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Aboveground overyielding in grassland mixtures is associated
with reduced biomass partitioning to belowground organs

Abstract

We investigated effects of plant species richness in experimental grassland plots on annual above- and
belowground biomass production estimated from repeated harvests and ingrowth cores, respectively.
Aboveground and total biomass production increased with increasing plant species richness while
belowground production remained constant. Root to shoot biomass production ratios (R/S) in mixtures
were lower than expected from monoculture performance of the species present in the mixtures,
showing that interactions among species led to reduced biomass partitioning to belowground organs.
This change in partitioning to belowground organs was not confined to mixtures with legumes, but also
measured in mixtures without legumes, and correlated with aboveground overyielding in mixtures. It is
suggested that species-rich communities invest less in belowground biomass than do monocultures to
extract soil resources, thus leading to increased investment into aboveground organs and overyielding.
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Abstract.   We investigated effects of plant species richness in experimental grassland plots on 22 

annual above- and belowground biomass production estimated from repeated harvests and in-23 

growth cores, respectively. Aboveground and total biomass production increased with increasing 24 

plant species richness while belowground production remained constant. Root to shoot biomass 25 

production ratios (R/S) in mixtures were lower than expected from monoculture performance of 26 

the species present in the mixtures, showing that interactions among species led to reduced 27 

biomass partitioning to belowground organs. This change in partitioning to belowground organs 28 

was not confined to mixtures with legumes, but also measured in mixtures without legumes, and 29 

correlated with aboveground overyielding in mixtures. It is suggested that species-rich 30 

communities invest less into belowground biomass than do monocultures to extract soil 31 

resources, thus leading to increased investment into aboveground organs and overyielding. 32 

 33 

Key words: Aboveground productivity, belowground productivity, biodiversity, grasslands, plant 34 

functional group richness, plant functional group identity, root/shoot ratio, Jena Experiment  35 
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INTRODUCTION 38 

Most biodiversity experiments in grassland ecosystems report increased aboveground biomass 39 

production with increasing plant species richness (e.g. Tilman et al. 2001, Niklaus et al. 2001, 40 

Spehn et al. 2005, Roscher et al. 2005, van Ruijven and Berendse 2005, Balvanera et al. 2006). 41 

This positive biodiversity effect on aboveground productivity has been related to so-called 42 

selection and complementarity effects which can be separated statistically by the additive 43 

partitioning method developed by Loreau and Hector (2001). Mechanistically, the selection 44 

effect is explained by a large contribution to mixture productivity of species with high 45 

productivity in monoculture, leading to a potential sampling effect if such species are more often 46 

included in more diverse mixtures (Huston 1997). The complementarity effect is explained by 47 

niche complementarity or facilitative interactions among species (Tilman 1997). However, 48 

despite clear statistical evidence for complementarity effects (Hooper et al. 2005, Spehn et al. 49 

2005, Cardinale et al. 2007), evidence for the implied mechanisms of niche complementarity or 50 

facilitation is still lacking. It has been proposed that niche complementarity or facilitation may 51 

occur because species differ in resource uptake in time, space or chemical form (Kahmen et al. 52 

2006, von Felten et al., revised version under review at Ecology [Nr. 08-0802R]) or because they 53 

may provide each other with resources (e.g. nitrogen in the case of legumes; Temperton et al. 54 

2007) or protection against biotic and abiotic stress factors (Spehn et al. 2005, Kahmen et al. 55 

2005). 56 

Previous studies focusing on detailed measurement of biomass production in temperate 57 

grasslands found that 24–87 % of net primary production can be allocated to belowground plant 58 

organs (Sims and Singh 1978, Stanton 1988). In addition to their contribution to net primary 59 

production, belowground organs are an important source for organic carbon input into the soil, 60 

http://esapubs.esapubs.org/cgi-bin/main.plex?form_type=view_ms&ms_id=16267&ms_rev_no=1&ms_id_key=L6SMeSJ5pU7qPFiG18mNfw&j_id=27
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and thus, for the regulation of heterotrophic soil organisms and soil carbon sequestration. 61 

Therefore, it is important to include measurements of belowground biomass production in plant 62 

biodiversity experiments to be able to assess the diversity-productivity relationship, and to 63 

improve understanding of the mechanisms by which plant biodiversity affects abiotic and biotic 64 

soil factors. 65 

Studies on the effect of plant biodiversity on belowground productivity have shown 66 

contrasting results. In some studies, belowground biomass increased with increasing species 67 

richness (Tilman et al. 2001, Reich et al. 2001, Craine et al. 2003, Dimitrakopoulos and Schmid 68 

2004) whereas in other studies plant species and functional group diversity did not have 69 

significant effects on belowground biomass under natural conditions (Hooper 1998, Wardle et al. 70 

1999, Spehn et al. 2000a, Niklaus et al. 2001, He et al. 2002, Gastine et al. 2003, but see Kahmen 71 

et al. 2005 for drought response). One possible reason for the contrasting results is the 72 

methodological difficulty to measure belowground productivity. In most of these studies, 73 

belowground productivity was estimated from measurements of the stock of living and dead 74 

belowground biomass in soil cores sampled once or several times per year. However, the stock 75 

of living and dead belowground biomass is dependent on belowground biomass production, as 76 

well as on longevity and turnover of belowground organs. Root longevity and turnover may 77 

substantially vary among species and grassland communities (Gill and Jackson 2000), and are 78 

also affected by abiotic and biotic soil factors (Eissenstatt et al. 2000). Therefore, data on the 79 

stock of root biomass give only a rough estimate of belowground biomass production. 80 

Another possible reason for the contrasting results and the differences in biodiversity effects 81 

on above- and belowground productivity is that biomass partitioning between roots and shoots 82 

may change with species richness. Biomass partitioning between roots and shoots has been 83 



5                  HOLGER BESSLER ET AL. 

 

shown to depend on a number of exogenous factors such as light intensity, soil moisture, mineral 84 

nutrient availability and on endogenous factors such as plant developmental stage and genotype 85 

(e.g., Wilson 1988, McConnaughay and Coleman 1999, Kahmen et al. 2005). Niche 86 

complementarity among species should lead to higher supply of individuals with soil resources 87 

in diverse plant communities, in which the probability that the neighbour occupies another niche 88 

is higher. The theory of functional equilibrium between shoot and roots predicts that better 89 

supply with soil resources would lead to lower biomass partitioning to belowground organs 90 

(Brouwer 1983, Bloom et al. 1985). In addition, the effect of presence and identity of neighbors 91 

on biomass partitioning of target plants is of particular relevance. In this case, biomass allocation 92 

to roots and shoots may be related to resource competition or other factors (Callaway et al. 2003, 93 

Ninkovic 2003). Evidence from biodiversity experiments themselves indicates that root/shoot 94 

biomass ratios in grassland communities can be affected by species evenness (Wilsey and Potvin 95 

2000), the identity of species and functional groups present in the communities (Hooper 1998, 96 

Wardle et al. 1999, Wardle and Peltzer 2003, Olson and Blicker 2003), or by community density 97 

and species richness (He et al. 2005). 98 

In this study the effect of species richness on the annual production of above- and 99 

belowground biomass in grassland was measured in a biodiversity experiment characterized by 100 

an orthogonal design for the presence and absence of four functional groups and large plot sizes 101 

(―Jena Experiment― in Germany, Roscher et al. 2004). We used the most detailed measurements 102 

of annual belowground biomass production so far to address the following hypothesis: 103 

belowground productivity is not influenced by species richness in spite of a positive relationship 104 

between species richness and aboveground productivity. This hypothesis is based on the 105 

assumption that in species-rich communities the availability of soil resources to plants is 106 
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increased due to niche complementarity, thus leading to lower biomass partitioning to 107 

belowground organs. 108 

 109 

MATERIALS AND METHODS 110 

Study site 111 

The field experiment was located on the floodplain of the river Saale in Jena (Thuringia, 112 

Germany, 51°N, 11°E, 135 m a.s.l.). Mean annual air temperature was 9.3 °C, and average 113 

annual precipitation was 587 mm. The soil of the experimental site was an Eutric Fluvisol 114 

(FAO–Unesco 1997) developed from up to 2-m thick loamy fluvial sediments that were almost 115 

free of stones. The experimental site was 100–400 m away from the river. Close to the river, the 116 

topsoil consisted of sandy loam, gradually changing into a silt loam with increasing distance 117 

from the river. The seasonal depth of water table varied during the experimental period from 0.7 118 

m to 2.6 m below surface in (Kreutziger 2006). The site was converted from grassland into 119 

arable land in the early 1960s and was used as an arable field for the last 40 years prior to the 120 

experiment. Further details of the field site are provided in Roscher et al. (2004). 121 

 122 

Experimental design 123 

In the Jena Experiment, plant species richness (1, 2, 4, 8, 16 plant species) and plant 124 

functional diversity (1, 2, 3, 4 plant functional groups) of experimental grassland stands were 125 

varied in a factorial design (Table 1). Sixty plant species were selected from semi-natural 126 

species-rich mesophilic grassland common in the regional grassland vegetation. Species were 127 

classified into four plant functional groups based on multivariate analysis of 17 traits (Roscher et 128 

al. 2004). Two of these functional groups coincided with the well-known functional groups 129 
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grasses and legumes, the other two could be referred to as small herbs and tall herbs. Species 130 

from each functional group were randomly selected to compose monocultures and mixtures 131 

according to the factorial design (Table 1). All experimental communities were established in 132 

May 2002 by sowing seeds to obtain 1000 seedlings m
–2

, distributed equally among the species 133 

within a community. Plot size was 20 x 20 m. All 60 species sown in the experimental 134 

communities were also planted in monoculture on 3.5 x 3.5 m plots. To maintain designed 135 

species compositions and richness levels as far as possible all plots were weeded regularly. The 136 

plots were mown twice per year (June and September) and the cut biomass was removed 137 

(Roscher et al. 2004). 138 

  139 

Data collection 140 

In principle, there are two direct methods for estimation of the annual belowground biomass 141 

production (roots and rhizomes, collectively referred to as roots in the following), (i) 142 

measurement of the change of root biomass and necromass during the growing season by 143 

sequential coring or (ii) measurement of root in-growth into root free soil zones. In this study the 144 

in-growth core technique was used since this method allows assessment of root production when 145 

standing root biomass is in equilibrium (i.e. no net change of root biomass and necromass). 146 

Furthermore, this method avoids the problem sorting live and dead roots. Since conditions in in-147 

growth cores differ from those in undisturbed soil (e.g. rooting density), it is important to note 148 

that the in-growth core method may over- or underestimate actual root production. However, it is 149 

assumed that over- or underestimation is similar in all experimental stands. Annual belowground 150 

biomass production for all plots (Table 1) was measured by adding up production from June–151 

September 2003 and from September 2003–July 2004. In June 2003, five randomly located soil 152 
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cores (0.048 m diameter x 0.30 m depth) per plot were removed with a stainless steel corer 153 

guided in a tripod. The removed soil was replaced by sieved root-free soil from the field site and 154 

care was taken to match the bulk soil density. The root biomass growing into these initially root-155 

free in-growth cores was measured after removing the in-growth cores in September 2003. After 156 

withdrawal of the in-growth cores, the holes were re-filled with root-free soil, and the in-growth 157 

cores were sampled again in July 2004. For the extraction of roots from the in-growth cores, the 158 

cores were cut with scissors until root fragments were less than 1 cm in length. Then the soil was 159 

carefully mixed and weighed before taking a subsample of 50 g. The soil was removed from the 160 

roots by rinsing over a sieve with 0.5 mm mesh width. Then, organic debris and remaining soil 161 

particles were removed. The remaining root biomass was dried at 70 °C and weighed. Separation 162 

of roots into plant species using morphological criteria was not possible. Therefore measured 163 

annual belowground biomass production represents roots formed by the target plant species 164 

community but also by accidental weeds which were not immediately removed by weeding 165 

campaigns. 166 

Annual aboveground biomass production for all plots (Table 1) was measured by adding up 167 

production from June to September 2003, and from September 2003 to June 2004. Aboveground 168 

biomass was cut 3 cm above ground on four randomly selected sample areas of 0.2 x 0.5 m per 169 

large plot. In small plots with monocultures only two such samples were harvested per plot. 170 

Sampled aboveground plant material was sorted into biomass of each sown target species and 171 

dead plant material before drying at 70 °C and weighing. In addition, annual aboveground 172 

biomass production of non target species (weeds) was determined separately. For comparability 173 

with measured belowground biomass production, aboveground biomass production included 174 

weeds as well as target species. According to this calculation, on average 92 % of the reported 175 
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annual aboveground biomass production was formed by the target species in the communities. 176 

 177 

Data analysis 178 

To assess the effect of plant functional group identity on annual biomass production and 179 

biomass partitioning between belowground and aboveground organs (termed R/S-ratio), we first 180 

tested whether a priori defined plant functional groups (legumes, grasses, tall herbs, small herbs) 181 

differed in the annual production of total, aboveground and belowground biomass or in the R/S-182 

ratio when grown in monocultures. Differences between plant functional groups were tested with 183 

a one-way ANOVA and the Tukey test. Second, we tested the effect of the presence/absence of 184 

each plant functional group on the annual biomass production and R/S-ratio in all experimental 185 

communities of the Jena Experiment (see below for statistical method).  186 

To assess the effect of plant species richness and plant functional group richness on annual 187 

biomass production and the R/S-ratio, we used general linear models. Since plant species 188 

richness and plant functional group richness were not fully orthogonal, sequential sum of squares 189 

were used (Schmid et al. 2002). Consequently the order in which the terms were entered in the 190 

model influenced the amount of variation explained by a term. The effect of the 191 

presence/absence of each plant functional group was tested with separate models for each plant 192 

functional group fitted after plant species richness and plant functional group richness.  193 

To assess whether R/S-ratios in mixed plant communities were influenced by species 194 

interactions, an expected R/S-ratio was calculated for each mixture from the measured R/S-ratio 195 

of each component species in monoculture and the species contribution to the aboveground 196 

biomass production in mixture according to the formula: 197 

mix

mixi

monoi

n

i

e
S

S
SRSR

,

,

1

//

 ,       198 
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where R/Si,mono is the R/S-ratio measured in monoculture of species i; Si,mix is the aboveground 199 

biomass production of species i in the mixture and Smix is the aboveground biomass production of 200 

the mixture. If R/S-ratios are modified by interactions among species in mixtures, measured R/S-201 

ratios in mixtures should differ from expected R/S-ratios. We used a paired t-test to assess if this 202 

difference was significantly larger or smaller than zero. 203 

To test whether aboveground overyielding in mixtures was related to alterations of the 204 

community-wide R/S ratio, aboveground overyielding was quantified in a more restrictive way, 205 

by calculation of relative yield totals (RYT, Hector 1998). The relative yield (RY), i.e. a species’ 206 

aboveground biomass production in mixture divided by its aboveground biomass production in 207 

monoculture, was calculated for each species. The RYT of a mixture is the sum of RYs of all 208 

species growing in a mixture. Using this relative-yield approach, overyielding is indicated by 209 

RYT > 1 (Hector et al. 2002). Alterations of the R/S-ratio in mixtures were quantified by the 210 

quotient of measured/expected R/S-ratio. A quotient > 1 indicates higher relative biomass 211 

partitioning to belowground organs in mixture than expected from component species in 212 

monocultures. To test whether aboveground overyielding in mixtures was related to alterations 213 

of biomass partitioning to belowground organs, the Spearman rank correlation between RYT and 214 

the quotient of measured/expected R/S-ratio was calculated. 215 

 216 

RESULTS 217 

Effect of plant functional group identity on annual biomass production and R/S-ratio in 218 

monocultures 219 

In the monocultures, total annual biomass production tended to be higher for legumes and 220 

grasses compared to small herbs (Table 2). The contribution of aboveground and belowground 221 
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organs to total annual biomass production was significantly affected by plant functional group. 222 

Legumes had the highest annual aboveground biomass production but the lowest annual 223 

belowground biomass production among the four plant functional groups. For legumes, 224 

belowground biomass production was less than 50% of aboveground biomass production, 225 

whereas for the other plant functional groups belowground biomass production was similar or 226 

slightly higher than aboveground biomass production. Consequently, the ratio of annual 227 

belowground production to annual aboveground production (R/S-ratio) of legumes was less than 228 

half than that of grasses, tall herbs and small herbs. 229 

 230 

Effect of plant species richness on annual biomass production and R/S–ratio 231 

The annual total biomass production varied between 582 and 2321 g m
–2

 y
–1

 (Fig. 1a). The 232 

annual aboveground biomass production varied between 337 and 1610 g m
–2

 y
–1

 (Fig. 1b). The 233 

maximum total biomass and aboveground biomass that was produced annually in each level of 234 

sown species diversity by specific plant communities was very similar among all levels of 235 

diversity. However, on average of all plant communities, annual total biomass and aboveground 236 

biomass production significantly increased with increasing species richness (Fig. 1a, b), 237 

regardless whether species richness in the ANOVA was fitted prior to or after plant functional 238 

group richness (Table 3). Plant functional group richness had a significant positive effect on 239 

annual total biomass and aboveground biomass production when fitted prior to species richness 240 

but not when fitted after species richness (Table 3). The annual total biomass production and 241 

aboveground biomass production were decreased by the presence of small herbs, whereas the 242 

presence of legumes increased annual aboveground biomass production (Table 3, model 3).  243 

The annual belowground biomass production in 0–0.3 m soil depth varied between 168 and 244 
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1515 g m
–2

 y
–1

. Annual belowground biomass production was not affected by sown species 245 

richness and plant functional group richness (Fig. 1c, Table 3). The presence of legumes in the 246 

plant communities negatively affected belowground biomass production, whereas grasses had a 247 

positive effect on annual belowground biomass production (Table 3, model 3). The contribution 248 

of annual belowground biomass production to annual total biomass production varied between 249 

10 and 77 %. On average, 44 % of annual total biomass production was below ground for all 250 

communities. The R/S ratio was negatively affected by plant species richness (Fig. 1d) and plant 251 

functional group richness when these model terms were fitted first (Table 3). The negative 252 

relationship between sown species richness and the R/S ratio was due to significant decreases in 253 

mixtures in comparison to monocultures, whereas R/S ratios did not significantly differ among 254 

the mixtures containing 2, 4, 8 or 16 species (F1,51 = 0.61; P = 0.438). The presence of legumes in 255 

the plant communities decreased the R/S-ratio, whereas the presence of grasses increased the 256 

R/S-ratio (Table 3, model 3). 257 

 258 

Test for possible mechanisms leading to reduced R/S ratios in mixtures 259 

The expected R/S ratio in mixtures was not significantly lower than the average R/S ratio in 260 

monocultures (Table 4, P = 0.527, t–Test), indicating that mixtures were not dominated by 261 

species with inherently low R/S ratios. The measured R/S ratio in mixtures was significantly 262 

lower than the expected R/S ratio (Table 4). This indicates that in mixtures the biomass 263 

partitioning to roots relative to biomass partitioning to shoots was reduced. 264 

The R/S ratio of legumes grown in monocultures was significantly lower than that of other 265 

plant functional groups (Table 2). Accordingly, the expected R/S ratios were lower in mixtures 266 

containing legumes than in mixtures without legumes (Table 4). However, in mixtures 267 
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containing legumes, and in mixtures without legumes, the measured R/S ratios were lower than 268 

the R/S ratios expected from the monoculture performance. This shows that species interactions 269 

leading to reduced biomass partitioning to belowground organs in 0–0.3 m soil depth can not 270 

only be explained with legume effects leading to additional nitrogen supply to non-legumes. 271 

 272 

Correlation between aboveground overyielding and reduction of R/S ratios 273 

The RYT of the mixtures varied from 0.4 to 2.7 (Fig. 2), showing that in some species 274 

mixtures aboveground biomass production was lower (RYT < 1, ―underyielding‖) and in some 275 

mixtures it was higher (RYT > 1, ―overyielding‖) than the sum of expected relative aboveground 276 

yields of the component species. However, on average, the RYT was significantly larger than 1 277 

(1.31 ± se 0.07; P<0.01). The quotient of measured/expected R/S ratio in mixtures varied 278 

between 0.3 and 2.0, showing that in some species mixtures the biomass partitioning to 279 

belowground organs (0–0.3 m soil depth) was lower and in some mixtures it was higher than 280 

expected. There was a significant negative correlation between RYT and the quotient of 281 

measured/expected R/S ratio (rs = –0.492; P < 0.01). To avoid problems with spurious 282 

correlations between the two variables which both involved the same aboveground biomass 283 

production data as component variable (mean of the four sample areas in which aboveground 284 

biomass was harvested), RYT and the quotient of measured/expected R/S ratio were also 285 

calculated from independent data sets (mean of two sample areas for the calculation of RYT, and 286 

mean of two other sample areas for the calculation of measured/expected R/S ratio). However, 287 

the correlation remained significant (rs = –0.308; P < 0.05). This indicates that with increased 288 

aboveground overyielding biomass partitioning to belowground organs (0–0.3 m soil depth) was 289 

continually reduced in comparison with monocultures. 290 
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 291 

DISCUSSION 292 

Effect of plant functional group identity on biomass production 293 

Under the environmental conditions of the Jena Experiment, both, biomass production, and 294 

biomass partitioning between belowground and aboveground organs differed among plant 295 

functional groups (Table 2). In monocultures, total biomass production was lowest for small 296 

herbs. In accordance with the low productivity of small herbs in monocultures, the presence of 297 

small herbs decreased total productivity and aboveground productivity of plant communities 298 

(Table 3). Even if the monocultures were excluded from the analysis, and only mixed plant 299 

communities are regarded, total productivity decreased with increasing proportion of small herbs 300 

in aboveground biomass production (r = –0.54; P < 0.001). Little is known about plant traits 301 

relevant to productivity which are common to this functional group except low canopy height 302 

(Roscher et al. 2004). In mixed plant communities containing species with tall stature, low 303 

canopy height of small herbs is associated with low light availability. Small herbs react to low 304 

light availability in mixed plant communities by production of leaves with higher specific leaf 305 

area and leaf area ratio (Daßler et al. 2008). However, in the Jena-Experiment, these 306 

ecophysiological adaptations to low light availability did not lead to higher shoot biomass in 307 

mixtures than expected from monocultures (Daßler et al. 2008). Annual belowground biomass 308 

production was not significantly correlated with the proportion of small herbs in aboveground 309 

biomass production (r = –0.08; P = 0.568). Furthermore, there is no evidence for lower rooting 310 

depth of small herbs in monocultures (Bessler and Engels, unpublished results), and thus, lower 311 

ability for foraging of soil resources. 312 

Legumes had the highest annual aboveground productivity (Table 2), whereas total 313 
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productivity of legumes was not significantly higher than that of grasses, small and tall herbs. 314 

Most legumes were actively fixing N2 in our experiment (Temperton et al. 2007; Thein et al. 315 

2008,), and their tissue N concentrations were markedly higher than those of non-legumes (data 316 

not shown). However, the ability of legumes to obtain additional nitrogen from symbiotic N2 317 

fixation did not lead to higher productivity, presumably because in the initial phase after 318 

conversion of fertilized crop land to non-fertilized grassland nitrogen was not limiting plant 319 

growth. 320 

In mixtures, increasing percentage of legumes was positively correlated with aboveground 321 

productivity (r = 0.57; P < 0.001), but only a marginally positive correlation with total 322 

productivity was found (r = 0.23; P = 0.094). The important role of legumes for control of 323 

aboveground productivity in mixtures is supported by other studies (Tilman et al. 1997, Mulder 324 

et al., 2002, Spehn et al. 2002, Lambers et al. 2004, Hooper and Dukes 2004, Palmborg et al. 325 

2005). In mixed communities, legumes may improve nitrogen supply of non-legumes either due 326 

to their lower competitive ability for nitrogen uptake from soil, or transfer of symbiotically fixed 327 

N2 (Corre-Hellou et al. 2006, Temperton et al. 2007, von Felten et al., revised version under 328 

review at Ecology [Nr. 08-0802R]). In our study, the proportion of legumes in aboveground 329 

biomass was negatively correlated with belowground productivity (r = –0.47; P < 0.001) and 330 

R/S-ratio (r = –0.62; P < 0.001). This shows that also the high biomass partitioning to 331 

aboveground organs is contributing to the positive effect of legumes on aboveground 332 

productivity. This indicates that the role of legumes for total productivity is overestimated from 333 

measurements of aboveground productivity only. 334 

 335 

Effect of plant species richness on annual biomass production 336 

http://esapubs.esapubs.org/cgi-bin/main.plex?form_type=view_ms&ms_id=16267&ms_rev_no=1&ms_id_key=L6SMeSJ5pU7qPFiG18mNfw&j_id=27
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In this study, we observed that annual aboveground and total biomass production significantly 337 

increased with species richness (Fig. 1 a, b) and plant functional group richness (Table 3). This is 338 

consistent with results from other experiments (e.g. Tilman et al. 1997; Spehn et al. 2005), and 339 

the positive relationship between plant species richness and aboveground biomass production 340 

found at our study site in the first year after plot establishment (Roscher et al. 2005), where 341 

weeds and belowground parts were not included in the biomass production measurements. The 342 

species richness effect on aboveground and total biomass production was significant despite the 343 

large variability among our plots containing communities with different species or functional-344 

group compositions. Differences in productivity among communities of the same species-345 

richness level but with different species or functional-group composition are typically observed 346 

in biodiversity experiments (Tilman et al. 1996, Hooper 1998, Hector et al. 1999). Our data on 347 

biomass production of functional groups in monocultures (Table 2), and correlations between the 348 

proportions of specific functional groups in mixed plant communities and biomass production of 349 

these communities suggest that in the environmental context of the Jena Experiment the 350 

differences in total and/or aboveground productivity within levels of species diversity can be 351 

attributed at least in part to the proportion of legumes and small herbs. 352 

In contrast to aboveground and total biomass production, belowground biomass production in 353 

0–0.3 m soil depth was not related to species richness and plant functional group richness. This is 354 

consistent with several studies in which the standing belowground biomass rather than 355 

belowground biomass production was measured (Spehn et al. 2000a, Niklaus et al. 2001, He et al. 356 

2002, Gastine et al. 2003). However, in other studies the standing belowground biomass 357 

increased with increasing species richness (Tilman et al. 2001, Reich et al. 2001, Craine et al. 358 

2003, Dimitrakopoulos and Schmid 2004). In the present study, belowground biomass 359 
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production was assessed by measuring the belowground plant biomass that was newly produced 360 

within initially root-free soil cores during 3-month periods. From observations using mini-361 

rhizotrons we have evidence that decomposition of the newly formed belowground biomass 362 

within three months is negligible (Bessler and Engels, unpublished data), making it unlikely that 363 

our data on belowground biomass production are confounded by potential plant diversity effects 364 

on decomposition. It should be noted that, similar to other studies, belowground biomass 365 

production was assessed in the top 0.3 m of the soil profile. There is good evidence that in 366 

temperate grasslands most of the roots are located in this soil zone, but 10–20% of the roots 367 

growing deeper than this (Jackson et al. 1996). In the Jena Experiment, the standing root biomass 368 

in 0–1.5 m soil depth was measured in the year 2006. We found that the percentage of roots 369 

growing below 0.3 m ranged from 4–53% (mean = 19%; median = 17%) and was not correlated 370 

with species richness (P = 0.793). Therefore, we believe that our results from the top 0.3 m of the 371 

soil would not be substantially changed if we would have used the first 1.5 m instead. 372 

Our data suggest that the differential effect of plant diversity on aboveground and 373 

belowground biomass production (Fig. 1, Table 3), which is in line with other European 374 

biodiversity experiments (Schmid & Pfisterer 2003, Spehn et al., 2005), can be attributed at least 375 

in part to differences among plant functional groups in biomass allocation to aboveground and 376 

belowground organs. Legumes which often strongly contribute to the positive plant biodiversity-377 

aboveground productivity relationship have low belowground productivity. Furthermore, as 378 

discussed in more detail in the next section, species interactions leading to reduced biomass 379 

allocation to belowground organs relative to aboveground organs also contribute to the 380 

differential effect of plant diversity on aboveground and belowground productivity. 381 

 382 
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Reduced R/S ratio in mixtures: dominance of species with low R/S ratio or reduced biomass 383 

partitioning to roots? 384 

R/S ratios of species grown in monoculture ranged from 0.1–3.4 (see Fig. 1d). A similar range 385 

of R/S ratios was also measured in an investigation including 59 species from the Great Plains 386 

grasslands in the USA (Johnson and Biondini 2001). This shows that large interspecific 387 

variability of R/S ratios exists in grassland species. In our experiment, R/S ratios were 388 

significantly higher in monocultures than in mixtures, whereas R/S ratios in mixtures were not 389 

significantly affected by species richness (Fig. 1d; F1,51 = 0.61; P = 0.438). Two mechanisms that 390 

may contribute to the reduced R/S ratios in mixtures as compared with monocultures are: (i) 391 

dominance of species with low R/S ratio in mixtures, and (ii) interactions among species leading 392 

to reduced biomass partitioning to roots. To assess the role of both mechanisms, we calculated 393 

the expected R/S ratio with the assumption that biomass partitioning between roots and shoots is 394 

not affected by interactions among species. The expected R/S ratio of mixtures was not lower 395 

than the average R/S ratio of monocultures (Table 4) indicating that the mixtures were not 396 

dominated by species with inherently low R/S ratio. Similar to the study of Hooper (1998), the 397 

measured R/S ratios in some mixtures were lower and in other mixtures were higher than 398 

expected from the performance in monoculture. However, on average, the measured R/S ratio 399 

was lower than the expected R/S ratio (see Table 4), indicating that the lower R/S ratios in 400 

mixtures in comparison with monocultures were due to interactions among species leading to 401 

reduced biomass partitioning to roots. Belowground biomass production was measured only in 402 

the top 0.3 m of the soil profile. However, our data on standing root biomass in 0–1.5 m soil 403 

depth in 2006 showed that the percentage of roots below 0.3 m did not differ between 404 

monocultures and mixtures (P=0.397). This indicates that monocultures and mixtures did not 405 
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differ in biomass partitioning to roots in various soil depths and that our conclusions would not 406 

be altered if deeper soil layers would be included into the analyses. 407 

 408 

Possible explanations for the lower than expected biomass partitioning to belowground organs 409 

in mixtures 410 

The R/S ratios were lower in mixtures with than in those without legumes (see Table 4). Root 411 

biomass of legumes is lower than that of grasses and forbs (Gastine et al. 2003). Our own data 412 

also show that in monocultures R/S ratios of legumes are smaller than R/S ratios of non–legumes 413 

(Table 2). In mixtures containing legumes, R/S ratios were lower than expected from R/S ratios 414 

in monocultures of the involved species (see Table 4), indicating that species interactions led to 415 

reduced biomass partitioning to roots. In mixed plant communities, legumes may contribute to 416 

improved N nutrition of associated non-legumes because of lower N uptake of legumes from soil, 417 

and transfer of biologically fixed N2 to non-legumes (Mulder et al. 2002, Spehn et al. 2002, 418 

Palmborg et al. 2005). It is well documented that biomass partitioning to roots is reduced by 419 

increased N supply. At our study site, soil nitrate concentrations (Oelmann et al. 2007) and shoot 420 

N concentrations of non-legume phytometer species (Temperton et al. 2007) were significantly 421 

higher in plots with legumes than in plots without legumes, suggesting that the reduced biomass 422 

partitioning to roots was due to improved N nutrition of non-legumes. This suggestion should be 423 

further substantiated by identifying roots at the species level in future studies. 424 

In mixtures without legumes, the R/S ratios were also lower than expected, indicating that 425 

species interactions leading to modification of biomass partitioning were not confined to 426 

mixtures containing legumes. We know of one further study (Wardle and Peltzer 2003), carried 427 

out with potted non-legume grassland species, which also found lower biomass partitioning to 428 
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roots in mixtures than in monocultures. 429 

The R/S ratio of plants is often reduced by environmental conditions that reduce specific 430 

shoot activity, e.g. by low light intensity, or that increase specific root activity, e.g. by high soil 431 

nutrient content (Brouwer, 1983, Wilson 1988, Callaway et al. 2003, Kahmen et al. 2005). Light 432 

absorbance within the canopy may be increased in mixtures as compared with monocultures 433 

(Spehn et al. 2000b, Fridley 2003). This reduces light intensity for short species growing in the 434 

shade of tall species, and may lead to a decrease in R/S ratio of short species in mixtures. Similar 435 

to the utilization of light, also the utilization of soil resources such as nitrate can be increased in 436 

mixtures in comparison with monocultures (Tilman et al. 1996, Niklaus et al. 2001, Scherer-437 

Lorenzen et al. 2003, Palmborg et al. 2005). However, in contrast to light, where competition 438 

between tall and short species is asymmetric, competition for nutrients may be reduced between 439 

species if they take up nutrients at different depths or in different chemical form. Thus, 440 

aboveground asymmetric competition for light and belowground niche complementarity, 441 

respectively, may reduce availability of light and increase availability of soil resources for 442 

individual species in mixtures and thus allow lower biomass partitioning to roots. 443 

 444 

Why is lower than expected biomass partitioning to belowground organs associated with 445 

overyielding? 446 

Aboveground overyielding in mixtures was negatively correlated with the quotient of 447 

measured/expected R/S ratio (see Fig. 2). This indicates that species interactions leading to lower 448 

than expected biomass partitioning to belowground organs relative to biomass partitioning to 449 

aboveground organs were associated with increased productivity of mixtures. Why an alteration 450 

of biomass partitioning at the expense of plant organs responsible for acquisition of soil 451 
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resources and in favour of plant organs responsible for light interception and photosynthesis was 452 

associated with increased productivity? Our suggestion is that in 0–0.3 m soil depth root 453 

production was excessive, and thus, species interactions leading to an altered biomass 454 

partitioning in favor of aboveground organs increased productivity. From model calculations in 455 

which homogenous distribution of actively absorbing roots are assumed, it can be predicted that 456 

root length densities > 1 cm root length cm
–3

 soil are sufficient for complete spatial exploitation 457 

of mobile soil resources such as nitrate (Claassen and Steingrobe 1999). At our study site we 458 

measured annual root length growth of about 40 cm root length cm
–3

 soil in 0–0.3 m soil depth. 459 

We have no information about the distribution and activity of the roots in the Jena-Experiment, 460 

however this high root-length density indicates that there is more root growth than needed for 461 

exploitation of soil resources even if their mobility is lower than that of nitrate. Formation of 462 

high root-length densities is associated with high competitive ability of plant individuals (Hodge 463 

2004). But at the plant community level, any increase of root length density in the range of 40 464 

cm cm
–3

 is not expected to enhance acquisition of soil resources. Under these circumstances, any 465 

decrease of biomass partitioning to roots in favor of biomass partitioning to roots should increase 466 

productivity, at least when it is assumed that the net cost for tissue maintenance is higher for 467 

belowground organs than for aboveground organs which yet in a dense stand make some gross 468 

photosynthesis. In a ―tragedy of the commons‖ scenario in pot experiments, it has been shown 469 

that in soil compartments which are shared by several individual plants, competition among 470 

plants may induce excessive root production leading to lower total productivity (Gersani et al. 471 

2001). 472 

Our analysis of both above- and belowground biomass production and its ratio shows that 473 

there can be balancing effects between biodiversity effects related to above- and belowground 474 
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resource use. Looking only at one side of the biomass production may lead to biased conclusions, 475 

because the response of one side to biodiversity can depend on the response of the other side. 476 

 477 
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Table 1 Number of sown plots in the Jena Experiment and number of plots analyzed in this 668 

study (in parenthesis). In this study a lower than the originally sown number of plots was 669 

included due to (i) the exclusion of monocultures with low plant establishment and (ii) the 670 

exclusion of mixed plant communities where species not included in monocultures contributed 671 

more than 5% to the community aboveground biomass production. 672 

  Plant species richness 

  1 2 4 8 16 

Plant functional 1 60 (42) 8 (6) 4 (4) 4 (4) 2 (2) 

group richness 2  8 (6) 4 (3) 4 (3) 4 (4) 

 3   4 (4) 4 (4) 4 (4) 

 4   4 (4) 4 (3) 4 (3) 

 all 60 (42) 16 (12) 16 (15) 16 (14) 14 (13) 

 673 
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Table 2 Annual biomass production and biomass partitioning between belowground and aboveground organs (termed R/S-ratio) of 674 

plant functional groups in monocultures. N is the number of species per plant functional group. Shown are means ± 1 SE. Effect of 675 

plant functional group identity was tested with a one-way ANOVA (P-values are shown in the last row). Different letters within 676 

columns mark significant differences between specific plant functional groups determined by the Tukey test (P<0.05). 677 

Plant functional 

group 

N Annual total biomass 

production 

[g m
-2

 year
-1

] 

Annual aboveground 

biomass production 

[g m
-2

 year
-1

] 

Annual belowground 

biomass production 

[g m
-2

 year
-1

] 

R/S-ratio 

Legumes 6 1497 ± 142 1082 ± 130 
a
 415 ± 64 

a
 0.42 ± 0.08 

a
 

Grasses 14 1407 ±   79   653 ±   60 
b
 754 ± 45 

b
 1.27 ± 0.13

 b
 

Tall herbs 15 1242 ± 119   601 ±   60 
b
 642 ± 90 

ab
 1.16 ± 0.20 

b
 

Small herbs 7 1070 ±   62   530 ±   43 
b
 541 ± 40 

ab
 1.05 ± 0.10 

ab
 

      

P  0.116 0.002 0.040 0.028 

 678 

 679 

 680 

681 
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Table 3 Effects of plant species richness, plant functional group richness and the presence of specific plant functional groups (legumes, 682 

grasses, small herbs, tall herbs) on annual biomass production and biomass partitioning between belowground and aboveground 683 

organs (termed R/S-ratio). Effects were tested with general linear models. Model terms were entered hierarchically, whereas plant 684 

species richness was fitted first in model 1 and plant functional group richness was fitted first in model 2. The effect of each plant 685 

functional groups was tested in separate models where the presence of each plant functional group was fitted after plant species 686 

richness and plant functional group richness. The results are summarized as model 3. Shown are F-values, significance levels (* 687 

P<0.05, ** P<0.01, *** P<0.001) and the direction of significant effects (↑ increase, ↓ decrease). 688 

 689 

 690 

 691 

 692 

 693 

 694 

 695 

 696 

 697 

 698 
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Model term Annual total 

biomass production 

Annual aboveground 

biomass production 

Annual belowground 

biomass production 

R/S-ratio 

Model 1 

Plant species richness (log-transformed) F1,93=14.93***↑ F1,93=18.35***↑ F1,93=  0.11 F1,93=  7.98  **↓ 

Plant functional group richness F1,93=  0.23 F1,93=  1.06 F1,93=  0.33 F1,93=  0.63 

Model 2 

Plant functional group richness F1,93=  8.33  **↑ F1,93=12.80***↑ F1,93=  0.05 F1,93=  5.99    *↓ 

Plant species richness (log-transformed) F1,93=  6.82    *↑ F1,93=  6.61    *↑ F1,93=  0.40 F1,93=  2.62 

Model 3     

Plant species richness (log-transformed) F1,92=15.01***↑ F1,92=24.27***↑ F1,92=  0.14 F1,92=10.30  **↓ 

Plant functional group richness F1,92=  0.23 F1,92=  1.40 F1,92=  0.41 F1,92=  0.82 

   Presence of legumes F1,92=  1.51 F1,92=31.04***↑ F1,92=21.76***↓ F1,92=28.11***↓ 

   Presence of grasses F1,92=  2.35 F1,92=  0.98 F1,92=13.50***↑ F1,92=  7.49  **↑ 

   Presence of tall herbs F1,92=  0.17 F1,92=<0.01 F1,92=  0.40 F1,92=<0.01 

   Presence of small herbs F1,92=11.04  **↓ F1,92=12.99  **↓ F1,92=  0.16 F1,92=  2.27 

 699 

700 
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Table 4 Biomass partitioning between belowground and aboveground organs (termed R/S-ratio) in monocultures and mixed plant 701 

species communities. Expected R/S-ratio in mixture was calculated as mean of the R/S-ratio measured in monocultures of the 702 

component species, whereas the R/S-ratio of each species was weighed by its proportion to the mixture aboveground biomass 703 

production. Shown are means ± 1 SE. Different letters within rows mark significant (paired t-test, P<0.05) differences between 704 

expected R/S-ratio and measured R/S-ratio. NA: not applicable. 705 

 N Expected R/S-ratio Measured R/S-ratio 

Monocultures 42 NA 1.08 ± 0.10 

Mixtures 54 1.00 ± 0.07 a 0.77 ± 0.05 b 

   Mixtures with legumes 30 0.79 ± 0.07 a 0.59 ± 0.06 b 

   Mixtures without legumes 24 1.26 ± 0.12 a 1.00 ± 0.07 b 

 706 

 707 

 708 

 709 
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FIGURE LEGENDS 710 

Figure 1 Annual production of (a) aboveground biomass, (b) total biomass, (c) belowground 711 

biomass and (d) belowground / aboveground biomass production (R/S ratio) as functions of the 712 

number of sown plant species in experimental grassland communities. Lines show predicted 713 

values from regression models.  714 

 715 

Figure 2 Correlation between RYT for annual aboveground biomass production and the quotient 716 

of measured/expected R/S ratio in mixtures. Expected R/S ratio was calculated from R/S ratio 717 

measured in monocultures and the aboveground biomass proportion of the component species in 718 

mixtures. Quotient of measured/expected R/S ratio < 1 indicates lower than expected relative 719 

biomass partitioning to belowground organs. RYT > 1 indicates overyielding of aboveground 720 

biomass production. Spearman rank correlation coefficient (rs) = –0.492; P<0.001. 721 



37                  HOLGER BESSLER ET AL. 

 

Figure 1. 722 
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Figure 2. 724 
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