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Abrupt hippocampal remapping signals resolution
of memory interference
Guo Wanjia 1✉, Serra E. Favila 2, Ghootae Kim3, Robert J. Molitor1 & Brice A. Kuhl 1✉

Remapping refers to a decorrelation of hippocampal representations of similar spatial

environments. While it has been speculated that remapping may contribute to the resolution

of episodic memory interference in humans, direct evidence is surprisingly limited. We tested

this idea using high-resolution, pattern-based fMRI analyses. Here we show that activity

patterns in human CA3/dentate gyrus exhibit an abrupt, temporally-specific decorrelation of

highly similar memory representations that is precisely coupled with behavioral expressions

of successful learning. The magnitude of this learning-related decorrelation was predicted by

the amount of pattern overlap during initial stages of learning, with greater initial overlap

leading to stronger decorrelation. Finally, we show that remapped activity patterns carry

relatively more information about learned episodic associations compared to competing

associations, further validating the learning-related significance of remapping. Collectively,

these findings establish a critical link between hippocampal remapping and episodic memory

interference and provide insight into why remapping occurs.
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T
he hippocampus is critical for forming long-term, episodic
memories1–3. However, one of the fundamental challenges
that the hippocampus faces is that many experiences are

similar, creating the potential for memory interference4,5. In
rodents, it is well established that minor alterations to the
environment can trigger sudden changes in hippocampal activity
patterns—a phenomenon termed remapping6,7. An appealing
possibility is that hippocampal remapping also occurs in human

episodic memory, allowing for similar memories to be encoded in
distinct activity patterns that prevent interference8. At present,
however, there remains an important gap between evidence of
place cell remapping in the rodent hippocampus and episodic
memory interference in humans. To bridge this gap, it is infor-
mative to consider how properties of place cell remapping, as
demonstrated in the rodent hippocampus, might translate to
episodic memory interference in humans.

One of the most important properties of remapping in the
rodent hippocampus is that it is characterized by abrupt transi-
tions between representations9–12. These abrupt transitions, evi-
denced by decorrelations in patterns of neural activity, have most
typically been observed as a function of the degree of environ-
mental change9,11. However, abrupt remapping can also occur as
a function of experience with a new environment10,12. Evidence
of experience-dependent remapping6,13,14 suggests an important
point: that remapping fundamentally reflects changes in internal
representations, as opposed to changes in environmental
states15,16. An emphasis on internal representations lends itself
well to human episodic memory in that it suggests that hippo-
campal remapping should occur as memories change. More
specifically, this perspective makes the critical prediction that
when two events are highly similar, hippocampal remapping will
occur if, and when, corresponding memories become distinct. To
date, a number of human fMRI studies have observed experience-
dependent decorrelations in hippocampal representations of
similar memories17–22 and/or have linked hippocampal pattern
overlap to memory interference20,23–25. However, to test the
prediction that hippocampal activity patterns abruptly remap
when memory interference is resolved it is necessary to precisely
track changes in memories as a function of temporally-specific
changes in hippocampal representations. Critically, standard
approaches of averaging fMRI data across different stimuli
(memories), stimulus repetitions, and/or participants can easily
obscure or wash out abrupt changes in hippocampal repre-
sentations if the timing of those changes varies across memories
or participants.

Evidence of place cell remapping in rodents also motivates
specific predictions regarding the relative contributions of hip-
pocampal subfields, with a major distinction being between CA3/
dentate gyrus and CA18,26,27. In general, CA3 and dentate gyrus
are thought to be more important than CA1 for discriminating
between similar stimuli16,27–31 and remapping has been shown to
occur more abruptly in CA3 than in CA110,12,32. High-resolution
fMRI studies in humans have also tested for and confirmed dis-
tinctions between these subfields. For example, fMRI studies have
found that, relative to CA1, activity patterns/responses in CA3
and dentate gyrus are more sensitive to subtle differences between
similar memories17,19,33,34 or spatial environments23,24,33.
Moreover, responses in the human CA3/dentate gyrus have
specifically been linked to behavioral discrimination of similar
memories23,24,35. However, these studies have not directly
established a link between temporally abrupt remapping in CA3/
dentate gyrus and changes in corresponding episodic memories.

Here, we tested whether the resolution of interference between
highly similar episodic memories is associated with an abrupt
remapping of activity patterns in the human CA3/dentate gyrus.
We used an associative memory paradigm in which participants
learned and were repeatedly tested on associations between scene
images and object images20. The critical design feature was that
the set of scene images included pairs of highly similar scenes
(Fig. 1a). These scene pairmates were intended to elicit associative
memory interference. Across six rounds of learning, we tracked
improvement in associative memory for each set of pairmates
while also continuously tracking representational changes
indexed by fMRI. Specifically, after each associative memory test
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Fig. 1 Experimental design and behavior. a Participants learned 36 scene-

object associations. The 36 scenes comprised 18 scene pairmates which

consisted of highly similar image pairs (e.g., “lighthouse 1” and “lighthouse

2”). Scene pairmates were also associated with similar objects (e.g., “guitar

1” and “guitar 2”). b Participants completed six rounds of study, test, and

exposure phases. During the study, participants viewed scenes and

associated objects. During the test, participants were presented with

scenes and had to select the associated object from a set of two choices,

followed by a confidence rating (high or low confidence; not shown). During

exposure, scenes (rounds 1–6) or objects (rounds 1 and 6) were presented

and participants made an old/new judgment. fMRI data were only collected

during the scene and object exposure phases. c Mean percentage of high

confidence correct responses for each test round. d Data from a

representative participant showing the “inflection point” in learning (red

horizontal line), for each pairmate. The inflection point was defined as the

point at which participants transitioned to high confidence correct retrieval

for both scenes within a pairmate—a transition from “pre-learned” (black)

to “learned”(aqua). e Mean number of scene pairmates that transition to a

learned state at each round. N.L. indicates pairmates that were never

learned. Notes: Data were presented as mean values ± SEM, n= 31

independent participants. Source data are provided as a Source Data file.
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round, participants were shown each scene image one at a time
(exposure phase) which allowed us to measure the activity pattern
evoked by each scene and, critically, the representational distance
between scene pairmates. To preview, we find that behavioral
expressions of memory interference resolution are temporally
coupled to abrupt, stimulus-specific remapping of human CA3/
dentate gyrus activity patterns. This remapping specifically
exaggerated the representational distance between similar mem-
ories. In additional analyses, we show that the magnitude of
remapping that individual memories experienced was predicted
by the degree of initial pattern overlap among CA3/dentate gyrus
representations and that remapped CA3/dentate gyrus repre-
sentations carried increased and highly specific information about
learned episodic associations.

Results
Participants completed six rounds of the experimental paradigm
while inside an fMRI scanner. Each round included a study phase,
an associative memory test phase, and a scene exposure phase
(Fig. 1b). fMRI scanning was only conducted during the exposure
phases. During the study phases, participants viewed scene-object
associations one at a time. During the associative memory test
phases, participants were shown scenes, one at a time, along with
two very similar object choices (e.g., two guitars); one object was
the target (i.e., the object that had been paired with the current
scene) and the other object was the competitor (i.e., the object
that had been paired with the scene pairmate). After selecting an
object, participants indicated their confidence (high or low).
During exposure phases, participants were shown each scene,
along with novel scenes, and made a simple old/new judgment
(mean ± 95% CI: d’= 5.40 ± 0.88; one-sample t-test vs. 0: t30=
12.58, p < 0.001, Cohen’s d= 2.26).

Behavior. During the associative memory test phases, partici-
pants chose the correct object with above-chance accuracy in each
of the six rounds (round 1: t30= 2.65, p= 0.013, d= 0.48, CI=
[0.56 ± 0.05]; round 2: t30= 7.77, p < 0.001, d= 1.40, CI= [0.69
± 0.05]; round 3: t30= 10.78, p < 0.001, d= 1.94, CI= [0.79 ±
0.05]; round 4: t30= 19.39, p < 0.001, d= 3.48, CI= [0.87 ± 0.04];
round 5: t30= 29.71, p < 0.001, d= 5.34, CI= [0.92 ± 0.03]; round
6: t30= 41.38, p < 0.001, d= 7.43, CI= [0.95 ± 0.02]; one-sample
t-tests vs. 50%). Accuracy markedly improved across rounds
(main effect of round: F1,30= 318.86, p < 0.001, η2= 0.91). The
rate of choosing the correct object with high confidence also
robustly increased across rounds, from a mean of 27.15 ± 4.71%
in round 1 to 92.83 ± 3.58% in round 6 (main effect of round:
F1,30= 574.44, p < 0.001, η2= 0.95; Fig. 1c). See Supplementary
Fig. 1 for test accuracy for each set of scene pairmates.

To test whether hippocampal remapping was temporally
coupled with the resolution of memory interference, we
identified, for each participant and for each set of pairmates,
the learning round in which scene-object associations were
recalled with high confidence (for both scenes in a pairmate). We
refer to this timepoint as the “learned round” (LR; see Methods).
Of critical interest for our remapping analyses was the correlation
of activity patterns evoked by scene images during the LR with
activity patterns evoked immediately prior to the LR-1. We refer
to this transition (from pre-learned to learned) as the “inflection
point” (IP) in learning (Fig. 1d). For example, if the learned run
for a particular set of pairmates was round 4, then the IP was the
transition from round 3 to 4. Our rationale for correlating activity
patterns from the LR with activity patterns from the preceding
round (LR-1) was that this correlation would capture the critical
change in hippocampal representations (remapping) that puta-
tively supports learning.

Remapping in CA3/dentate gyrus is time-locked to the inflec-
tion point in learning. For our fMRI analyses, our primary focus
was on pattern similarity between scene pairmates. Pattern
similarity was measured by correlating patterns of fMRI activity
evoked by each scene during the scene exposure phases. Pairmate
similarity was defined as the correlation between activity patterns
evoked by scene pairmates (e.g., “lighthouse 1” and “lighthouse
2”; Fig. 2b). Correlations between scenes that were not pairmates
(e.g., “lighthouse 1” and “arch 2”; Fig. 2b) provided an important
baseline measure of non-pairmate similarity. We refer to the
difference between these two measures (pairmate—non-pairmate
similarity) as the pairmate similarity score20. A positive pairmate
similarity score would indicate that visually similar scenes (e.g.,
two lighthouses) are associated with more similar neural repre-
sentations than two unrelated scenes. Critically, because pairmate
similarity scores are a relative measure, they can be directly
compared across different brain regions36—something that would
be inadvisable with raw correlation values. For all pattern simi-
larity analyses, correlations were always performed across learn-
ing rounds—for example, correlating “lighthouse 1” at the LR
with “lighthouse 2” at LR-1. This ensured the independence of
fMRI data37, but was also intended to capture transitions in
hippocampal representations (remapping).

Following a prior study that used similar stimuli and
analyses20, fMRI analyses targeted the following regions of
interest (ROIs): hippocampus, parahippocampal place area
(PPA), and early visual cortex (EVC). PPA and EVC served as
important control regions indexing high-level (PPA) and low-
level (EVC) visual representations. We did not anticipate that
these regions would demonstrate learning-related remapping.
Within the hippocampus, we leveraged our high-resolution fMRI
protocol to segment the hippocampus body into subfields
comprising CA1 and a combined CA3/dentate gyrus (see
Methods). Motivated by past empirical findings33,38 and
theoretical models8, we predicted that remapping would occur
in CA3/dentate gyrus. More specifically, we predicted that CA3/
dentate gyrus remapping would occur at the IP in learning. To
test this prediction, we compared pairmate similarity scores at the
IP to pairmate similarity scores at a timepoint just prior to the IP
(pre-IP). Whereas pairmate similarity scores at the IP were based
on correlations between activity patterns from the LR and the
preceding round (LR-1), pairmate similarity scores at the pre-IP
were based on correlations shifted back one step in time: i.e.,
between LR-1 and LR-2. Thus, whereas the IP captured the
transition from pre-learned to learned, the pre-IP was an
important reference point that corresponded to a “non-transi-
tion” (pre-learned to pre-learned).

An ANOVA with factors of behavioral state (pre-IP, IP) and
ROI (CA3/dentate gyrus, CA1, PPA, and EVC) revealed a
significant main effect of ROI (F3,90= 4.08, p= 0.009, η2= 0.04),
reflecting overall differences in pairmate similarity scores across
ROIs. Scores were numerically lowest in CA3/dentate gyrus and
numerically highest in EVC. There was no main effect of
behavioral state (F1,30= 2.71, p= 0.110, η2= 0.01), indicating
that learning did not have a global effect on representational
structure across ROIs. Critically, however, the interaction
between behavioral state and ROI was significant (F3,90= 2.95,
p= 0.037, η2= 0.04), indicating that learning differentially
influenced pairmate similarity scores across ROIs.

Within CA3/dentate gyrus, pairmate similarity scores were
significantly lower at the IP than the pre-IP (t30=−2.24, p=
0.033, d= 0.40, CI= [−0.012 ± 0.011]), consistent with our
prediction that remapping would specifically occur at the
behavioral IP. Importantly, we also confirmed via permutation
test (see Methods) that CA3/dentate gyrus pairmate similarity
scores at the IP were lower than would be expected if the
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mapping between pairmates and IPs was shuffled within
participants (p= 0.013, one-tailed; Fig. 2d).

Notably, CA3/dentate gyrus pairmate similarity scores not only
decreased at the IP, but they were significantly below 0 at the IP
(t30=−2.36, p= 0.025, d= 0.19, CI= [−0.008 ± 0.007]). In
other words, pairs of scenes with high visual similarity were
represented as less similar than completely unrelated scenes in
CA3/dentate gyrus. While seemingly counterintuitive, several
recent fMRI studies have also found that, in certain situations,
hippocampal pattern similarity is lower for similar than dissimilar
events18,20,33. This has led to the proposal that similarity triggers
a repulsion of hippocampal representations. That is, just as
physical proximity triggers repulsion of like magnetic poles,
representational proximity triggers repulsion of similar memories
(Fig. 2f). The present results, however, provide critical evidence

that this repulsion is time-locked to—and may, in fact, underlie—
the resolution of interference between competing memories.

In CA1, pairmate similarity scores did not significantly differ
by learning state (t30=−0.72, p= 0.474, d= 0.13, CI= [0.004 ±
0.01]) or differ from 0 either at the pre-IP (t30=−0.63, p= 0.531,
d= 0.11, CI= [0.003 ± 0.009]) or IP (t30=−0.34, p= 0.735, d=
0.06, CI= [−0.001 ± 0.006]). In PPA, pairmate similarity scores
decreased from pre-IP to the IP (t30=−2.28, p= 0.030, d= 0.41,
CI= [0.008 ± 0.007]), with scores significantly greater than 0 at
the pre-IP (t30= 3.14, p= 0.004, d= 0.56, CI = [0.007 ± 0.005])
but not different from 0 at the IP (t30 = −0.26, p = 0.798, d =
0.05, CI= [−0.0006 ± 0.005]). In EVC, pairmate similarity scores
did not significantly vary by learning state (t30=−1.39, p=
0.175, d= 0.25, CI= [−0.007 ± 0.01]); but there was a numerical
increase from pre-IP to the IP, with scores significantly above 0 at

Fig. 2 Pairmate similarity scores change at the behavioral inflection point. a Regions of interest included CA3/dentate gyrus (CA3/DG, pink) and CA1

(blue) in the hippocampus, the parahippocampal place area (PPA, yellow), and early visual cortex (EVC, green). b Correlation matrix illustrating how

pairmate similarity scores were computed at the behavioral inflection point. See Methods for details. c Pairmate similarity scores at the behavioral

inflection point (IP) and just prior to the inflection point (pre-IP) across different regions of interest (ROIs). Pairmate similarity scores significantly varied by

ROI (p= 0.009, repeated measures ANOVA) and there was a significant interaction between ROIs and behavioral state (p= 0.037, repeated measures

ANOVA). In CA3/DG, pairmate similarity scores at the IP were significantly lower than 0 (p= 0.025, two-tailed one-sample t-test) and significantly lower

than the pre-IP state (p= 0.033, two-tailed paired samples t-test). In PPA, pairmate similarity scores decreased from pre-IP to IP (p= 0.030, two-tailed

paired samples t-test). d A permutation test (1000 iterations) was performed by shuffling, within participants, the mapping between the behavioral

inflection point and scene pairmates. In CA3/dentate gyrus the actual mean group-level pairmate similarity score at the IP was lower than 98.70% of the

permuted mean similarity scores (p= 0.013, one-tailed permutation test). e Pairmate similarity scores calculated by correlating the learned round (LR)

with each of the three preceding rounds (– distance to LR) and each of the three succeeding rounds (+ distance to LR). [Note: the inflection point was

defined as the correlation between the LR and the immediately preceding round (LR − 1); the inflection points are depicted by filled circles and are the

same values as in c]. In CA3/dentate gyrus, pairmate similarity scores were significantly lower when the LR was correlated with preceding rounds

compared to succeeding rounds (p= 0.006, two-tailed paired samples t-test). The difference was not significant for any other ROIs (CA1: p= 0.435; PPA:

p= 0.955; EVC: p= 0.760; two-tailed paired sample t-tests). f Conceptual illustration of a decrease in pairmate similarity scores from pre-IP to IP. In the

pre-IP state (top panel), A1 and A2 are nearby in representational space. In the IP state (bottom panel), the representational distance between A1 and A2

has been exaggerated. When pairmates (e.g., A1 and A2) are farther apart in representational space than non-pairmates (e.g., A1 and B2) the pairmate

similarity score will be negative (i.e., pairmate similarity < non-pairmate similarity), consistent with a repulsion of competing representations. Notes: *p <

0.05, **p < 0.01. No correction for multiple comparisons was applied given the a priori predictions for CA3/dentate gyrus. Data were presented as mean ±

SEM and all data reflect n= 31 independent participants. Source data are provided as a Source Data file.

ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-021-25126-0

4 NATURE COMMUNICATIONS |         (2021) 12:4816 | https://doi.org/10.1038/s41467-021-25126-0 | www.nature.com/naturecommunications

www.nature.com/naturecommunications


the IP (t30= 3.13, p= 0.004, d= 0.56, CI= [0.01 ± 0.007]) but
not at the pre-IP (t30= 0.92, p= 0.366, d= 0.16, CI= [0.004 ±
0.008]).

The qualitative difference between CA3/dentate gyrus and
EVC is notable in that, at the IP, these regions exhibited fully
opposite representational structures: scene pairmates were more
similar than non-pairmates in EVC, but less similar than non-
pairmates in CA3/dentate gyrus. This finding parallels prior
evidence of opposite representational structures in the hippo-
campus and EVC18,20 and argues against the possibility that CA3/
dentate gyrus “inherited” representational structure from early
visual regions. More generally, pairmate similarity scores
markedly varied across the four ROIs at the IP (F3,90= 8.73,
p < 0.001, η2= 0.14), but not at the pre-IP (F3,90= 0.33,
p= 0.804, η2= 0.008), underscoring the influence of learning
on a representational structure.

For the preceding fMRI analyses, the IP was defined as the
correlation between the LR and the immediately preceding round
(LR-1). To more fully characterize how the representational state at
the LR compared to other rounds, we additionally correlated
representations at the LR to representations at LR-2 and LR-3 (i.e.,
other rounds that preceded the LR) and also correlated the LR with
LR+1, LR+2, and LR+3 (rounds that followed the LR). Within
CA3/dentate gyrus, pairmate similarity scores were significantly
lower when correlating the LR with rounds that preceded learning
compared to rounds that followed learning (t30=−2.98, p= 0.006,
d= 0.54, CI= [−0.009 ± 0.006]; Fig. 2e and see Supplementary
Fig. 2 for related analyses). This asymmetry indicates that CA3/
dentate gyrus representations expressed at the LR were system-
atically biased away from the initial representational position of
competing memories. More generally, these data support the idea of
an abrupt representational change (remapping) in CA3/dentate
gyrus that was time-locked to the specific round at which learning
occurred for individual pairmates. For CA1, PPA, and EVC, there
were no significant differences in pairmate similarity scores when
correlating the LR to rounds that preceded learning vs. followed
learning (CA1: t30=−0.79, p= 0.435, d= 0.14, CI= [−0.002 ±
0.006]; PPA: t30= 0.06, p= 0.955, d= 0.01, CI= [−0.0002 ±

0.005]; EVC: t30= 0.31, p= 0.760, d= 0.06, CI= [−0.001 ±
0.006]; Fig. 2e).

Overlap of CA3/dentate gyrus representations triggers
remapping. The fact that pairmate similarity scores in CA3/
dentate gyrus were negative at the IP (Fig. 2c) suggests that
learning-related remapping involved an active repulsion of
competing hippocampal representations (Fig. 2f). Conceptually,
the key feature of a repulsion account is that separation of hip-
pocampal representations is a reaction to initial overlap among
memories25. Here, because we measured representational states
throughout the course of learning, we were able to test this
hypothesis directly. Specifically, we tested the prediction that
relatively greater pairmate similarity scores (i.e., the higher
overlap between memories) at a given timepoint is associated
with relatively lower pairmate similarity scores (i.e., the lower
overlap between memories) at a successive timepoint.

To test this hypothesis, we first translated the six learning
rounds into five “timepoints” (see Methods). Each timepoint
corresponded to the set of scene pair similarity scores obtained by
correlating activity patterns across consecutive learning rounds
[e.g., timepoint 1= r(round 1, round 2)]. These scores reflected
the representational structure at each timepoint (i.e., which
pairmates were relatively similar, which pairmates were relatively
dissimilar). We then rank correlated the pairmate similarity
scores across successive timepoints [r(timepoint 1, timepoint 2)].
Whereas a positive rank correlation would indicate that
representational structure is preserved across time points, a
negative rank correlation would indicate that representational
structure is inverted across time points. Critically, an inversion of
representational structure is precisely what would be predicted if
initial overlap among activity patterns (i.e., high pairmate
similarity scores) triggers a repulsion of activity patterns (i.e.,
low pairmate similarity scores).

Notably, the rank correlation in CA3/dentate gyrus was
significantly negative (t30=−2.99, p= 0.006, d= 0.54, CI=
[−0.06 ± 0.04], Fig. 3b). In contrast, the rank correlation in CA1
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pairmate similarity scores in the pre-IP state (first quartile= lowest similarity, fourth quartile= highest similarity). Pairmate similarity scores in CA3/

dentate gyrus were significantly lower than CA1 (p= 0.008, two-tailed paired samples t-test) and significantly below 0 (p= 0.017, two-tailed one-sample

t-test) for pairmates with the highest pre-IP similarity (fourth quartile). See Supplementary Fig. 4 for the distributions of pre-IP pairmate similarity scores.

Notes: *p < 0.05, **p < 0.01. No correction for multiple comparisons was applied given the a priori predictions for CA3/dentate gyrus. Data were presented

as mean ± SEM and all data reflect n= 31 independent participants. Source data are provided as a Source Data file.
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was significantly positive (t30= 2.11, p= 0.043, d= 0.38, CI=
[0.06 ± 0.05]). The difference between CA3/dentate gyrus and
CA1 was also significant (t30= 3.73, p < 0.001, d= 0.67, CI=
[0.12 ± 0.06]). Importantly, the negative correlation in CA3/
dentate gyrus cannot be explained by regression to the mean (see
Methods). As a control, we also tested correlations at a lag of 2 [r
(timepoint N, timepoint N+ 2)]; however lag 2 correlations did
not significantly differ from 0 for either CA3/dentate gyrus (t30=
−0.71, p= 0.485, d= 0.13, CI= [−0.02 ± 0.05]) or CA1(t30=
−1.60, p= 0.120, d= 0.29, CI= [−0.04 ± 0.05]). The interaction
between lag (1, 2) and ROI (CA3/dentate gyrus, CA1) was also
significant (F1,30= 7.09, p= 0.012, η2= 0.06). Thus, for CA3/
dentate gyrus and CA1, the representational structure at a given
time point specifically predicted representational structure at a
successive timepoint. Rank correlations did not differ from 0 in
either PPA or EVC, either for lag 1 or lag 2 (PPA lag 1: t30= 0.83,
p= 0.412, d= 0.15, CI= [0.02 ± 0.05]; PPA lag 2: t30=−0.80,
p= 0.433, d= 0.14, CI= [−0.02 ± 0.05]; EVC lag 1: t30= 1.12,
p= 0.272, d= 0.20, CI= [0.03 ± 0.06]; EVC lag 2: t30= 0.69,
p= 0.493, d= 0.12, CI= [0.02 ± 0.06]). Additionally, rank order
correlations did not differ from 0 when representational structure
at timepoint N was defined from EVC and representational
structure at timepoint N+ 1 (lag 1) or N+ 2 (lag 2) was defined
from CA3/dentate gyrus (lag 1: t30=−0.12, p= 0.902, d= 0.02,
CI= [−0.003 ± 0.05]; lag 2: t30=−0.22, p= 0.825, d= 0.04,
CI= [−0.005 ± 0.05]).

To better visualize the relationship in representational
structure across successive timepoints—and to specifically con-
nect this relationship to learning (as in Fig. 2c)—we computed
pairmate similarity scores at the IP as a function of pre-IP
pairmate similarity scores. Specifically, we binned all pairmates,
by quartiles, according to pre-IP pairmate similarity scores, with
the fourth quartile representing pairmates with the highest pre-IP
pairmate similarity scores (see Methods for an additional
rationale; see Supplementary Fig. 3 for alternative binning
procedures). We then computed the mean pairmate similarity
scores at the IP for each of the pre-IP quartiles. Again, this
analysis was separately performed for CA3/dentate gyrus and
CA1. An ANOVA with factors of ROI (CA3/dentate gyrus, CA1)
and pairmate similarity scores at the pre-IP (four quartiles)
revealed a significant interaction (F3,90= 3.19, p= 0.027, η2=
0.03), indicating that pre-IP representational overlap was
differentially related to representational overlap at the IP for
CA3/dentate gyrus vs. CA1. Critically, this interaction was driven
by a marked difference between CA3/dentate gyrus and CA1
when considering the bin with the highest overlap at the pre-IP
(i.e., fourth quartile: t30=−2.87, p= 0.008, d= 0.51, CI=
[−0.03 ± 0.02], Fig. 3c). For CA3/dentate gyrus, pairmate
similarity scores at the inflection point were significantly below
0 and numerically lowest for pairmates with the highest pre-IP
similarity (fourth quartile comparison to 0: t30=−2.54, p=
0.017, d= 0.46, CI= [−0.023 ± 0.019]); the pattern in CA1 was
qualitatively opposite. Collectively, these results provide theory-
consistent evidence that remapping of competing representations
in CA3/dentate gyrus is actively triggered by initial representa-
tional overlap.

CA3/dentate gyrus scene representations differentiate between
competing object associations. Thus far, we have focused on
similarity among neural representations evoked while viewing the
scene images (scene exposure phase). However, our paradigm
also included two fMRI runs during which participants viewed
each of the objects associated with the scene images (object
exposure phase; see Methods). This allowed us to test whether
hippocampal activity patterns evoked while viewing the scenes

resembled—or came to resemble—activity patterns evoked while
viewing corresponding object images.

Whereas, pairmate similarity scores were computed by
correlating activity patterns across different rounds of the scene
exposure phase, here we computed correlations between a single
round of the scene exposure phase and the average of the two
object rounds (see Methods; see Supplementary Fig. 5 for data
separated by object round). For this analysis, there were three
important factors that we considered. First, we considered
whether scene representations were in a “learned” state (i.e.,
scene representations from the LR) or a “pre-learned” state (i.e.,
scene representations from LR-1). Second, we separately tested
correlations between each scene and (a) the target object (e.g.,
“guitar 1”) vs. (b) the competing object (e.g., “guitar 2”) (Fig. 4a).
Third, we again compared results in CA3/dentate gyrus vs. CA1.

A repeated measures ANOVA with factors of ROI (CA3/
dentate gyrus, CA1), behavioral state (pre-learned, learned), and
object relevance (target, competitor) revealed a significant
interaction between behavioral state and object relevance (F1,30
= 12.42, p= 0.001, η2= 0.02). Qualitatively, this interaction
reflected a learning-related change wherein hippocampal
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associations between scene pairmates and objects. The scene-object

similarity was calculated by correlating activity patterns evoked during the

scene exposure phases (at different behavioral states) and the object

exposure phases. Target similarity refers to correlations between a given

scene and the object with which it was studied. Competitor similarity refers

to correlations between a given scene and the object with which its

pairmate was studied. b Scene-object similarity as a function of object

relevance (target, competitor), ROI (CA3/dentate gyrus, pink; CA1, blue),

and behavioral state (pre-learned round, learned round). Mean correlations

between unrelated scenes and objects (across pairmate similarity; not

shown) were subtracted from target and competitor similarity values. For

CA3/dentate gyrus (CA3/DG), there was a significant interaction between

behavioral state and object relevance (p= 0.002, repeated measures

ANOVA). Note: **p < 0.01. No correction for multiple comparisons was

applied given the a priori predictions for CA3/dentate gyrus. Data were

presented as mean ± SEM and all data reflect n= 31 independent

participants. Source data are provided as a Source Data file.
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representations of scene images became relatively more similar to
target objects and less similar to competitor objects. However, this
two-way interaction between behavioral state and object relevance
was qualified by a trend toward a three-way interaction between
behavioral state, object relevance, and ROI (F1,30= 4.07, p= 0.053,
η2= 0.01). Specifically, the interaction between behavioral state
(pre-learned, learned) and object relevance (target, competitor)
was significant in CA3/dentate gyrus (F1,30= 11.98, p= 0.002,
η2= 0.06) but not in CA1 (F1,30= 0.44, p= 0.510, η2= 0.002)
(Fig. 4b). For CA3/dentate gyrus, there was a qualitative increase,
from the pre-learned to learned state, in the similarity between
scenes and target objects, and a qualitative decrease, from the pre-
learned to learned state, in the similarity between scenes and
competing objects. In other words, the remapping of CA3/dentate
gyrus scene representations that occurred at the LR yielded a
relative strengthening of information related to target object
associations and a relative weakening of information related to
competing object associations. This dissociation in CA3/dentate
gyrus is notable when considering that target and competitor
objects were highly similar (see Fig.1a and 4a) and even more so
when considering that during the scene and object exposure
phases participants were not instructed or required in any way to
recall the corresponding images. The two-way interaction between
behavioral state and object relevance was not significant for PPA
or EVC (PPA: F1,30= 1.97, p= 0.170, η2= 0.01; EVC: F1,30= 3.23,
p= 0.082, η2= 0.02, see Supplementary Fig. 6). Interestingly, for
CA3/dentate gyrus, scene representations in the pre-learned state
were significantly more similar to competitor objects than to target
objects (t30= 2.70, p= 0.011, d= 0.48, CI= [0.012 ± 0.009]).
While this result was not anticipated, we consider potential
interpretations in the Discussion.

Discussion
Here, we show that learning to discriminate competing episodic
memories is associated with an abrupt remapping of activity
patterns in the CA3/dentate gyrus. Specifically, fMRI pattern
similarity in CA3/dentate gyrus decreased precisely when beha-
vioral expressions of learning emerged. Additionally, the degree
to which remapping occurred in CA3/dentate gyrus was predicted
by the degree of initial pattern overlap among competing mem-
ories. Finally, remapped CA3/dentate gyrus representations
contained relatively stronger information about relevant episodic
associations and relatively weaker information about competing
episodic associations, confirming the learning-related significance
of the remapping effect.

Our experimental paradigm and analyses were inspired by—
and our findings are consistent with—evidence of abrupt
remapping in the rodent hippocampus9–12. Our findings also
complement recent evidence of remapping-like phenomena in the
human hippocampus23,39,40. However, the current findings pro-
vide unique and direct support for the proposal that hippocampal
remapping is associated with the resolution of human episodic
memory interference8. Specifically, we demonstrate an abrupt
transition in hippocampal representations that occurred at an
important IP in learning—the point at which participants were
able to correctly discriminate similar memories and retrieve
associations with high confidence. Notably, this finding was only
possible because (a) we repeatedly probed episodic memory and
hippocampal representations over the course of learning and (b)
we identified IPs in a participant- and pairmate-specific manner.
Indeed, IPs varied considerably across and within participants
(Fig. 1d, Supplementary Table 1, and Supplementary Fig. 1) and
the observed hippocampal remapping effect was significantly
weaker when the specific mapping between behavior and fMRI
data was shuffled within participants (Fig. 2d).

The fact that CA3/dentate gyrus remapping occurred precisely
at the IP in learning strongly suggests that remapping was related
to learning. This argument is also reinforced by our independent
finding that remapped CA3/dentate gyrus activity patterns,
evoked while participants viewed individual scene images, carried
more information (compared to the pre-learning state) about
target vs. competing object associations. In other words, the IP
defined from behavioral expressions of associative memory also
captured a critical change in associative representations encoded
in CA3/dentate gyrus activity patterns. The fact that CA3/dentate
gyrus exaggerated the representational distance between com-
peting scenes (remapping) while simultaneously reflecting
learned associations (scene-object similarity) is consistent with
the idea that CA3 balances both pattern separation and pattern
completion mechanisms4,27,28,41. The fact that remapped activity
patterns contained information about learned associations is also
consistent with the argument that hippocampal remapping does
not simply reflect changes in the external environment—which
did not change over the course of the experiment—but instead
fundamentally reflects changes in internal models of the
environment15,16.

One aspect of our findings which does not, to our knowledge,
have a direct analog in rodent studies of remapping is the
negative pairmate similarity score we observed at the IP in CA3/
dentate gyrus. The negative score indicates that scene pairmates—
which were highly similar images—were associated with less
overlapping CA3/dentate gyrus representations than completely
unrelated scenes. In rodents, the most extreme version of
remapping occurs when two similar environments are associated
with fully independent place codes8. In our study, however, if
each scene was associated with an independent representation,
then the similarity between pairmates would be equal to, but not
lower than, the similarity between non-pairmates. Instead, the
negative pairmate similarity score requires a dependence between
competing hippocampal representations wherein a given memory
representation systematically moves away from the representa-
tional position of a competing memory (Fig. 2f). We refer to this
dependence as “repulsion” in order to emphasize the oppositional
influence that competing memories exerted. Several recent
human fMRI studies have reported conceptually similar effects in
the hippocampus18,20,22,42—and in CA3/dentate gyrus,
specifically17,19,24,33. However, the current findings directly
establish that the repulsion of competing hippocampal repre-
sentations is temporally coupled to the resolution of memory
interference.

Based on computational models25,43,44, our prediction was that
the repulsion effect in CA3/dentate gyrus was a direct con-
sequence of initial overlap among activity patterns. Indeed, a
recent study found that hippocampal repulsion was more likely to
occur for behaviorally confusable memories18, potentially because
confusable memories are associated with greater pattern overlap
during initial learning. In the current study, we tested—and
confirmed—this account directly. Specifically, we found that the
representational structure (relative pairmate similarity) in CA3/
dentate gyrus at a given timepoint was negatively correlated with
representational structure at an immediately following timepoint.
This negative relationship is highly consistent with the idea that
overlap, itself, triggers plasticity that “punishes” those features
which are shared across memories19,25,43,44. While our study does
not afford inferences about the causal relationship between
repulsion and learning, the idea that repulsion (or remapping
more generally) is triggered by representational overlap, com-
bined with the fact that remapping was associated with learning,
is consistent with the possibility that repulsion of CA3/dentate
gyrus representations is a causal factor in learning. This account
also offers a potential explanation for an otherwise surprising
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finding: that CA3/dentate gyrus scene representations from the
round that immediately preceded learning (LR-1) were sig-
nificantly more similar to competitor objects than to target
objects. Although speculative, it is possible that when a given
scene activated the “wrong” object association (at LR-1), this
actively triggered a correction in favor of the target object asso-
ciation that supported learning. This account is consistent with
evidence that prediction errors can powerfully drive episodic
memory45,46 as well as differentiation of hippocampal activity
patterns19. More broadly—and consistent with our findings, in
general—prediction errors may induce abrupt state changes in the
hippocampus that facilitate the separation of episodic
memories47.

Across multiple analyses, we observed dissociations between
CA3/dentate gyrus and CA1. The fact that the remapping effects
were selective to CA3/dentate gyrus is consistent with evidence
from rodent studies of remapping and pattern separation8,26,28

and with several human fMRI studies17,19,24,28,33. Perhaps the
most notable dissociation between CA3/dentate gyrus and CA1
comes from our analysis of representational structure across time
points. Whereas CA3/dentate gyrus exhibited a negative rank
correlation across successive timepoints, CA1 exhibited a positive
rank correlation (Fig. 3b). Thus, in contrast to CA3/dentate gyrus,
CA1 was characterized by stability (though only modest stability)
of representational structure across timepoints4. This dissociation
between CA3/dentate gyrus and CA1 is consistent with the idea
that CA3, in particular, supports rapid plasticity that allows for
changes in memory representations on short time scales48 and is
also consistent with the evidence of faster remapping in CA3/
dentate gyrus than in CA110,12,32. It is also notable that the
remapping effect we observed in CA3/dentate gyrus at the IP in
learning strongly contrasted with the pattern of data in EVC.
Whereas CA3/dentate gyrus exhibited a negative pairmate simi-
larity score at the IP, EVC exhibited a significant, positive pair-
mate similarity score at the IP. This finding makes the important
point that CA3/dentate gyrus was not inheriting representational
structure from early sensory regions (e.g., due to visual attention)
—rather, CA3/dentate gyrus fully inverted the representational
structure that was expressed in EVC20.

Taken together, our findings reveal remapping of human CA3/
dentate gyrus representations that is temporally coupled to the
resolution of episodic memory interference. These findings were
motivated by—and complement—existing evidence of remapping
in the rodent hippocampus. Yet, our findings also go beyond
existing rodent or human studies by establishing a direct link
between remapping and changes in internal memory states15,16.
Additionally, our conclusion that overlap among CA3/dentate gyrus
representations actively triggers a repulsion of memory repre-
sentations has important implications for theoretical accounts of
how the hippocampus resolves memory interference5,8,28,43 and will
hopefully inspire targeted new analyses that test for similar
mechanisms in rodent models.

Methods
Participants. Thirty-six participants (21 female; mean age= 23.69 years, range =
18–34 years) were enrolled in the experiment following procedures approved by
the University of Oregon Institutional Review Board. Written informed consent
was collected for each participant prior to the experiment. All participants were
right-handed native-English speakers with normal or corrected-to-normal vision,
with no self-reported psychiatric or neurological disease. One participant was
excluded due to excess motion in the scanner (max FD >3.5 mm); another four
participants were excluded due to low behavioral performance (see Results for
more details). The final analysis included 31 participants. All participants received
monetary compensation for participating.

Stimuli. Thirty-six images of scenes and 36 images of everyday objects were used in
the experiment. The set of 36 scenes and the set of 36 objects were each comprised
of 18 “pairmates” of visually and semantically similar images (Fig. 1a). An

additional 36 scenes and 12 objects were used as lures for the scene and object
exposure phases of the study, respectively. Separately for each participant, scene
pairmates were randomly assigned to object pairmates (Fig. 1a). For example, if
“lighthouse 1” was assigned to “guitar 1”, then “lighthouse 2” would be assigned to
“guitar 2.” Note: the scene and object images shown in the figures are not the actual
stimuli used in the experiment, but are public domain images representative of the
stimuli that were used. See Data Availability for access to the actual stimuli.

Experimental procedure. After providing consent and reviewing the instructions,
participants entered the MRI scanner. Inside the scanner, participants completed
six rounds of the experimental paradigm (Fig. 1b). The first round and the last
round included four phases: study, test, scene exposure (scanned), and object
exposure (scanned). Rounds 2–5 were the same, except they did not include the
object exposure phase. Across all phases, stimuli were displayed on a gray back-
ground, projected from the back of the scanner. After exiting the scanner, parti-
cipants completed a separate memory task that involved learning new scene-object
associations (not reported here). The experiment was implemented in PsychoPy49

and lasted ~3 h, with about 2 h 15 min inside the scanner.

Study Phase. During the study phases, participants learned 36 scene-object asso-
ciations, one association at a time. Each trial began with the presentation of a scene
image (1000 ms), followed by a white fixation cross (200 ms), the associated object
image (1000 ms), and then another white fixation cross (1200 ms) until the start of
the next trial. The order in which the 36 scene-object associations were studied was
randomized for each round and for each participant.

Test Phase. During the test phases, participants attempted to retrieve the object
associated with each of the 36 scenes. Each trial began with the presentation of a
scene (1000 ms), followed by a white fixation cross (200 ms), and then the pre-
sentation of two object pairmates (e.g., “Guitar 1” and “Guitar 2”). One of the
object images was the “target” (i.e., the object associated with the cued scene) and
the other object image was the “competitor” (i.e., the object associated with the
cued scene’s pairmate). Participants had a maximum of 4000 ms to select the
correct object image (target) via a button box in their right hand. If no response
was made, the next trial began after a white fixation cross was displayed for
1200 ms. If a response was made, a confidence rating then appeared beneath the
objects and participants had a maximum of 3000 ms to indicate whether their
response was a “Guess” or “Sure.” After indicating their confidence (or after time
ran out), a white fixation cross appeared (1200 ms) until the start of the next trial.
The location of the correct object (left or right) and the order in which each of the
36 scene-object associations were tested were randomized for each round and for
each participant.

Scene exposure phase. During the scene exposure phases, which were conducted
during fMRI scanning, participants saw 39 scene images in each of two blocks
(78 scenes per round). Each block included the 36 studied scenes and three novel
lure scenes. Participants made an old/new judgment for each scene. Each trial
began with the presentation of a scene image (500 ms), followed by a red fixation
cross (1500 ms) which represented the response window. Participants again
responded using the button box. After the red fixation cross, a white fixation cross
(2000 ms) was presented until the start of the next trial. The order of the 39 scene
trials within each block was randomized for each block, round, and participant.
Between the two blocks of 39 trials, participants performed a short odd/even
judgment task (four trials). Each odd/even trial consisted of a single-digit number
displayed on the screen (500 ms), followed by a red fixation cross (1000 ms) which
represented the response window, and then a white fixation cross (1000 ms) until
the start of the next trial.

Object exposure phase. The object exposure phase (conducted during fMRI scan-
ning) was only included in the first and sixth rounds and followed an identical
structure and procedure as the scene exposure phase. The only difference was that
the 39 trials in each block corresponded to the 36 studied objects and three novel
lure objects.

MRI acquisition. All images were acquired on a Siemens 3 T Skyra MRI system in
the Lewis Center for Neuroimaging at the University of Oregon. Functional data
were acquired with a T2*-weighted echo-planar imaging sequence with partial-
brain coverage that prioritized full coverage of the hippocampus and EVC (repe-
tition time= 2000 ms, echo time= 36 ms, flip angle= 90°, 72 slices, 1.7 × 1.7 × 1.7
mm voxels). A total of eight functional scans were acquired. Each functional scan
comprised 177 volumes and included 10 s of lead-in time and 10 s of lead-out time
at the beginning and end of each scan, respectively. The eight functional scans
corresponded to six scans of the scene exposure phase (scans 1 and 3–7) and two
scans of the object exposure phase (scans 2 and 8). Anatomical scans included a
whole-brain high-resolution T1-weighted magnetization prepared rapid acquisition
gradient-echo anatomical volume (1 × 1 × 1mm voxels) and a high-resolution
(coronal direction) T2-weighted scan (0.43 × 0.43 × 2 mm voxels) to facilitate
segmentation of hippocampal subfields.
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Anatomical data preprocessing. Preprocessing was performed in Python 3.7
using fMRIPrep 1.5.050,51 (RRID:SCR_016216), which is based on Nipype 1.2.252,53

(RRID:SCR_002502). The T1-weighted (T1w) image was corrected for intensity
nonuniformity (INU) with N4BiasFieldCorrection54 (ANTs 2.2.055, RRID:
SCR_004757), and used as the T1w reference throughout the workflow. The T1w
reference was skull-stripped with the antsBrainExtraction.sh workflow (ANTs) in
Nipype, using OASIS30ANTs as the target template. Brain tissue segmentation of
cerebrospinal fluid (CSF), white-matter (WM), and gray-matter (GM) was per-
formed on the brain-extracted T1w using fast56 (FSL 5.0.9, RRID:SCR_002823).
Volume-based spatial normalization to one standard space (MNI152NLin2009-
cAsym) was performed through nonlinear registration with antsRegistration
(ANTs 2.2.0), using brain-extracted versions of both T1w reference and the T1w
template. ICBM 152 Nonlinear Asymmetrical template version 2009c57 (RRID:
SCR_008796; TemplateFlow ID: MNI152NLin2009cAsym) was used for spatial
normalization.

Functional data preprocessing. For each of the eight BOLD scans per participant,
the following preprocessing was performed. First, a reference volume and its skull-
stripped version were generated using fMRIPrep. A deformation field to correct for
susceptibility distortions was estimated based on two echo-planar imaging (EPI)
references with opposing phase-encoding directions, using 3dQwarp, AFNI58.
Based on the estimated susceptibility distortion, an unwarped BOLD reference was
calculated for a more accurate co-registration with the anatomical reference. The
BOLD reference was then co-registered to the T1w reference using bbregister
(FreeSurfer) which implements boundary-based registration59. Co-registration was
configured with six degrees of freedom. Head-motion parameters with respect to
the BOLD reference (transformation matrices and six corresponding rotation and
translation parameters) were estimated before any spatiotemporal filtering using
mcflirt FSL 5.0.960. BOLD scans were slice-time corrected using 3dTshift AFNI58

(RRID:SCR_005927). The BOLD time-series (including slice-timing correction
when applied) were resampled onto their original, native space by applying a single,
composite transform to correct for head-motion and susceptibility distortions.
Framewise displacement (FD) confounding time-series were calculated based on
the resampled BOLD time-series for each functional scan61.

fMRI first-level general linear model (GLM) analyses. After fMRIPrep pre-
processing, the first five volumes (10 s) of each functional scan were discarded.
Then, the brain mask generated by fMRIPrep from the T1 anatomical image was
used to perform brain extraction for each of the eight functional scans. Each
functional scan was then median centered. For the six scans of the scene exposure
phase and two scans of the object exposure phase, all first-level GLMs were per-
formed in participants’ native space with FSL using a Double-Gamma HRF with
temporal derivatives, implemented with Nipype. GLMs were calculated using a
variation of the Least Squares—Separate method62: a separate GLM was calculated
for each of the 36 scenes (for scene exposure phases) or objects (for object exposure
phases) across both repeats within a scan. For each GLM, there was one regressor
of interest (representing a single scene or object image across its two repetitions per
scan). All other trials (including lure images), FD, xyz translation, and xyz rotation
were represented with nuisance regressors. Additionally, a high pass filter (128 Hz)
was applied for each GLM. This model resulted in 36 beta-maps per scan (one map
per scene/object) which were converted to t-maps that represented the pattern of
activity elicited by each scene/object for each scan.

Regions of interest. A region of interest (ROI) for EVC was created from the
probabilistic maps of Visual Topography63 in the MNI space with a 0.5 threshold.
This ROI was transformed into each participant’s native space using inverse T1w-
to-MNI nonlinear transformation. For each participant, the top 300 EVC voxels
were then selected by averaging the t-maps of all scenes and objects and then
choosing the voxels with the highest t-statistics (i.e., the voxels most responsive to
visual stimuli). An ROI for the PPA was created by first using an automated meta-
analysis in Neurosynth with the key term “place”. Then, clusters were created using
voxels with a z-score >2 based on the Neurosynth associative tests. Since these
clusters were generated through an automated meta-analysis and were not ana-
tomically exclusive to PPA, we visually inspected the results and manually selected
the two largest clusters that were spatially consistent with PPA. One cluster was in
the right hemisphere (voxel size= 247) and one cluster was in the left hemisphere
(voxel size= 163). These clusters were combined into a single PPA mask. This
mask was then transformed into each participant’s native space using the inverse
T1w-to-MNI transformation. For each participant, a final PPA ROI was generated
by averaging the t-maps of all scene exposure phase scans and then selecting the
300 voxels with the highest average t-statistics (i.e., the most scene-responsive
voxels). To create hippocampal ROIs, we used the Automatic Segmentation of
Hippocampal Subfields (ASHS)64 toolbox with the upenn2017 atlas to generate
subfield ROIs in each participant’s hippocampal body, including CA3/dentate
gyrus (which included CA2, CA3, and dentate gyrus) and CA1. The most anterior
and posterior slices of the hippocampal body were manually determined for each
participant based on the T2-weighted anatomical structure (see Supplementary
Fig. 7 for a sample demarcation). Each participant’s subfield segmentations were
also manually inspected to ensure the accuracy of the segmentation protocol. Then,

each subfield ROI was transformed into each participant’s native space using the
T2-to-T1w transformation, calculated with FLIRT (fsl) with six degrees of freedom,
implemented with Nipype. All ROIs were again visually inspected following the
transformation to native space to ensure the ROIs were anatomically correct.

fMRI pattern similarity analyses
Pairmate similarity scores. Pattern similarity was calculated as the Fisher z-trans-
formed Pearson correlation between t-maps within each ROI. All pattern similarity
analyses were performed by correlating the t-maps for stimuli across scans (i.e.,
correlations were never performed within the same scan). For our primary analyses
related to pattern similarity between scene images, of critical interest was the similarity
between pairmate scenes (pairmate similarity) relative to the similarity between non-
pairmate scenes (non-pairmate similarity). Specifically, for each set of pairmates, the
mean non-pairmate similarity was subtracted from mean pairmate similarity to yield
a pairmate similarity score for each set of pairmates. As an example, to calculate
pairmate similarity scores for “lighthouse 1” and “lighthouse 2” across scans 3 and 4,
pairmate similarity would be defined as the mean of the following two z-transformed
correlations: r(lighthouse 1scan 3, lighthouse 2scan 4) and r(lighthouse 2scan 3, lighthouse
1scan 4). Corresponding non-pairmate similarity scores would be defined as the mean
of all z-transformed correlations, across the same scans (scans 3 and 4), between
either pairmate (lighthouse 1 or lighthouse 2) and each non-pairmate stimulus [e.g., r
(lighthouse 1scan 3, arch 1scan 4), r(arch 2scan 3, lighthouse 1scan 4), …].

Learned round. To relate pairmate similarity scores to behavioral measures of
learning, we identified the LR for each pairmate, separately for each participant.
The LR was based on performance in the associative memory test. Specifically, the
LR was defined as the first round in which the target object was selected with high
confidence for both scenes in a pairmate, with the additional requirement that
performance remained stable in all subsequent rounds. It was, therefore, possible
that both scenes in a pairmate were associated with high confidence correct
responses in round N, not in round N+ 1, and then (again) in round N+ 2 and
thereafter; in this case, the LR would be round N+ 2.

Inflection point. The IP was defined as the transition from LR-1 (the round that
immediately preceded the LR) to LR (the learned round). Thus, pairmate similarity
scores at the IP were based on correlations of t-maps from LR-1 with t-maps from
LR. We hypothesized that the behavioral state change from LR-1 to LR would
correspond to a reduction in pairmate similarity scores. Pairmate similarity scores
at the IP were contrasted against the “pre-IP” state, which was based on the
correlation of t-maps from LR-2 and LR-1 (i.e., a non-transition from “pre-
learned” to “pre-learned”) (Fig. 2c). Pairmates for which participants never reached
and sustained high confidence correct responses (mean ± s.d., 1.81 ± 2.27 per
participant) and pairmates that were learned in the first round (LR= 1; mean ± s.
d., 1.00 ± 1.26) were excluded from the IP analyses because neither the pre-IP nor
IP states could be measured. For pairmates that were learned in the second round
(LR= 2; mean ± s.d., 3.23 ± 2.80), pattern similarity at the IP was calculated and
included in the analyses, but pattern similarity at the pre-IP state could not be
calculated because an LR-2 did not exist. For the rest of the pairmates (LR= 3, 4, 5,
or 6), we calculated pattern similarity for both the pre-IP and IP states (Fig. 1e).
Similar restrictions applied to correlations between LR and LR-3, LR+ 1, LR+ 2,
and LR+ 3 (Fig. 2e). The number of pairmates included in each comparison and
for each participant are reported in Supplementary Table 1.

Representational structure across time points. To test whether representational
overlap triggered remapping (related to Fig. 3), the six rounds were translated into
five timepoints. Each timepoint corresponded to a pair of consecutive rounds
([1,2], [2,3], [3,4], [4,5], and [5,6]). For each timepoint, pairmate similarity scores
were calculated, as described above, by correlating activity patterns from con-
secutive rounds (e.g., pairmate similarity scores at timepoint 1 were based on
correlations between round 1 and round 2). This yielded a set of pairmate simi-
larity scores at each of the five timepoints. These sets of similarity scores reflected
the representational structure at each timepoint (i.e., which pairmates were rela-
tively similar and which pairmates were relatively dissimilar). Pairmate similarity
scores were then correlated across timepoints using Spearman’s rank correlation
(Fisher z-transformed). Lag 1 correlations refer to rank correlations between suc-
cessive timepoints whereas lag 2 correlations refer to correlations between time-
points two steps apart. To facilitate a direct comparison between lag 1 vs. lag 2
correlations, correlations were computed for the following timepoints: Lag 1= r
(timepoint 1, 2), r(timepoint 2, 3), and r(timepoint 3, 4); Lag 2= r(timepoint 1, 3),
r(timepoint 2, 4), and r(timepoint 3, 5). It is important to emphasize that we did
not correlate initial pairmate similarity scores with the change in pairmate simi-
larity as this would produce an artifactual correlation (via regression to the mean).
In contrast, a negative rank correlation (as we observed in CA3/dentate gyrus)
cannot be explained by regression to the mean. Mathematically, if all values at
timepoint N partially regressed toward the mean at timepoint N+ 1, this would
yield a positive rank correlation (i.e., the representational structure would be
partially preserved). If all values fully regressed toward the mean (i.e., variance at
timepoint N+ 1= 0), this would yield a null correlation (r= 0; representational
structure fully abolished).
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To specifically consider the relationship between representational structure at
pre-IP and representational structure at the IP (related to Fig. 3c), we binned
pairmates, by quartile (using the cut function in base R), according to pairmate
similarity scores at pre-IP and then computed pairmate similarity scores, for each
quartile, at the IP. The quartile analysis was performed within subject and separately
for CA3/dentate gyrus and CA1. The mean number of pairmates included in each
pre-IP bin were 3.42, 2.90, 3.10, and 2.55 for quartiles 1–4, respectively. The decision
to divide pre-IP pairmate similarity scores into four bins was motivated by evidence,
from conceptually related studies, of non-monotonic relationships between initial
memory activation/competition and experience-dependent plasticity43,65. While
formally testing for non-monotonic relationships was beyond the scope of the
current study, the goal was to allow for qualitative inspection of the relationship.
Notably, similar results were obtained when pre-IP pairmate similarity scores were
binned by terciles or quintiles (Supplementary Fig. 3).

Scene-object similarity. To calculate pattern similarity between scenes and objects
(related to Fig. 4), activation patterns for objects were first generated by averaging
t-maps across the two object exposure phases, resulting in a single, mean activity
pattern for each object. These object-specific activity patterns were then correlated
with activity patterns from the scene exposure phases at LR-1 (i.e., the pre-learned
state) and LR (i.e., the learned state). Correlations were separated into three groups:
(1) target correlations refer to the correlation between a scene and the object it was
associated with during the study phase (e.g., “lighthouse 1” and “guitar 1”), (2)
competitor correlations refer to the correlation between a scene and the object that
was associated with that scene’s pairmate during the study phase (e.g., “lighthouse
1” and “guitar 2”), and (3) across pairmate correlations refer to correlations
between a scene and an object that was not associated with that scene or its
pairmate during the study phase (e.g., “lighthouse 1” and “scissors 1”). Target and
competitor correlations were expressed relative to across pairmate correlations.

Statistics and reproducibility. To compare pairmate similarity scores and other
measures across ROIs and learning states, repeated measures ANOVAs and paired
samples t-tests were used. To test whether pairmate similarity scores and other
measures were significantly positive or negative (i.e., above/below 0), one-sample t-
tests were used. To test whether the negative pairmate similarity score observed in
CA3/dentate gyrus at the IP depending on the specific mapping between behavioral
and fMRI measures, we randomly shuffled the mapping between the behavioral IP
and scene pairmate, within each participant (see Fig. 1d), and then computed the
group-level mean pairmate similarity score at the permuted IP. This was repeated
1000 times, producing a distribution of 1000 permuted means. The observed
pairmate similarity score at the IP was then compared against this distribution of
permuted means. Data analysis was performed in R 3.5.0 and its associated
libraries. All of the data and results reported here reflect a single experiment; an
independent replication was not conducted.

Reporting Summary. Further information on research design is available in the Nature

Research Reporting Summary linked to this article.

Data availability
The MRI data generated in this study have been deposited on Openneuro.org (DOI:

10.18112/openneuro.ds003707.v1.0.0)66. The stimuli used and the behavioral data

generated in this study have been deposited on osf.io (https://doi.org/10.17605/OSF.IO/

VPQ2X)67. The source data underlying all Figures and Supplementary Figures are

provided as a source data file with this paper. Source data are provided with this paper.

Code availability
Analysis scripts are available at [https://github.com/wanjiag/NEUDIF_analysis].
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