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Abstract Deforestation rates have declined in the Brazilian Amazon since 2005, yet degradation

from logging, fire, and fragmentation has continued in frontier forests. In this study we quantified the

aboveground carbon density (ACD) in intact and degraded forests using the largest data set of integrated

forest inventory plots (n= 359) and airborne lidar data (18,000 ha) assembled to date for the Brazilian

Amazon. We developed statistical models relating inventory ACD estimates to lidar metrics that explained

70% of the variance across forest types. Airborne lidar-ACD estimates for intact forests ranged between

5.0±2.5 and 31.9±10.8 kg C m−2. Degradation carbon losses were large and persistent. Sites that burned

multiple times within a decade lost up to 15.0± 0.7 kg C m−2 (94%) of ACD. Forests that burned nearly

15 years ago had between 4.1±0.5 and 6.8±0.3 kg C m−2 (22–40%) less ACD than intact forests. Even for

low-impact logging disturbances, ACD was between 0.7±0.3 and 4.4±0.4 kg C m−2 (4–21%) lower than

unlogged forests. Comparing biomass estimates from airborne lidar to existing biomass maps, we found

that regional and pantropical products consistently overestimated ACD in degraded forests, underestimated

ACD in intact forests, and showed little sensitivity to fires and logging. Fine-scale heterogeneity in ACD

across intact and degraded forests highlights the benefits of airborne lidar for carbon mapping. Differences

between airborne lidar and regional biomass maps underscore the need to improve and update biomass

estimates for dynamic land use frontiers, to better characterize deforestation and degradation carbon

emissions for regional carbon budgets and Reduce Emissions from Deforestation and forest Degradation

(REDD+).

1. Introduction

Tropical forests are estimated to store between 160 and 250 Pg of carbon (1 Pg = 1015 g) or about one

fourth of total carbon stocks in land ecosystems [Sabine et al., 2004; S. Saatchi et al., 2011; Baccini et al.,

2012]. Carbon stocks in tropical forests are vulnerable to land use changes [van der Werf et al., 2009; Smith

et al., 2014; Le Quéré et al., 2015]; however, large uncertainties in tropical forest carbon fluxes arise from

difficulties in quantifying forest carbon stocks and carbon stock changes, especially from forest degrada-

tion [Aguiar et al., 2012; Ometto et al., 2014; Bustamante et al., 2016]. The goal to Reduce Emissions from

Deforestation and forestDegradation (REDD+) is a core component of the Paris Agreement (COP21) [UN-FCCC,

2016], and there is an urgent need to quantify the effect of forest degradation on carbon stocks in tropi-

cal forests to support REDD+ and improve the accuracy of global carbon budgets [Bustamante et al., 2016;

Morton, 2016].

The Brazilian Amazon is the largest contiguous area of tropical forest in any country, yet deforestation

has already converted nearly 20% of the original extent of forests to pastures or croplands [Barber et al.,

2014; Almeida et al., 2016]. Deforestation rates in Brazil have decreased by 70% since 2004 [Hansen et al.,

2013; Nepstad et al., 2014]. However, Amazon forest degradation from selective logging, forest fires, and

forest fragmentation has continued apace, reducing forest carbon stocks in frontier forests [Aragão et al.,

2014; Berenguer et al., 2014; Pütz et al., 2014; Anderson et al., 2015]. Changes in forest structure, species
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composition, and successional process from logging and understory fires may last for several decades

[Keller et al., 2004a; Blanc et al., 2009; Alder et al., 2012; West et al., 2014; Rutishauser et al., 2016], altering car-

bon stocks in forests that experience repeated degradation or deforestation [Morton et al., 2013; Bustamante

et al., 2016].

Fieldmeasurements, experimental studies, and satellite remote sensing provide important insights regarding

the magnitude and extent of forest degradation processes in the Amazon. Inventory plots and manipula-

tion experiments to study logging and understory fires are fundamental to understanding the dynamics of

degraded forests [e.g., Blanc et al., 2009; West et al., 2014; Brando et al., 2014], but extrapolation from field

results is typically limited by the small number of samples, the small area of those samples, and the limited

time between repeated samples if there were any repeated samples at all. As a result, the range of degrada-

tion impacts on forest structure and carbon stocks across the Amazon remains highly uncertain [Smith et al.,

2014; Bustamante et al., 2016]. Satellite-basedmeasurements support degradationmapping over large areas,

including remote regions [Asner et al., 2004, 2005; Morton et al., 2013; Joshi et al., 2015], yet the spatial reso-

lution (30–300 m) of satellite imagery most frequently used in land cover change research is insufficient to

detect subtle changes in forest structure from low-intensity degradation [Asner et al., 2010]. Cloud cover, a

commonoccurrence in tropical forests, also significantly limits theuseof passiveoptical imagery [Asner, 2001].

Airborne lidar provides an intermediate scale between field and satellite-based measurements. Detailed,

three-dimensionalmeasurements of forest structure can be obtained using airborne lidar instruments at high

resolution (typically 1m) over thousands of hectares, facilitating forest carbon stock assessments across intact

anddegraded forest types—even low-intensity disturbances [Asner etal., 2010;d’Oliveira etal., 2012;Andersen

et al., 2014]. Airborne lidar data offer the potential to address challenges for REDD+and tropical forest ecology

based on variability in forest carbon stocks at finer spatial scales than satellite observations for current and

planned forest carbon mapping efforts [Morton, 2016].

Field data, often in combination with satellite data, have been used to generate biomass maps for tropical

forests at regional and global scales [e.g., Saatchi et al., 2007; S. S. Saatchi et al., 2011; Nogueira et al., 2008,

2015; Baccini et al., 2012]. Carbon stock estimates are essential to establish REDD+ baselines [Gibbs et al.,

2007] and estimate contributions from tropical forest regions to the global carbon budget [Le Quéré et al.,

2015]. Although these maps generally agree on average at national or biome scales [Langner et al., 2014],

they tend to produce very different estimates at local scales [Ometto et al., 2014]. One fundamental limitation

of the first-generation biomass maps based on satellite data is that they are derived from coarse resolution

(500–1000m) remote sensing datawith limited sensitivity to fine-scale variations in structure. In addition, few

inventory plots in degraded forest types were available for calibration of satellite-based estimates of above-

ground biomass. Nevertheless, the disagreement among maps at local scales leads to large uncertainties in

carbon emissions, because land cover change from deforestation and forest degradation is concentrated in

frontier forest types [Aguiar et al., 2012]. Airborne lidar has the potential to improve regional estimates of

biomass by providing detailed information on the regional variability of carbon stocks [Baccini and Asner,

2013].

Here we investigated biomass variability in intact and degraded Amazon forest types using the largest inte-

grated inventory plot and airborne lidar data set assembled to date for the Brazilian Amazon. Field samples

and coincident lidar acquisitions specifically targeted degraded forest types in order to develop and calibrate

a general model of carbon stocks for the Brazilian Amazon that captures different levels of forest degrada-

tion and recovery. Lidar-based estimates of aboveground carbon density (ACD) in intact and degraded forests

were used to address the following questions:

1. What are the magnitude and duration of ACD differences between intact and degraded forest types?

2. Do differences between airborne lidar and regional and pantropical maps indicate important fine-scale

variability in Amazon forest carbon stocks in intact or degraded forest types?

2. Data and Methods
2.1. Study Areas

A total of 18 study areas covering 18,006 ha were selected to evaluate forest carbon stocks in intact and

degraded forest types in the Brazilian Amazon (Figure 1), and all data are publicly available at https://www.

paisagenslidar.cnptia.embrapa.br/webgis/ and dos-Santos and Keller [2016a, 2016b]. Study sites cover a large

variation of climate, soils, and land use history, and several sites overlap with focal areas of the Large-Scale
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Figure 1. Location of the study areas (dots) in the Brazilian Amazon, where both airborne lidar surveys and forest

inventories were obtained. Background corresponds to the Brazilian Amazon Biome (in the sense of Lapola et al. [2014]),

and contours are Brazilian states. Codes of the study areas are shown next to the respective locations and are defined

in Table 1 and Text S1. The exact area of each lidar collection can be visualized in https://www.paisagenslidar.cnptia.

embrapa.br/webgis/.

Biosphere-Atmosphere Experiment in Amazonia [Keller et al., 2004b]. All study areas have been surveyedwith

forest inventories and multiple-return, small-footprint airborne lidar. A brief description of each study area is

available online (see Text S1 in the supporting information). We distinguished between sites that experienced

recent disturbances such as logging and fire associated with human actions over the last three decades and

intact sites for which we have no record or indication of human-induced disturbance.

2.2. Forest Inventories

Forest inventories were conducted at all study sites, and plot measurements included live trees, live palms,

woody lianas, and standing dead trees. See Table 1 for a summary of inventory information for all sites.

When possible, living individuals were identified from field characteristics by parataxonomists (78% of living

individuals), and the decay state of dead individuals was classified following Harmon et al. [1995]. A total of

407 forest inventory plots or transect segments (0.25 ha) were included in this study, of which 359 plots were

entirely covered by airborne lidar. Remaining plot locations (n = 48) were only considered in the analyses

of inventory data. Plots and transect segments were classified according to the disturbance history: 128 in

intact forests (INT), 76 in reduced-impact logging (RIL), 20 in areas affected by conventional logging (CVL), 17

in areas that burned once (BNO), 32 in areas that were logged and burned once (LBN), and 60 in areas that

burnedmultiple times (BNM). In addition, 20 plots were located in areas of secondary forest (six of themwith

at least one fire event following regrowth) and 54 in areas that could not be unambiguously classified using

Landsat. Plots located in secondary forests or in areas not classified were used for calibration of the airborne

lidar model but not included in the analysis by disturbance history.

Most forest inventories used either square plots (40×40mor 50×50m) or fixed-sized transects (20×500m).

At Reserva Ducke (DUC), a DBH-dependent probability sampling used 500m transect lines and included trees

that were within a distance of 10 times their DBH on either side of the transect center line [Hunter et al., 2013].

Transects were divided into four separate segments of equal length (five in the case of DUC), similar in area to

the square plots. Segment lengths of 100–125m are much longer than the typical autocorrelation length for

aboveground biomass in tropical forests (11 m, following S. Saatchi et al. [2011]). Plot size is known to be an

important source of errors for calibrating airborne lidar estimates of biomass; while we had a limited range of

areas to test the effect of plot size in our calibration, the typical plot area varied between 1600 and 2500 m2,

a range which has been previously shown to provide stable estimates of tropical forest biomass in Panama
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[Meyer et al., 2013] and in Tanzania [Mauya et al., 2015]. Importantly, plot corners or central transect lines were

georegistered with submeter accuracy using differential Global Navigation Satellite Systems (GeoXH6000,

Trimble Navigation, Ltd.).

Allometric equations were used to estimate the individual aboveground carbon mass (IAGC, kg C) for trees,

palms, and lianas:

1. Living trees, Chave et al. [2014]:

IAGC = 0.0673 fC
(

�w DBH2 Ht

)0.976
, (1)

2. Standing dead trees, Chambers et al. [2000]:

IAGC = 0.1007 fC �s DBH
2H0.818

t
, (2)

3. Living palms, Goodman et al. [2013]:

IAGC = 0.03781 fC DBH2.7483
, (3)

4. Living lianas, Schnitzer et al. [2006]:

IAGC = 0.3798 fC DBH2.657
, (4)

where fC=0.5 is the fraction of oven-dry biomass assumed to be carbon [Baccini et al., 2012], �w and �s are

the wood and snag density (g cm−3), DBH is the diameter at breast height (cm), and Ht is the tree height (m).

Formost sites,Ht was estimatedusing clinometers; a previous studyusing inventory data that partially overlap

with our data found no statistically significant bias in these height measurements [Hunter et al., 2013]. At five

sites where height was not measured for every tree in the field, DBH-height relationships based on Weibull

functions [Feldpausch et al., 2012; Vincent et al., 2014] were used to estimate Ht (Table S1).

Wood density was obtained from the Chave et al. [2009] and Zanne et al. [2009] database. In case multiple

values existed for a given species, we took the average of all entries. When only the genus was determined, or

when the species was not present at the database, we used the genus average. If both the species and genus

were unknown or not available at the database, we used the average wood density for the site. Snag density

was assigned using the sample-size weighted average of void-corrected snag density for each decay class at

two sites in the Brazilian Amazon [Palace et al., 2007].

2.3. Airborne Lidar Surveys

Airborne lidar surveys were conducted in 2012–2015 using similar data acquisition parameters for all sites.

All airborne lidar surveys were carried out by Geoid Laser Mapping Ltda. (Belo Horizonte, Brazil), using lidar

instruments with similar characteristics: Surveys in 2012 used an ALTM 3100 (Optech Inc.), data acquired in

2013 and 2014 used ALTM Orion M-200 (Optech Inc.), and flight surveys in 2015 were carried out with an

ALTMOrion-M300. Study areaswere flown at an average of 850–900mabove ground, and flights had a swath

sidelap of 65% and scan angle of 5.5–5.6∘ off nadir. A minimum return density (≥4 m−2 over 99.5% of the

study area) was required to avoid inconsistencies and biases in estimated forest properties from low return

density [Jakubowski et al., 2013; Leitold et al., 2015]. Average return densities for the study areaswere far higher

(Table 1).

Lidar data processing followed standard protocols for point cloud analysis and lidar metrics. Data processing

was conducted using FUSION [McGaughey, 2014], and lidar metrics (Table S2) were generated using R statis-

tical software [R Core Team, 2015]. Lidar metrics were generated for each plot or transect segment to develop

lidar-ACD relationships. For spatial analyses and comparisons with regional biomass maps, lidar metrics were

computed on regular 50 × 50m grids at each study site.

2.4. Airborne Lidar Estimates of ACD

To estimate aboveground carbon density based on airborne lidar survey data (ACDALS), we developed a

parametric model based on the subset selection of regression method [Miller, 1984]. This technique identi-

fies the simplest yet most informative parametric models based on a large number of predictor candidates

[e.g., d’Oliveira et al., 2012; Andersen et al., 2014]. To build the model, we carried out the following steps,
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usingR statistical software: (1)Weapplieda logarithmic transformation to thefield-basedACDandall airborne

lidar metrics that were always greater than zero (Table S2) and built a model using all candidate predictors

(the full model); only linear terms were included, and we did not consider interaction among predictors.

(2) Following Hudak et al. [2006], we applied the stepwise subset selection (function stepAIC, package

MASS) in the full model, both in forward and in backward modes, to determine the maximum number of

parameters thatwouldbe allowed. (3)Weapplied the subset selectionof regression in the fullmodel (function

regsubsets, packageleaps), with exhaustive search and retainedonly the best subset for eachnumber of

parameters, up to the maximum number of parameters allowed (step 2). (4) We back transformed all models

selected in step (3) and fitted the coefficients using least squares but allowing for heteroskedastic distribu-

tion of residuals [Mascaro et al., 2011a], scaled with the predicted ACD (E ∼ 
(

� = 0, � = �0 ACD
q

ALS

)

). (5)

For each model fitted in step (4), we calculated the Bayesian Information Criterion (BIC) [Schwarz, 1978] and

selected the model that produced the lowest BIC statistic.

To assess the model robustness and quantify errors associated with independent predictions of ACD, we

applied a cross-validation test based on bootstrap sampling. For eachmethodwe applied the following steps:

(1) We created a data set replication, in which we selected plots from the full data set using sampling with

replacement, with equal probabilities of selecting any plot. For large samples, the bootstrap sampling with

equal probabilities includes about 63.2% of unique points from the original data set and the remainder are

duplicates [Efron and Tibshirani, 1997]. (2) We calibrated the model using the data set replication. (3) The cali-

brated model was used to predict ACD for the plots that were not included in the data set replication (about

36.8% of the original data set). (4) Steps 1–3 were repeated 1000 times, providing about 368 independent

predictions for each plot of the original data set. (5) These independent predictions were compared with the

forest inventory estimate of ACD to quantify the goodness of fit.

In addition to the subset selectionof regressionmethod,wealso tested twononparametricmethodsbasedon

regression trees—the Random Forest [Breiman, 2001,Hudak et al., 2012;Mascaro et al., 2014] and Generalized

Boosted Model [De’ath, 2007; Lloyd et al., 2013] and one simpler heteroskedastic model that only depends

on the mean top canopy height, which was obtained from the canopy height model. All methods produced

fits of similar quality when assessed using cross validation, but the subset selection of regression model had

the best agreement with forest inventory estimates of aboveground carbon density and lower BIC than the

parametricmodel usingmean top canopy height (Text S2 and Table S3).We therefore present results from the

subset selection of regressionmethod; comparisons amongmethods are included as supporting information

(Text S2, Figures S2–S4, S8, and S9, and Table S3).

To evaluate the impact of forest degradation on carbon stocks, we classified the area within each study

site according to occurrence of logging and fire. First, we used time series of normalized difference vegeta-

tion index (NDVI) and normalized burn ratio (NBR) from Landsat images between 1984 and 2013 to visually

identify deforestation, conventional logging, and fire events. For sites with planned, reduced-impact logging

operations (CAU, FST, and JAM), the logging companies provided boundaries for annual production units

[MADEFLONA, 2010; EBATA, 2012]. This approach has the advantage of including field knowledge of distur-

bancehistories and longer time series of satellite imagery thanavailableproducts for detectingandclassifying

forest degradation [e.g., Asner et al., 2005;Morton et al., 2013; INPE, 2014].

Finally, we also developed amodel to estimate the total ACDuncertainty for eachpixel that accounts for differ-

ent sources of error, based on Chave et al. [2004] and S. S. Saatchi et al. [2011]. Themain sources of uncertainty

were categorized in three components: (1) uncertainty of the forest inventory estimates of ACD used to cal-

ibrate the model (calibration uncertainty), (2) the uncertainty due to the limited area surveyed by both the

airborne lidar and the ground-based measurements (representativeness uncertainty), and (3) the prediction

error due to theACDvariance that cannot be explainedby the fittedmodel (prediction uncertainty). The three

error components were aggregated to the pixel level assuming that they were independent and followed

normal distributions. Additional details on the error estimates of each component are provided in Text S3. To

propagate uncertainties of ACD at coarser resolution and for combined areas of similar disturbance history,

we developed aMonte Carlo approach, inwhichwe added a random, normally distributed noise proportional

to the uncertainty to each pixel before aggregating the data and used the distribution of 10,000 simulations

to obtain the aggregated error.
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2.5. Comparison Between Airborne Lidar and Regional Maps of Biomass

We compared three regional maps of carbon stocks to our estimates based on airborne lidar data:

1. Nogueira et al. [2015]—N15. A potential biomass map for the Brazilian Amazon, with nominal resolution of

30m.N15was developed using a vegetation classificationmapby IBGE [2012]. Biomass values for each land

cover class were assigned based on themean of inventory plots for each land cover class [see alsoNogueira

et al., 2008].

2. S. S. Saatchi et al. [2011]—S11. Pantropical biomass map with resolution of 1 km based on the combina-

tion of forest inventory and large-footprint lidar data from the Geoscience Laser Altimeter System (GLAS)

on board the Ice, Cloud and land Elevation Satellite (ICESat). The GLAS lidar-biomass model was used to

calibrate awall-to-wall biomassmodel using reflectance data fromModerate Resolution Imaging Radiome-

ter, a digital terrain model from Shuttle Radar TopographyMission (SRTM), andmicrowave data fromQuick

Scatterometer using a maximum entropy model [Phillips et al., 2006].

3. Baccini et al. [2012]—B12. A pantropical mapwith resolution of 463m that was developed using colocated

forest inventoryplots andGLASdata. Thebiomassmodel obtained from theGLASdatawasused to calibrate

a wall-to-wall biomassmap based onMODIS and SRTMdata using a Random Forestmodel [Breiman, 2001].

To ensure that the three regional maps could be directly comparable, we only used the estimates of above-

ground biomass carbon density (ABCD) for these maps. For the maps based on airborne lidar, we ran an

additional calibration step excluding standing dead trees and generated the maps with 50 m resolution to

preserve the definition of airborne lidar metrics selected during the calibration step. In addition, we repro-

jected all maps to the same grid mesh as B12, which is the coarsest grid that would allowmore than one grid

point for each study area. Data with finer resolution were aggregated using the R function rasterize, with

aggregation by averaging.

3. Results
3.1. Variability in Forest Carbon Stocks and Structure From Inventory Data

Abovegroundcarbondensity (ACD)basedon forest inventoryplots (n = 407, fromwhichn=359wereentirely

within airborne lidar survey domains) ranged from0.30 to 39.4 kg Cm−2. ACD estimated from forest inventory

was typically higher for intact forests and those that were logged using reduced-impact techniques (median

values of 17.9 and 17.4 kg C m−2, respectively), whereas plots affected by more intensive or recurrent distur-

bances such as conventional logging and fires had lower ACD, with median values of 4.8 kg C m−2 for areas

affected bymultiple fires. Inventory plots formoderate degradation classes—conventional logging (CVL) and

burned once (BNO)—showed similar median ACD values (7.9–8.6 kg C m−2; Figure 2a), yet similar carbon

stock estimates for CVL and BNO arose from different distributions in basal area andwood density (Figures 2b

and 2c). The median values of plot-level basal area showed a similar pattern compared to ACD, with higher

values observed at plots that were either intact or were disturbed by reduced-impact logging and lowest

values at areas affected by multiple fires (Figure 2b). In contrast, the median value for plot-level mean wood

density remained similar along the range of forest degradation (0.62–0.73 g cm−3; Figure 2b). The variability

of plot-level wood density tended to increase for sites affected by fires: for example, the interquartile range

was near 0.06 g cm−3 for intact forest plots and 0.17 g cm−3 for plots that burned multiple times (Figure 2c).

Degradation type was more important than time since last disturbance for ACD variability in plot data. While

both ACD and basal area at disturbed plots were generally lower than at intact forest plots, they did not show

a clear tendency following age since last disturbance (Figures 2d and 2e), and this reflects that disturbances

of different intensities and recurrences, such as reduced-impact logging and multiple fires, often had simi-

lar disturbance age (Figure S6). Plot-level wood density tended to decrease with age since last disturbance,

with median values going from 0.75 g cm−3, for plots disturbed less than 2 years, to 0.62 g cm−3, for plots

disturbed between 10 and 30 years prior to measurements (Figure 2f ), although plots more recently dis-

turbed showed great variability, with interquartile range peaking at 0.13 g cm−3 for plots disturbed between

2 and 5 years (Figure 2f ). Variability of plot properties was evident evenwithin the same study area, regardless

of disturbance history (Figure S6).

Small trees significantly contributed to the total carbon stocks. The median contribution of trees with

DBH < 35 cm to total plot ACD ranged between 29 and 61% depending on disturbance history and age since

last disturbance, with great variability among plots (Figure S7). The largest variability was observed for plots
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Figure 2. Distribution of plot-level forest characteristics as a function of (a–c) anthropogenic disturbance history and (d–f ) age since last disturbance, based on

the Landsat chronosequence. Variables shown: aboveground carbon density (ACD) (Figures 2a and 2d), basal area (Figures 2b and 2e), and mean wood density

(Figures 2c and 2f ), weighted by basal area. The width of the violins is proportional to the kernel density function, black rectangles indicate the interquartile

range, and the orange point corresponds to the median. INT—intact; RIL—reduced-impact logging; CVL—conventional logging; BNO—burned once;

LBN—logged and burned once; and BNM—burned multiple times. Plots for which disturbance history could not be characterized from Landsat time series and

forests with secondary growth were excluded.

affected by recent fires, where the contribution from smaller trees varied from 4 to 100%, suggesting that

burned forest shows a broad range of forest structures (Figure S7).

3.2. Calibration of Airborne-Lidar Carbon Density

The best aboveground carbon density model based on airborne-lidar metrics survey (ACDALS) was

ACDALS = 0.20(0.08) h̄2.02(0.14) �
0.66(0.13)

h
h
0.11(0.04)

5
h
−0.32(0.06)

10
h
0.50(0.15)

IQ
h
−0.82(0.13)

100

+ E

[

� = 0, � = 0.66(0.12)ACD
0.71(0.08)

ALS

]

,
(5)

where h̄ is themean return height, �h is the kurtosis of the distribution of all return heights within plot bound-

aries, h5 and h10 are the 5th and 10th percentiles of all return heights, hIQ is the interquartile range, and

h100 is the maximum height; E is the predicted heteroskedastic distribution of residuals. Numbers in paren-

theses are the standard errors for each coefficient, obtained from 1000 bootstrap realizations. The variables

selected by the subset selection of regressionmethod describe the point cloud distribution at different strata

(h5, h10, h̄, h100) and also the general shape of the distribution (hIQ, �h), indicating that the structure of the

forest beneath the canopy is also relevant for quantifying variability in ACD.

The airborne lidar-ACD relationship was consistent across intact and degraded forest types (Figure 3).

Estimates of ACD from airborne lidar and from forest inventory data were strongly correlated (R2
adj

= 0.700)

and with root-mean-square error of 4.17 kg Cm−2, comparable to previous studies using field plots of 0.25 ha

[e.g., Asner andMascaro, 2014;Mauya et al., 2015; Réjou-Méchain et al., 2015].

Modeled ACD based on lidar data began to saturate above 25 kg C m−2 and also tended to slightly overesti-

mate ACD for lower values of ACDFI (Figure S8). On the high end, two phenomena contributed to differences

between inventory and lidar-based estimates of ACD. The forest plots that had the highest ACDFI estimates
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Figure 3. Scatterplots of estimated aboveground carbon density based on airborne lidar metrics using the subset

selection of regression (ACDALS) as a function of forest inventory ACD (ACDFI). Color and shapes correspond to (a)

different study sites and (b) different disturbance histories. In both cases the point with the gray shade corresponds to

the plot with the largest ACD according to the inventory and the largest absolute residual. The total number of plots, the

root-mean-square error (kg C m−2), and the adjusted coefficient of determination are shown in the top left of Figure 3a.

were typically the ones with subsampling and with many trees with DBH just under 35 cm or plots with at

least one very large tree (DBH>125 cm). For example, the shaded point in Figure 3 is the plot with the high-

est residual for all methods and also the highest estimated ACDFI (39.4 kg Cm−2). A significant fraction of the

total (21.9 kg C m−2) came from a single individual of species Dinizia excelsa Ducke, an emergent tree, with

DBH =200.0 cm,Ht = 63.8m, and �w = 0.905 g cm−3. In contrast, the overestimation of ACDALS for plots with

low ACDFI was mostly associated with plots with lowmean wood density (not shown).

Figure 4. (a) Kernel density estimate of aboveground carbon density (ACD) for all 50 × 50m pixels from all study areas, separated by disturbance history,

excluding those pixels with last disturbance occurring more than 10 years prior to airborne lidar acquisition. Intact forests are areas within the study sites or at

nearby sites with no signs of disturbance based on Landsat-derived NDVI and NBR chronosequences between 1984 and 2013. Uncertainty of ACD estimates was

incorporated to the curves (see Text S3). (b) Average aboveground carbon density (ACD) of areas that were logged or burned, relative to average ACD of

reference (intact) forests. Point shapes correspond to disturbance history, and colors represent the age since last disturbance. Ellipses are the 95% confidence

interval of the median value, based on 10,000 replications adding random noise proportional to each pixel uncertainty.
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Table 2. Summary of Estimates of Aboveground Carbon Density (ACD, kg C m−2) Based on Airborne Lidar as a Function of Disturbance Historya

Site History Area ACD25 ACD50 ACD ACD75 ΔACD50 ΔACD

CAU INT 594.75 15.34 ± 0.16 19.81 ± 0.21 20.45 ± 0.16 24.97 ± 0.19 — —

RIL (2006) 100.00 11.33 ± 0.34 15.33 ± 0.43 16.21 ± 0.33 20.35 ± 0.44 −4.48 ± 0.47 −4.24 ± 0.36

RIL (2007) 160.75 12.57 ± 0.28 16.63 ± 0.35 17.30 ± 0.27 21.42 ± 0.34 −3.18 ± 0.41 −3.16 ± 0.32

RIL (2008) 192.25 12.51 ± 0.25 16.64 ± 0.33 17.44 ± 0.25 21.67 ± 0.32 −3.17 ± 0.39 −3.01 ± 0.30

RIL (2010) 155.25 13.39 ± 0.29 17.54 ± 0.37 18.30 ± 0.29 22.45 ± 0.36 −2.27 ± 0.43 −2.15 ± 0.33

AND INT 23.00 11.81 ± 0.68 15.49 ± 0.87 15.97 ± 0.66 19.73 ± 0.80 — —

BRN (2009) 72.75 2.73 ± 0.16 5.71 ± 0.26 6.76 ± 0.19 8.64 ± 0.31 −9.78 ± 0.91 −9.20 ± 0.69

CVL (1999) and BRN (2009) 213.50 5.40 ± 0.14 7.99 ± 0.18 8.83 ± 0.14 11.48 ± 0.20 −7.50 ± 0.89 −7.14 ± 0.68

CVL (2003) and BRN (2009) 130.50 4.35 ± 0.15 6.46 ± 0.19 7.11 ± 0.15 9.22 ± 0.21 −9.03 ± 0.89 −8.85 ± 0.68

PAR INT 3.50 8.71 ± 1.35 11.41 ± 1.33 11.46 ± 1.04 14.13 ± 1.45 — —

CVL (1993) and CVL (2006) 99.25 6.40 ± 0.22 8.84 ± 0.22 9.12 ± 0.16 11.55 ± 0.26 −2.57 ± 1.35 −2.34 ± 1.05

BRN (2005) and BRN (2008) 48.50 4.15 ± 0.25 6.28 ± 0.26 6.70 ± 0.19 8.79 ± 0.33 −5.13 ± 1.35 −4.76 ± 1.06

CVL (1993) and BRN (1992, 2005, 2008) 52.50 2.23 ± 0.15 3.49 ± 0.15 3.77 ± 0.12 4.98 ± 0.20 −7.91 ± 1.34 −7.70 ± 1.05

CVL (1993, 2006) and BRN (1992, 2008) 176.50 4.07 ± 0.12 5.98 ± 0.13 6.36 ± 0.10 8.23 ± 0.16 −5.43 ± 1.34 −5.11 ± 1.05

SX1 INT 15.25 7.83 ± 0.63 10.60 ± 0.62 10.90 ± 0.47 13.63 ± 0.74 — —

BRN (2007) 16.00 1.61 ± 0.22 2.90 ± 0.28 3.57 ± 0.21 4.84 ± 0.42 −7.70 ± 0.68 −7.33 ± 0.52

BRN (2011) 44.75 3.46 ± 0.22 5.51 ± 0.26 6.63 ± 0.20 8.46 ± 0.39 −5.08 ± 0.67 −4.27 ± 0.51

SX2 INT 40.00 5.36 ± 0.31 7.58 ± 0.31 7.98 ± 0.23 10.15 ± 0.38 — —

BRN (2008) 174.25 3.58 ± 0.12 5.66 ± 0.13 6.12 ± 0.09 8.13 ± 0.17 −1.93 ± 0.33 −1.86 ± 0.25

BRN (2010) 56.00 3.40 ± 0.20 5.40 ± 0.22 5.86 ± 0.16 7.80 ± 0.29 −2.18 ± 0.38 −2.12 ± 0.29

BRN (2008, 2010) 146.75 2.82 ± 0.11 4.61 ± 0.12 5.16 ± 0.09 6.91 ± 0.17 −2.98 ± 0.33 −2.83 ± 0.25

BRN (1990, 2008, 2010) 33.00 2.90 ± 0.23 4.55 ± 0.25 4.99 ± 0.19 6.64 ± 0.34 −3.03 ± 0.39 −2.99 ± 0.30

FNA INT 18.25 12.04 ± 0.79 15.90 ± 0.78 16.32 ± 0.58 20.18 ± 0.93 — —

BRN (2005, 2007, 2010, 2012) 36.25 0.53 ± 0.07 1.04 ± 0.08 1.16 ± 0.06 1.62 ± 0.10 −14.86 ± 0.79 −15.1 ± 0.58

CVL (1992) and BRN (2005, 2007, 2010, 2012) 49.00 0.57 ± 0.07 1.08 ± 0.07 1.27 ± 0.06 1.72 ± 0.09 −14.82 ± 0.79 −15.0 ± 0.58

CVL (1997) and BRN (2005, 2007, 2010, 2012) 206.50 0.45 ± 0.03 0.93 ± 0.03 1.06 ± 0.02 1.50 ± 0.04 −14.97 ± 0.78 −15.2 ± 0.58

CVL (1999) and BRN (2005, 2007, 2010, 2012) 304.00 0.53 ± 0.03 1.04 ± 0.03 1.17 ± 0.02 1.64 ± 0.03 −14.86 ± 0.78 −15.1 ± 0.58

TAN INT 698.75 5.31 ± 0.07 7.41 ± 0.07 7.64 ± 0.05 9.72 ± 0.08 — —

CTL 50.00 5.32 ± 0.27 7.41 ± 0.27 7.60 ± 0.21 9.67 ± 0.31 — —

BRN (2007) 50.00 4.20 ± 0.23 5.95 ± 0.23 6.14 ± 0.17 7.88 ± 0.26 −1.46 ± 0.35b −1.46 ± 0.27b

BRN (2004, 2007, 2010) 50.00 3.63 ± 0.32 7.54 ± 0.37 8.16 ± 0.24 11.70 ± 0.49 +0.13 ± 0.46b +0.56 ± 0.32b

BRN (2004–2007, 2009–2010) 50.00 5.34 ± 0.35 9.21 ± 0.42 10.28 ± 0.29 14.32 ± 0.60 +1.79 ± 0.50b +2.69 ± 0.36b

JAM INT 1001.50 12.18 ± 0.11 16.09 ± 0.11 16.59 ± 0.08 20.43 ± 0.13 — —

RIL (2010) 100.00 11.22 ± 0.32 14.95 ± 0.32 15.37 ± 0.24 19.02 ± 0.38 −1.14 ± 0.34 −1.23 ± 0.25

RIL (2012) 13.25 11.28 ± 0.86 14.70 ± 0.85 15.13 ± 0.65 18.58 ± 1.02 −1.38 ± 0.86 −1.47 ± 0.65

RIL (2013) 411.50 11.56 ± 0.16 15.41 ± 0.16 16.05 ± 0.12 19.83 ± 0.20 −0.67 ± 0.19 −0.54 ± 0.15

BON INT 18.50 9.15 ± 0.62 12.10 ± 0.76 12.57 ± 0.61 15.47 ± 0.72 — —

CVL (2006) 247.25 7.77 ± 0.16 10.65 ± 0.20 11.21 ± 0.15 14.11 ± 0.20 −1.45 ± 0.79 −1.36 ± 0.63

BRN (2010) 23.00 3.87 ± 0.34 6.39 ± 0.46 7.03 ± 0.35 9.04 ± 0.51 −5.71 ± 0.89 −5.54 ± 0.70

CVL (2002) and BRN (2010) 51.75 4.93 ± 0.26 7.20 ± 0.32 7.97 ± 0.26 10.23 ± 0.37 −4.90 ± 0.83 −4.60 ± 0.66

CVL (2006) and BRN (2010) 52.00 4.00 ± 0.23 6.17 ± 0.29 7.02 ± 0.23 9.10 ± 0.36 −5.92 ± 0.81 −5.55 ± 0.65

HUM INT 62.25 8.92 ± 0.35 12.25 ± 0.36 12.90 ± 0.27 16.16 ± 0.46 — —

BRN (2005) 78.50 6.53 ± 0.27 9.53 ± 0.28 10.15 ± 0.20 13.11 ± 0.36 −2.72 ± 0.45 −2.75 ± 0.34
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Table 2. (continued)

Site History Area ACD25 ACD50 ACD ACD75 ΔACD50 ΔACD

TAL INT 46.75 8.73 ± 0.39 11.86 ± 0.39 12.41 ± 0.30 15.48 ± 0.49 — —

BRN (2010) 201.75 6.56 ± 0.17 9.54 ± 0.17 10.12 ± 0.12 13.02 ± 0.22 −2.32 ± 0.43 −2.30 ± 0.32

BRN (2005, 2010) 22.25 3.22 ± 0.29 4.96 ± 0.32 5.60 ± 0.25 7.38 ± 0.46 −6.90 ± 0.51 −6.81 ± 0.39

FST INT 207.25 14.00 ± 0.26 18.45 ± 0.26 19.01 ± 0.19 23.41 ± 0.32 — —

RIL (2013) 796.00 13.62 ± 0.13 17.77 ± 0.13 18.29 ± 0.10 22.35 ± 0.15 −0.69 ± 0.29 −0.73 ± 0.21

EBT INTc 1048.75 13.46 ± 0.12 18.55 ± 0.13 19.31 ± 0.09 24.30 ± 0.15 — —

BRN (1997, 2004) 34.25 11.04 ± 0.53 14.39 ± 0.51 14.65 ± 0.39 17.97 ± 0.59 −4.15 ± 0.53 −4.66 ± 0.40

BRN (1992, 1997, 2009) 63.75 8.35 ± 0.34 11.60 ± 0.34 12.00 ± 0.25 15.21 ± 0.42 −6.95 ± 0.36 −7.31 ± 0.27

CVL (2012) 51.75 7.63 ± 0.35 10.83 ± 0.37 11.65 ± 0.27 14.79 ± 0.49 −7.71 ± 0.39 −7.65 ± 0.29

aHistory classes: INT—intact; CTL—control (fire experiment); BRN—burned; CVL—conventional logging; and RIL—reduced-impact logging. Area—total area

in ha; ACD25—lower quartile, ACD50—median, ACD—mean, and ACD75—upper quartile; ΔACD50 and ΔACD—the absolute difference in median and mean

valuebetweendegradedand intact. Standarderrorwasobtained from10,000 replications, inwhichweapplied randomnoiseproportional toeachpixel uncertainty

and aggregated values for each area.We showup to four largest disturbance classes for each study area (excluding secondary forests) and restricted to areaswhere

the last disturbance occurred within 10 years prior to the airborne lidar acquisition.
bRelative to control.
cIntact area is at the TNF site, 18–48 km northwest of the EBT areas.

The residual dependence on ACD was not associated with geographic location, data acquisition characteris-

tics, terrain complexity, or forest structure. First, the residuals of ACDALS did not show significant differences

between intact, degraded, and secondary forests (Figures 3b and S9), and, except for a smaller spread for the

most degraded sites, residuals did not show any pattern that could be linked to individual site characteristics

(Figure S10a). Residuals were also not correlated tomean top canopy height, also indicating that themethod

is not consistently biased for intact forests or very degraded areas (Figure S10b). Likewise, the residuals do not

show any dependence on return density (Figure S10c) or local terrain roughness (Figure S10d), and in both

cases the largest spread of residuals was found near the median values instead of the extremes.

3.3. Impact of Forest Degradation on Carbon Stocks

Carbon stocks in intact forests showed large variability within and across study sites. The main peak of the

aggregated distribution was near 15.6 kg C m−2, based on the concentration of intact forests in central

Amazon sites (DUC, TNF, FST, CAU, and JAM). The distribution of ACD for intact forests is nearly flat topped:

density estimates were similar to peak for ACD values as low as 7.0 kg C m−2, because of the ACD contribu-

tion of intact but transitional forests at TAN and SX2 (Figure 4a and Table 2). The range of carbon density of

intact forests was broad, and 95% of the intact forests had values between 4.9 and 29.8 kg C m−2. The local

interquartile range of ACD for intact forests for all study areas was typically of the order of 45–60% of the

median value for each study area, indicating important natural variability of carbon stocks both within and

across sites (Table 2).

Carbon stocks in logged forests were generally lower than in intact forests, and the magnitude of differences

dependedon forestmanagement and time since logging. Areas thatwere loggedusing reduced-impact tech-

niques had a peak in the distribution similar to the one for intact forests, being 0.2 kg C m−2 (1.5%) higher

than the main peak for intact forests (Figure 4a), because reduced-impact logging occurred at study areas

with high reference ACD (CAU, FST, and JAM, Table 2), Nonetheless, the median ACDwas small but still signif-

icantly lower by 0.7±0.3 to 4.4±0.4 kg Cm−2 (4–22%) relative to nearby intact areas (Figure 4b and Table 2).

The peak associated with conventional logging without fires was about 9.0 kg C m−2 (42.3%) lower than in

intact forests (Figure 4a), and themedian depletion at the site level varied from 1.5±0.8 to 7.7±0.4 kg Cm−2

(12–42%), with highest depletion at the most recently logged site (EBT, Figure 4b and Table 2).

Burned forests had significantly lower carbon stocks. The peak of the distribution of areas that burned once

was between 9.3 and 10.0 kg C m−2 (60–65%) lower than the main peak for intact forests (Figure 4a). Areas

subject tomultiple fires had the lowest carbon stocks, and thepeakof thedistributionoccurred at 0.9 kgCm−2

or 94% less than themain peak for intact forests. While the depletion of carbon stocks associatedwith burned

forests was typically large, the difference between burned areas and nearby reference areas was extremely

variable, even in the case of multiple fires. For example, the areas subject to three experimental fires in TAN
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Figure 5. Aboveground carbon density predicted by airborne lidar (ACDALS, 50 × 50m grid) for the three study areas in the Paragominas municipality.

Wall-to-wall maps for (a) Fazenda Cauaxi (CAU), (b) Fazenda Andiroba (AND), and (c) Fazenda Nova Neonita (PAR); lines show the location of forest inventory

transects (Figures 5a and 5c) and plots (Figure 5b). Violin plots of ACD separated by disturbance history at (d) CAU, (e) AND, and (f ) PAR. The width of the violins

is proportional to the kernel density function, black rectangle corresponds to the interquartile range, the orange point corresponds to the median estimated by

airborne lidar, the blue box corresponds to themedian ACDFI, and lines correspond to the interquartile range for individual plots. INT—intact; RIL—reduced-impact

logging (and year); CVL—conventional logging (and year); and BRN—burned (and year).

showed no significant difference in median and mean ACD (Table 2), whereas the area that was burned six

times showed higher median ACD (1.8 ± 0.5 kg C m−2) than the control (intact) area, although these results

may indicate a limitation of ourmethod to detect low-intensity disturbances. TAN experimental fireswere low

intensity and caused highermortality among smaller trees [Brandoet al., 2014], which likely left the forestwith

high canopy cover and thinner understory in a way not captured by any of the calibration plots. At the exper-

imental sites, the top canopy height (TCH) model was closer to expectation from published ground-based

estimates (Figure S11) [Brando et al., 2014]. On the other hand, the TCH model shows significant differences

between the control area and the remaining areas of intact forest, whereas the ALSmodel shows closer agree-

ment as expected. For other sites, the areas affected by four intense fires between 2005 and 2012 in FNA

showedmedianACDdepletionsof up to15.0±0.8 kgCm−2 (94%, Table 2), and the large sampledarea affected

by these fires contributed to the strong peak in distribution at low values (Figure 4a). The effects of forest fires

were persistent: the median ACD for areas that burned during the 1991/1992 and 1997/1998 droughts at TSJ

and EBT were 4.1 ± 0.5 to 7.7 ± 0.4 kg C m−2 (22–42%) lower than at nearby intact forests at TNF (age of last

disturbance of 16–18 years: Figure 4b).

In general, forest inventories were not designed to represent biomass variability at individual sites, and there-

fore, they characterize only part of the variability of carbon stocks across intact and degraded forests captured

by airborne lidar surveys. Figure 5 illustrates differences between plot and lidar estimates for three study areas

in Paragominas (CAU, AND, and PAR) with different forest degradation histories. At CAU, forest transects were
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Figure 6. Scatterplot of aboveground carbon density based on pantropical maps (ABCDPTM) of (a) Nogueira et al. [2015] (N15), (b) S. S. Saatchi et al. [2011] (S11),

and (c) Baccini et al. [2012] (B12) against the ABCD estimated by the airborne lidar metrics (ABCDALS). The solid line is the 1:1 line, and the dashed line represents

the slope of the y = a x curve fitted with ordinary least squares, summarized at the bottom right of each panel. Scatterplot of the mean top-of-canopy height

and the difference in ABCD between pantropical maps and the airborne lidar model (ABCDPTM − ABCDALS): (d) Nogueira et al. [2015] (N15), (e) S. S. Saatchi et al.

[2011] (S11), and (f ) Baccini et al. [2012] (B12). The heat maps in the background of Figures 6d–6f indicate the relative frequency generated by 10,000 realizations

in which random noise was added to each pixel, proportional to uncertainties in ABCDPTM and ABCDALS.

distributed across most of the study area (Figure 5a) and forest inventories characterized the median value

of all disturbance classes within the interquartile range of estimated ACD based on airborne lidar (Figure 5d).

At AND, plots sampled forest that were logged in 1999 and burned in 2009 and characterized the variability

in this disturbance class (Figure 5e), but they could not represent the median or variability of intact forests

and areas that were logged and burned, even though both classes had significant extent in the study area.

Similarly, the transects at PAR were concentrated in the eastern portion of the airborne lidar survey, forests

that were logged in 2003 and either never burned or burned three times (1992, 2005, and 2008). Regions that

were only logged in 2003 occur in the southeastern part of the study site, and only three transect segments

overlappedwith the region of higher predictedACD (Figures 5c and 5f). The northeastern portion of the study

site was logged twice (1987 and 2003), and 12 transect segments were within this region, resulting in closer

distribution between airborne lidar and field inventory plot distribution of ACD (Figures 5c and 5f). Only three

transect segments were within the area logged in 2003 and burned three times, and the airborne lidar only

characterized the lowest values (Figures 5c and 5f), whereas the region deforested in 1990 followed by sec-

ondary growth along the central region did not have any transects, which were concentrated at the higher

ACD region near the edge of the deforested area (not shown).

3.4. Comparison With Pan-Amazonian Maps of Biomass

The comparison between airborne lidar estimates of abovegroundbiomass carbondensity (ABCDALS; see Text

S4 for model) and the pan-Amazonian maps of biomass showed generally low agreement and large discrep-

ancies in range. The Nogueira et al. [2015] estimate (N15) had a narrow range of ACD compared to ABCDALS,

resulting in a low slope and low coefficient of determination for the linear fit between the N15 and ALSmaps

(Figure 6a). Although the map by S. S. Saatchi et al. [2011] (S11) has a broader range of values compared to

N15 and the slope is closer to one, the correlation between the S11 and the airborne lidar estimates was also
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Figure 7. Density function of aboveground biomass carbon density (ABCD) for all study sites combined as a function of disturbance history. The following ABCD

estimates are included: airborne lidar estimate (ALS) at native resolution (50 m), and aggregated at 200 m and 500 m, from S. S. Saatchi et al. [2011], Baccini et al.

[2012], and Nogueira et al. [2015] maps. The disturbance history categories were derived from the Landsat chronosequence and from the logging company

reports when available: (a) Intact, (b) reduced-impact logging, (c) conventional logging, (d) one fire occurrence, (e) logging and one fire event, and (f ) multiple

fires. For each class, we only estimated density functions for maps with at least 20 pixels. Uncertainty in pixel estimates of ACD were propagated to density

curves following method described in Text S3.

low (R2 = 0.08, Figure 6b). The best agreement between airborne lidar and pan-Amazonian maps was found

for the Baccini et al. [2012] (B12)map, where the slope between themaps is close to one, and the coefficient of

determinationwas above 0.5 (Figure 6c). The higher R2 in the B12 case results fromB12 showing greater ABCD

variability among sites, although the local variability of ABCD is generally small compared to the airborne

lidar method (Figure 6c). In addition, all maps rarely showed low biomass values at the study sites relative to

the airborne lidar estimate: using ABCD = 5 kg C m−2 as reference for low biomass, we found that 19.6% of

the pixels were below the reference according to the airborne lidar, whereas only 1.3% and 3.9% of the pix-

els were considered low biomass according to B12 and S11, respectively. None of the N15 pixels were below

this category, and the pixel with the lowest biomass among the study areas according to N15 had a potential

ABCD of 11.5 kg C m−2.

Carbon stocks for intact forests from regional maps tended to be lower than carbon stocks from the air-

borne lidar model. At regions with mean top canopy height higher than 25 m, estimates of ABCD from

all regional maps are lower than the airborne lidar estimate, in particular for the S11 map (Figures 6d–6f );

similarly, the aggregated distribution of ABCD for regions classified as intact for the S11 map has a peak that

is 6.0–7.7 kg Cm−2 lower than themain peak for airborne lidar estimates (Figure 7a). In contrast, the shape of

the distribution for B12 at intact forest was closer to the distribution predicted by airborne lidar, particularly

when the airborne lidar estimates are aggregated to 500 m (Figure 7a).

Carbon stocks from all three regional maps were higher than airborne lidar estimates for degraded forests, in

particular for burned areas. In areas with low mean top canopy height (zTCH), typical of degraded forests, val-

ues of ABCD from regional maps were 7–15 kg C m−2 higher than airborne lidar estimates (Figures 6d–6f ),

with the largest differences occurring for comparison between airborne lidar and N15 for the lowest zTCH
(Figure 6d). The differences between regional maps and airborne lidar were also dependent upon the
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disturbance level. For areas with light disturbance such as reduced-impact logging, the distribution peak

of airborne lidar is similar to N15, and the distribution of airborne lidar estimates compared well with B12,

especially when lidar was aggregated to 500 m (Figure 7b). Burned forests showed far higher ABCD from the

regional maps than from the airborne lidarmodel, with the B12 distribution shifted 3.9 kg Cm−2 (85%) higher

than the airborne lidar distribution and the N15 map 9.8 kg C m−2 (208%) higher than the airborne lidar esti-

mates (Figure 7d). Differences in carbon density between regional maps and airborne lidar model were even

more extreme for regions that burned multiple times, where the distribution peaks of the B12 and N15maps

were 8.5 kg C m−2 and 13.7 kg C m−2 higher than the predicted peaks estimated by airborne lidar. A similar

analysis of the density functions was also conducted using the MODIS Vegetation Continuous Fields prod-

uct (MOD44B) [Hansen et al., 2005; Townshend et al., 2001] to classify the forests by degradation level using an

independent data set, and results also show greater agreement between lidar and N15, S11, and B12 at areas

with high fractional tree cover and decrease in estimated ABCD estimates by lidar at regions with lower tree

cover, while the regional maps show less variation between the different classes of tree and vegetation cover

fraction (Figure S12).

4. Discussion

In this study we used the most extensive data set of integrated forest inventory plots and airborne lidar sur-

veys assembled for the Brazilian Amazon to characterize biomass variability in intact and degraded forests.

Degraded forests were well characterized by the combination of inventory plots and airborne lidar data, but

the large range of degradation impacts was not fully captured by inventory plots (sample area of 0.25 ha) or

regional biomass maps (pixel area of 25–100 ha) Differences between degraded and intact forest ACD were

the greatest for burned forests, yet degraded forests showed persistent differences over the range of time

since last disturbance—up to 23 years at our study sites. Plot size also influenced our model results. Smaller

plots (0.25 ha in this study) may increase the variability in plot ACD, based on the influence of large trees

and plot edge effects [Mascaro et al., 2011b; Mauya et al., 2015]. Biomass variability found in this study has

important implications for Amazon forest carbon monitoring and emissions estimates for REDD+. Our study

providedACDestimates for 7000haof degraded forests. Patterns that emerge fromourwork suggest that fires

havegreater impact onACD losses than logging,ACD losses arepersistent, andACD indynamic forest frontiers

shows important differenceswithfirst-generationbiomassmaps inboth intact (airborne lidar is 3–34%higher

than the pan-Amazonianmaps) and degraded (airborne lidar is 2–67% lower than the pan-Amazonianmaps)

forests (Table S4), with important impacts on REDD+ accounting and estimates of forest carbon emissions in

the global carbon budget.

4.1. Simple, Parametric Methods Are Robust to Estimate Carbon Stocks

Forest inventory plots used as reference for the model calibration covered a broad range of landscapes and

provided critical information on the variability of forest properties across intact and degraded forests. In

particular, the data set showed that the lower carbon stocks at the most degraded forests arose from a com-

bination of lower basal area and higher frequency of plots dominated by low wood density trees (Figure 2).

These results highlight that lower carbon stocks in degraded forests emerged from changes in structure and

composition. Larger trees have a significant role on the variability in carbon stocks [Slik et al., 2013], as a single

large tree could contribute tomore than half of the total estimated carbon stocks (Figure 3). However, we also

found that small trees significantly contributed to the total carbon stocks. The typical contribution of trees

with DBH < 35 cm to total ACD was between 17 and 46%. For many sites included in this study, small trees

weremeasured in subplots of 10–20% of the total area; we could have reduced uncertainty by increasing the

subsample area or measuring trees with DBH above 10 cm for the entire plot, although this would increase or

field survey costs substantially as the costs scaledmore closely with the number of trees surveyed as opposed

to the area surveyed. Also, the size of field plots used in the calibration step (0.25 ha) were relatively small

for calibrating airborne lidar in tropical forests. Smaller plots yield to large variability in field plot estimates

of ACD due to the presence or absence of large trees in the plot and also to representativeness issues due to

a large fraction of the plot containing canopy trees that are partially inside or partially outside the domain

[Mascaro et al., 2011b]. Future studies at a regional scale might benefit from the use of larger plots (1 ha) for

model calibration [Mauya et al., 2015; Réjou-Méchain et al., 2015;Molina et al., 2016], yet even larger plots may

not capture patterns of biomass variability in degraded forests (see Figure 5).

A simple parametric model captured a significant fraction of carbon density variability across intact and

degraded forests in the Brazilian Amazon. The selectedmodel combined airborne lidarmetrics that described
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the vertical structure of the forest, with specific sensitivity to canopy openness and canopy roughness cap-

tured by lower height profiles and higher moments of the lidar return distribution. The airborne-lidar-based

estimates were also shown to be robust to variations of return density, terrain complexity, and mean canopy

height (Figure S10), which supports the applicability of general equations at a regional level, provided that the

return density is sufficient to describe the vertical structure and ground surface variability [Leitold et al., 2015].

The results were also consistent amongdifferent degradation levels, suggesting that a generalized calibration

may be suitable for large areas such as the Brazilian Amazon. We note that airborne lidar data acquisitions

were consistent across regions (Table 1), with much higher return densities than many previous studies in

tropical forests [e.g., Asner et al., 2012; Asner andMascaro, 2014; Boyd et al., 2013]. Consistent data acquisition,

with low variability of flight height and high pulse density, is fundamental tomake lidar-derivedmetricsmore

robust and comparable across data sets [see also Næsset, 2004a, 2004b].

Calibration plots covered a broad geographic range and diversity of degradation histories, contributing to

the success of the general airborne-based lidar model (Figure 2). At local scales, however, plots provided an

incomplete characterization of carbon stock variability surveyed by the airborne lidar (Figure 5). The airborne

lidar survey itself provideddetailed information on the variability of forest structure across the landscape. One

promising strategy to further improve lidar-based biomass estimates is to acquire the airborne lidar data first

thenuse thedata todistribute forest inventoryplots across the coveragearea to sample abroad rangeof forest

structures with ground-based measurements, thus reducing the risks of excessive extrapolation [Hawbaker

et al., 2009; Maltamo et al., 2011;White et al., 2013]. Another promising approach is the use of segmentation

techniques to delineate individual trees directly from the point cloud and estimate biomass based on each

treedimensions [Ferrazetal., 2016], possibly accounting for the largevariability of biomass explainedby crown

dimensions [Goodman et al., 2014].

Despite the broad sample of forests in this study, our calibration database and general lidar model under-

represent three important forest types. First, study regions in this analysis included few areas with large-scale

conventional logging, which is still the most common type of logging in the Amazon [Sist and Ferreira, 2007],

and thus, our estimates of changes in forest structure, composition, and carbon stocks from logging are likely a

lower bound. Second, our study did not include sites in thewestern and northwestern regions of the Brazilian

Amazon. Although these areas are farther away from the arc of deforestation [e.g., Coe et al., 2013], thus less

subject to anthropogenic disturbance, these areas also show large uncertainties in biomass and high dis-

agreement in biomass estimates by different regional maps [Ometto et al., 2014]. Third, inventory plots and

lidar data in our study targeted terrafirmeAmazon forests; however, at least one sixth of the total Amazon low-

land area are wetlands and half of the wetland regions are found in Brazil [Hess et al., 2015]. Efforts to survey

carbon stock variability in seasonally flooded forests remain a priority.

4.2. Carbon Debt Associated With Degraded Forests

Degraded and intact forests showed large and persistent differences in carbon density. Even forests affected

by low-intensity anthropogenic disturbances such as reduced-impact logging could store significantly less

carbon than intact forests. For instance, areas that were logged using reduced-impact techniques stored

between 2 and 20% less carbon than intact areas (Figures 5 and 4 and Table 2), and in the case of CAU, differ-

ences were still significant 6 years after logging (Figure 5). Without prelogging lidar data, we cannot attribute

the observed differences entirely to logging. However, these differences were consistent across all logged

areas both at CAU and at other logged sites (Table 2), indicating persistent reductions in ACD from logging

[see also Blanc et al., 2009;West et al., 2014; Rutishauser et al., 2015]. Forests subject to conventional logging

and especially fires showed more substantial reductions in carbon stocks, and in the most extreme cases of

multiple fires more than 90% of the original ACD was lost (Table 2), which further highlights the need to

account for the regional impact of forest degradation history on carbon cycle in the Amazon [Berenguer et al.,

2014; Aragão et al., 2014; Bustamante et al., 2016].

The persistence of lower aboveground carbon stocks in degraded forests may be linked to long-term effects

of disturbance on mortality and on changes in forest structure and composition that prevents short-term

recovery. First, fire and logging disturbances also damage trees [e.g., Veríssimo et al., 1992; Barlow et al.,

2003], and these are more likely to die in the first years following disturbance [Barlow et al., 2003; Sist et al.,

2014]. Also, dead trees contribute to long-term carbon losses due to decomposition [Keller et al., 2004c;

Rice et al., 2004; Palace et al., 2007; Pyle et al., 2008; Anderson et al., 2015] and thus further reducing car-

bon stocks. Second, changes in forest structure and composition following disturbance can alter delay forest
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recovery. For example, logging operations disturb and compact soils, which may delay germination [Karsten

et al., 2014] and recovery of carbon stocks. Also, both logging and fires increase canopy openings. While

canopy openings could accelerate recovery due to increased light penetration, it may also favor the estab-

lishment of dense patches of lianas that could halt seedling growth [Schnitzer et al., 2000; Gerwing and Uhl,

2002]. Third, changes in forest structure may alsomake forests more susceptible to subsequent disturbances.

Open canopies allow more light to penetrate through canopy, which favors canopy and ground desicca-

tion [Balch et al., 2008]. Drier conditions may increase fire probability and fire intensity, and consequently,

mortality rates, especially during years of extreme drought [Aragão et al., 2007; Brando et al., 2014]. Like-

wise, canopy openness may increase grass invasion, thence forest flammability [Silvério et al., 2013], and

increase tree exposure, making them more susceptible to windthrow disturbances [Silvério, 2015]. Together,

losses through mortality of damaged trees, changes in forest structure and composition, and changes in the

forest microenvironment may act to delay or prevent recovery of carbon stocks to predisturbed values at

degraded forests.

The magnitude and spatial patterns of carbon stock losses in degraded forests were highly variable, even for

forests with similar disturbance histories. Carbon depletion associated with logging ranged from near zero to

asmuch as 49%, and the changeswere associatedwith the intensity and type of logging (Table 2). In addition,

the depletion in carbon stocks associated with a single fire event is similar to a recent estimate of about 30%

for Amazon forests [Anderson et al., 2015], but our results showedmuch higher variability (15–53%).While the

range of carbon stock depletion due to single logging and single fire events was similar to a ground-based

study in the eastern Amazon (18–57%) [Berenguer et al., 2014], when multiple disturbances are included, we

found reductions in carbon stocks ofmore than 90%. One limitation of our study is that we only had one flight

per study area obtained after the disturbances had occurred. Therefore, we cannot unequivocally attribute

the differences in carbon stocks solely to the previous disturbances or assess recovery after disturbance for

older degradation events. However, the large variability in carbon stocks highlights the critical need for an

extensive and continuous monitoring of degraded forests to constrain net carbon emissions as a function

of logging and burning intensities, recurrence intervals, and interannual variability in the spatial extent of

degraded forests [Morton et al., 2013].

4.3. Forest Degradation in Regional Context

The comparison between ALS results and the regional and pantropical maps of aboveground biomass

revealed important discrepancies. First, all the three maps tested showed less local heterogeneity than the

estimates with lidar (Figure 6), even when lidar estimates were aggregated to 500 m resolution (Figure 7). In

the case of Nogueira et al. [2015] (N15), the low local variability was expected because themap relies on aver-

age values for each landscape, but the lower local variability compared to lidar can also be observed in the

S. S. Saatchi et al. [2011] (S11) and Baccini et al. [2012] (B12). The lower spatial variability of both B12 and S11

maps partially reflects that the data sets used to develop their wall-to-wall maps cannot accurately represent

their nominal spatial resolution [Guitet et al., 2015], highlighting the potential for airborne lidar data to pro-

vide much needed input for better calibration of regional and global maps of carbon stocks [see also Baccini

and Asner, 2013;Marvin et al., 2014].

Importantly, the three pan-Amazonian maps consistently showed higher carbon density than the airborne

lidar estimates where the top canopy height was low (Figures 6d–6f ) and in areas with active disturbance

history and low tree cover (Figures 7 and S12). This difference was more pronounced in the case of the N15

map because this map represents potential biomass, but the higher mean and mode for carbon stocks rela-

tive to the lidar estimates were also observed with both S11 and B12 maps, particularly in areas affected by

fires. One likely explanation for the discrepancy with S11 and B12 maps may be that the correlates used to

extrapolate the GLAS-calibrated estimates to the wall-to-wall maps were not sufficiently sensitive to forest

degradation. However, differences in the time of reference data are also likely to contribute to the observed

bias. The S11wall-to-wallmapwasdevelopedusingdata from2000 to 2001, andB12 referencedatawere from

2007 to 2008, whereas the airborne data used in this study were collected between 2012 and 2015. Many of

our study areas havebeen recently affectedbyfires, logging, and fragmentation since 2001 and2008 (Table 2),

and this consistent difference suggests that recent forest degradation may contribute significantly to car-

bon stock depletion and carbon emissions in the Amazon from degradation despite declining deforestation

rates since 2005. Conversely, for older disturbances that predate the regional maps, airborne lidar predic-

tions of ACD would be higher than regional maps (following forest recovery), which may explain some of the
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underestimation by the pantropical maps for older degraded forest classes. Our results indicate the need for

frequent updates on the baseline carbon stockmaps used in programs such as REDD+ in particular at regions

near active land use change.

Spatial variability in Amazon forest carbon stocks impacts REDD+ efforts in three ways. First, degradation

processes have distinct and persistent impacts on Amazon forest carbon stocks. Persistent losses may help

reporting, because substantial differences exist betweendegraded and intact forest types over reporting time

scales (1–5 years). However, the diversity of spatial patterns in degraded forest carbon stocks will lead to

large ranges and high uncertaintieswithout additionalmapping,monitoring, and analysis to link degradation

type and intensity to forest carbon stocks. For intact forests, spatial variability in forest carbon stocks was

not well captured by existing map products—resulting in conservative estimates in the context of REDD+,

but underestimates of forest carbon fluxes complicate efforts to characterize Amazon forest carbon dynamics

using top-downmethods [e.g., Gatti et al., 2014; van der Laan-Luijkx et al., 2015; Alden et al., 2016].

5. Conclusions

Assessing andmonitoring carbon stocks in degraded tropical forests is fundamental for successful implemen-

tation of REDD+ [Gibbs et al., 2007; Bustamante et al., 2016], and our results show that simple models that

integrate ground-based observations and airborne lidar have an excellent potential to characterize variabil-

ity in tropical forest carbon stocks. Our sampling characterized a variety of forest structure and composition

across intact forests and forests subject to different levels of degradation, which allowed us to model and

quantify the main differences in carbon stocks associated with intact, logged, and burned forests. Our results

also highlight the critical need for developing carbon stock models using remote sensing products that are

sensitive to a broad range of forest degradation intensities. The comparison of aboveground biomass carbon

estimated from lidar and from previously published pan-Amazonian maps showed important discrepancies

and also showed that lidar estimates were consistently lower at areas that have been recently degraded,

implying that carbon emissions from forest degradation are an important but highly uncertain component

of the Amazon carbon cycle. We provide the first large-scale estimates of carbon losses from forest degrada-

tion processes in the Brazilian Amazon. However, variability in carbon stocks within and between degraded

forests was based on single surveys at varying time since disturbance. Our results provide important context

for degradation losses but do not directly estimate emissions associated with logging and fire. Constraining

the uncertainties on degradation-driven carbon emissions in tropical forests is a research priority and will

require additional data and continuous monitoring of forest regions that are susceptible to a broad range of

logging and fire regimes, including different disturbance intensities and recurrence intervals.
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