LiDAR data, a shrub biomass prediction model for a sample
plot-level in the desert was constructed by utilizing both the parametric regression and
machine learning methods. This study indicates that the best prediction model (R2 = 0.8962)
can accurately predict shrub community biomass at the plot level. Modeling approaches
employed to different forest biomass modeling studies might be largely different, the
number of predictor variables in the models used might be different, the amount of data
or number of observations used in modeling might be also different, and so on. Thus,
comparing any previously developed forest biomass models against our shrub biomass
model might not be relevant. However, to some extent, it would be useful if compared.
In most studies, vegetation biomass dynamics in the arid regions were monitored based
directly on the ground survey data [15,16,49–51]. However, satellite-based biomass models
were observed to be relatively inaccurate. Liang [49] found that the NDVI-based AGB model
performed the best amongst all the single-factor models for the MODIS satellite (R2 = 0.58),
similar to Jin’s study [52] of the desert grassland of northern China (R2 = 0.45~0.50). The
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accuracy of the satellite prediction model depends on the number and representativeness of
the samples, as well as the spatial consistency between the satellite pixel sizes and ground
sampling area [2]. Compared to remote sensing data, LiDAR provides a more accurate
reflection of shrub characteristics in three dimensions, which is important for the estimation
of AGB [53]. LiDAR can provide more accurate information about the vertical structure of
shrub communities compared to the point clouds produced by UAV photogrammetry [54].
Based on 35 statistical variables in ALS data, Li used the random forest regression model
and a stepwise multiple regression model to estimate shrub biomass. The results indicated
that two models can explain >74% of changes in shrub biomass [55]. In comparison with
relevant research, our study had a better fitting accuracy (R2 = 0.8962), indicating that the
application of LiDAR can significantly improve AGB estimation in the desert region.

For the prediction of the shrub’s AGB in the desert region, machine learning algorithms
have certain advantages over the traditional regression methods. The previous studies have
indicated that the machine learning models can be more effective for ecosystem research
than the parametric regression models due to their complex structures and their ability
to accurately capture the nonlinear relationships between the variables [56–58]. A key
feature of the machine learning algorithms is that they effectively avoid the problems
with variable screening and multiple collinearities, and do not require data to conform
the certain distribution characteristics [59,60]. Screening variables is necessary in order to
reduce the complexity of the model, and finding the initial values of the model parameters
could be time-consuming when using the parametric regression [61]. The machine learning
algorithm eliminates these steps, simply adjusts model parameters, uses more diverse
input variables, and can be used to analyze the multiple noisy data sets simultaneously [62].
These characteristics are more conducive to understanding by local managers. One of
the most common criticisms of machine learning is its black box nature, which refers to
the challenge in understanding how algorithms make their decision [63]. However, it is
important to note that every algorithm has an internal logic, and its black box nature is only
apparent for those who use this [64]. Many studies are dedicated to explaining the black
box of machine learning, which is crucial for its widespread application [65]. The accuracy
of the machine learning model improved by 10% in our study, but some researchers
have indicated that there is no universal evaluation standard between machine learning
algorithms and traditional methods, and as such, studies typically focus on individual
cases [66,67]. A consideration should be made regarding the compatibility of the models in
traditional parameter estimation methods as well as how to analyze measurement errors in
machine learning.

Each machine learning algorithm has its own advantages in handling data of a variety
of dimensions [68]. Among the five machine learning algorithms used, SVM performed
the best fitting performance and the optimal residual distribution (Table 5), which is an
indication of its ability to deal with the interactions between nonlinear features of variables
and its strong generalization capability [69]. A study by Safari et al. [70] compared nine
methods of mapping AGB based on optical satellite data, and reported that SVM was more
accurate in terms of the coefficient of determination. The SVM algorithm searches for the
optimal hyperplane to minimize training errors and suitably generalizes a given model
with limited training samples, but it suffers from the parameter allocation problems that
seriously affect the results [71]. In our study, RF, KNN and MARS perform similarly and
the feature of RF with built-in generalization error estimation makes it the most stable
among other models in the training and validation data sets. The performance of GBM in
this study is similar to that of the RF in the training set, as both the algorithms are boosting
algorithms, which can handle various types of data flexibly. Five common machine learning
algorithms (RF, SVM, KNN, MARS, and GBM) were systematically compared, but each has
disadvantages to a varying degree, and thus, it was meaningful to explore the integrated
modeling methods by combining advantages of the multiple algorithms [72,73].

The previous studies conducted in analogous ecosystems showed that height [55],
volume [74,75], or the approximation of volume [76] (e.g., the product of the basal area
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and height) to be a strong proxy of shrub biomass. The DSA results showed that Eku was
the most influential variable. Eku refers to the flatness of the elevation distribution across
all the points within the statistical unit, which can reflect the elevation of the point, the
average height in the unit, the total number of points, and the standard deviation of the
point cloud elevation distribution. Variables associated with elevation, such as the Emea,
EMAD, and Elevation Percentage, generally exhibited a greater importance. A study by Li
et al. [55] underscored the significance of variables linked to elevation changes in all the
random forest models. The intensity variables, which are partially based on the vegetation
reflectivity [77], demonstrated relatively lower importance, although it is worth mentioning
that Iku, encompassing information on the total points and average elevation of the points,
ranked as the third most important variable. Density variables exhibited great importance,
as they play a crucial role in predicting AGB. Notably, the importance ranking of DM1 was
considerably low, likely attributable to the fact that density variables were divided into
ten height-based slices, with the lowest slice failing to adequately capture volume-related
information of the shrub community. In summary, while variable importance may differ
across studies, the majority of variables related to the shrub’s height and volume would be
more important than other variables.

The rapid advancement of remote sensing technology and the popularity of machine
learning algorithms have led to more efficient methods for estimating AGB of desert shrub
community [68,78]. Due to the heterogeneity and complexity of vegetation types, soil, and
topography in the desert region, combining LiDAR data with machine learning algorithms
could be more appropriate for predicating AGB. Our method is claimed to be innovative,
as this accurately capture and monitor the shrub AGB changes in the desert region. Al-
though our study has achieved the encouraging results, further work is needed to evaluate
a combination of multi-source remote sensing data and machine learning algorithms for
monitoring shrub biomass dynamics in the desert region at a large scale.

5. Conclusions

We constructed the parametric model and nonparametric algorithms for prediction of
the shrub’s above ground biomass in the desert region using density variables, intensity
variables and elevation variables, the information of which were derived from airborne
LiDAR data. Our results suggest that the elevation and intensity variables can effectively
predict the aboveground biomass of vegetation in the desert region at a sample plot-
level. The SVM-model outperformed the nonlinear mixed-effects AGB model and reduced
the heteroscedasticity more effectively. Our study shows the applicability of LiDAR in
monitoring the desert shrub community biomass and the advantage of the nonparametric
model for biomass inversion. The presented method and model can be used in systematic
studies of carbon stock and assessments of ecological and social values in the desert region.
The data that can be generated from the methods applied In our study for the biomass
inversion of shrub communities in the desert, based on airborne LiDAR, will provide a
strong scientific basis for desert researchers and pertinent decision makers to control and
manage desertification.
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