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Abrupt transition in the structural formation of
interconnected networks

Filippo Radicchi1,2* and Alex Arenas3,4

Our world is linked by a complex mesh of networks through
which information, people and goods flow. These networks
are interdependent on each other, and present structural and
dynamical features1–6 different from those observed in isolated
networks7–9. Although examples of such dissimilar properties
are becoming more abundant—such as in diffusion, robustness
and competition—it is not yet clear where these differences are
rooted. Here we show that the process of building independent
networks into an interconnected network of networks under-
goes a structurally sharp transition as the interconnections are
formed. Depending on the relative importance of inter- and
intra- layer connections, we find that the entire interdependent
system can be tuned between two regimes: in one regime,
the various layers are structurally decoupled and they act as
independent entities; in the other regime, network layers are
indistinguishable and the whole system behaves as a single-
level network. We analytically show that the transition between
the two regimes is discontinuous even for finite-size networks.
Thus, any real-world interconnected system is potentially at
risk of abrupt changes in its structure, which may manifest new
dynamical properties.

Interacting, interdependent or multiplex networks are different
ways of naming the same class of complex systems where networks
are not considered as isolated entities but interacting with each
other. In multiplex, the nodes at each network are instances of the
same entity; thus, the networks are representing simply different
categorical relationships between entities, and usually categories are
represented by layers. Interdependent networks is a more general
frameworkwhere nodes can be different at each network.

Many, if not all, real networks are coupled with other real
networks. Examples can be found in several domains: social
networks (for example, Facebook, Twitter and so on) are coupled
because they share the same actors10; multimodal transportation
networks are composed of different layers (for example, bus, sub-
way and so on) that share the same locations11; the functioning of
communication and power grid systems depends one on the other1.
So far, all phenomena that have been studied on interdependent
networks, including percolation1,3, epidemics4 and linear dynamical
systems5, have provided results that differ much from those valid in
the case of isolated complex networks. Sometimes the difference is
radical: for example, whereas isolated scale-free networks are robust
against failures of their nodes or edges12, scale-free interdependent
networks are instead very fragile1,3.

Given such observations, two fundamentally important the-
oretical questions are in order: Why do dynamical and critical
phenomena running on interdependent network models differ
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Figure 1 | Interdependent networks. a, Schematic example of two
interdependent networks A and B. In this representation, nodes of the same
colour are one-to-one interdependent. b, In our model, inter-layer edges
have weights equal to p.

so much from their analogues in isolated networks? What are
the regimes of applicability of the theory valid for isolated
networks to interdependent networks? Here, we provide an analytic
answer to both of these questions by characterizing the structural
properties of the whole interconnected network in terms of the
networks that compose it.

For simplicity, we consider here the case of two interdependent
networks. The following method can be, however, generalized to
an arbitrary number of interdependent networks and its solution
is reported in the Supplementary Information. We assume that
the two interdependent networks A and B are undirected and
weighted, and that they have the same number of nodes N . The
weighted adjacency matrices of the two graphs are indicated as
A and B, respectively, and they both have dimensions N × N .
With this notation, the element Aij = Aji is equal to the weight
of the connection between the nodes i and j in network A. The
definition of B is analogous.

We consider the case of one-to-one symmetric interdependency1
between nodes in the networks A and B (Fig. 1a). In the
more general case of multiple interdependencies, the solution
is qualitatively similar (see Supplementary Information). The
connections between interdependent nodes of the two networks
are weighted by a factor p (see Fig. 1b), any other weighted
factor for the networks A and B is implicitly absorbed in their
weights. The supra-adjacency matrix G of the whole network
is therefore given by

G=
(

A p1
p1 B

)
(1)

where 1 is the identitymatrix of dimensionsN×N .
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Using this notation we can define the supra-Laplacian of the
interconnected network as

L=
(

LA+p1 −p1
−p1 LB+p1

)
(2)

The blocks present in L are square symmetric matrices of
dimensions N ×N , In particular, LA and LB are the Laplacians of
the networks A and B, respectively.

Our investigation focuses on the analysis of the spectrum of the
supra-Laplacian to ascertain the origin of the structural changes of
themerging of networks in an interconnected system. The spectrum
of the Laplacian of a graph is a fundamentalmathematical object for
the study of the structural properties of the graph itself. There are
many applications and results on graph Laplacian eigenpairs and
their relations to numerous graph invariants (including connectiv-
ity, expanding properties, genus, diameter,mean distance and chro-
matic number) as well as to partition problems (graph bisection,
connectivity and separation, isoperimetric numbers,maximumcut,
clustering, graph partition), and approximations for optimization
problems on graphs (cutwidth, bandwidth, min-p-sum problems,
ranking, scaling, quadratic assignment problem)13–16.

Note that, for any graph, all eigenvalues of its Laplacian are
non-negative numbers. The smallest eigenvalue is always equal to
zero and the eigenvector associated with it is trivially a vector
whose entries are all identical. The second smallest eigenvalue
λ2 also called the algebraic connectivity17 is one of the most
significant eigenvalues of the Laplacian. It is strictly larger than zero
only if the graph is connected. More importantly, the eigenvector
associated with λ2, which is called the characteristic valuation
or Fiedler vector of a graph, provides even deeper information
about its structure18–20. For example, the components of this vector
associated with the various nodes of the network are used in spectral
clustering algorithms for the bisection of graphs21.

Our approach consists of the study of the behaviour of the
second smallest eigenvalue of the supra-Laplacian matrix L and
its characteristic valuation as a function of p, given the single-layer
network Laplacians LA and LB.

According to the theorem of refs 22,23 (that is, the so-called
min–maxprinciple), the second smallest eigenvalue of L is given by

λ2(L)=min
|v〉∈V
〈v|L|v〉 (3)

where |v〉∈V is such that 〈v|1〉=0,〈v|v〉=1.
The vector |1〉 has 2N entries all equal to 1. Equation (3) means

that λ2(L) is equal to the minimum of the function 〈v|L|v〉, over
all possible vectors |v〉 that are orthogonal to the vector |1〉 and
that have norm equal to one. The vector for which this minimum is
reached is thus the characteristic valuation of the supra-Laplacian
(that is, L|v〉= λ2|v〉).

We distinguish two blocks of size N in the vector |v〉 by writing
it as |v〉= |vA,vB〉. In this notation, |vA〉 is the part of the eigenvector
whose components correspond to the nodes of network A, and |vB〉
is the part of the eigenvector whose components correspond to the
nodes of network B. We can now write

〈v|L|v〉 = 〈vA,vB|L|vA,vB〉= 〈vA|LA |vA〉+〈vB|LB |vB〉

+ p(〈vA|vA〉+〈vB|vB〉−2〈vA|vB〉)

and the previous set of constraints as 〈vA|1〉 + 〈vB|1〉 = 0 and
〈vA|vA〉 + 〈vB|vB〉 = 1, where now all vectors have dimension
N . Accounting for such constraints, we can finally rewrite the
minimization problem as

λ2(L)= p+min
|v〉∈V
{〈vA|LA |vA〉 +〈vB|LB |vB〉−2p〈vA|vB〉

}
(4)

This minimization problem can be solved using Lagrange
multipliers (see Supplementary Information for technical details).

In this way we are able to find that the second smallest eigenvalue
of the supra-Laplacian matrix L is given by

λ2(L)=

{
2p , if p≤ p∗

≤
1
2λ2(LA+LB) , if p≥ p∗ (5)

This indicates that the algebraic connectivity of the interconnected
system follows two distinct regimes, one in which its value is
independent of the structure of the two layers, and the other in
which its upper bound is limited by the algebraic connectivity of
the weighted superposition of the two layers whose Laplacian is
given by (1/2)(LA+LB).More importantly, the discontinuity in the
first derivative of λ2 is reflected in a radical change of the structural
properties of the system happening at p∗ (see Supplementary
Information). This pronounced change is visible in the coordinates
of characteristic valuation of the nodes of the two network layers. In
the regime p≤p∗, the components of the eigenvector are

|vA〉=−|vB〉 where |vA〉=±
1
√
2N
|1〉 (6)

This means that the two network layers are structurally discon-
nected and independent. For p≥p∗, we have

〈vA|1〉= 〈vB|1〉= 0 (7)

which means that the components of the vector corresponding
to interdependent nodes of network A and B have the same
sign, whereas nodes in the same layer have alternating signs.
Thus, in this second regime, the system connectivity is dominated
by inter-layer connections, and the two network layers are
structurally indistinguishable.

The critical value p∗ at which the transition occurs is the point at
which we observe the crossing between the two different behaviours
of λ2, which means

p∗≤
1
4
λ2(LA+LB) (8)

This upper bound becomes exact in the case of identical network
layers (see Supplementary Information). As inter-layer connections
have weights that grow with p, the transition happens at the point
at which the weight of the inter-layer connections exceeds the half
part of the inverse of the algebraic connectivity of the weighted
super-position of both network layers (Fig. 2). In the case of `

network layers, the result is equivalent to the superposition of all
of them (see Supplementary Information).

It is important to note that the discontinuity in the first
derivative of λ2(L) can be interpreted as the consequence of the
crossing of two different populations of eigenvalues (see the case
of identical layers in the Supplementary Information). The same
crossing will also happen for the other eigenpairs of the graph
Laplacian (except for the smallest and the largest ones), and thus
will reflect in the discontinuities in the first derivatives of the
corresponding eigenvalues.

A physical interpretation of the algebraic phase transition that
we are able to analytically predict can be given by viewing the
function 〈v|L|v〉 as an energy-like function. From this point of view,
equation (3) becomes equivalent to a search for the ground-state
energy, and the characteristic valuation can be viewed as the
ground-state configuration. This analogy is straightforward if one
realizes that equation (3) is equivalent to the minimization of the
weighted cut of the entire networked system (whose adjacency
matrix G is defined in equation (1)), and that the minimum of
this function corresponds to the ground state of a wide class of

718 NATURE PHYSICS | VOL 9 | NOVEMBER 2013 | www.nature.com/naturephysics

© 2013 Macmillan Publishers Limited. All rights reserved

http://www.nature.com/doifinder/10.1038/nphys2761
http://www.nature.com/naturephysics


NATURE PHYSICS DOI: 10.1038/NPHYS2761 LETTERS

0.5

1.0

1.5

2.0
a eb

c

d

2
¬0.5

0.0

0.5

〈v
A

|v
B〉

10¬1 100 101 102

p

10¬1 100 101 102

p

10¬1 100 101 102

p

¬5

0

5

〈v
A

|1
〉, 

〈v
B|

1〉¬0.1 0.0 0.1

Characteristic valuation

¬0.1 0.0 0.1

Characteristic valuation

λ

Figure 2 | First-order structural transition in interdependent networks. Algebraic connectivity and Fiedler vector for two interdependent Erdös–Renyí
networks of N= 50 nodes and average degree k̄= 5. We consider a single realization of this model in which the critical point is p∗=0.602(1).
a, Characteristic valuation of the nodes in the two network layers for p=0.602. b, Algebraic connectivity of the system (black line). The discontinuity of
the first derivative of λ2 is very clear. The two different regimes 2p and λ2(LA+LB)/2 are shown as red dot–dashed and blue dashed lines, respectively.
c, Inner product 〈vA|vB〉 between the part of the Fiedler eigenvector (|vA〉) corresponding to nodes in the network A and the one (|vB〉) corresponding to
vertices in network B as a function of p. d, Inner products 〈vA|1〉 and 〈vB|1〉 as functions of p. 〈vA|1〉 and 〈vB|1〉 indicate the sum of all components of the
Fiedler vectors |vA〉 and |vB〉, respectively. e, Characteristic valuation of the nodes in the two network layers for p=0.603.

energy functions24 and fitness landscapes25. These include, among
others, the energy associated with the Ising spin models26 and
cost functions of combinatorial optimization problems, such as
the travelling salesman problem27. In summary, the structural
transition of interdependent networks involves a discontinuity
in the first derivative of an energy-like function, and thus,
according to the Ehrenfest classification of phase transitions, it is
a discontinuous transition28.

As the transition at the algebraic level has the same nature as
the connectivity transition studied in ref. 1 in the same class of
networked systems, it is worth discussing the relations between the
two phase transitions. We can reduce our model to the annealed
version of the model considered in ref. 1 by setting A= t 2A, B= t 2B
and p= t , with 1− t being the probability that one node in one
of the networks fails (see Supplementary Information). All of the
results stated so far hold, with only two different interpretations.
First, the upper bound of equation (8) becomes a lower bound for
the critical threshold of the algebraic transition that reads in terms
of occupation probability as

tc ≥
4

λ2(LA+LB)
(9)

Second, the way to look at the transition must be reversed: network
layers are structurally independent (that is, the analogue of the
non-percolating phase) for values of t ≤ tc , whereas they become
algebraically connected (that is, the analogue of the percolating
phase) when t ≥ tc .

As is well known, the algebraic connectivity represents a lower
bound for both the edge connectivity and node connectivity of a
graph (that is, respectively the minimal number of edges or nodes
that should be removed to disconnect the graph)17. Indeed, the
algebraic connectivity of a graph is often used as a control parameter
to make the graph more resilient to random failures of its nodes

or edges29. Thus, the lower bound of equation (9) represents also
a lower bound for the critical percolation threshold measured in
ref. 1. Interestingly, our prediction turns out to be a sharp estimate
of the lower bound. For the Erdős–Rényi model, we have in fact
tc ≥ 2/k̄, if the two networks have the same average degree k̄,
and this value must be compared with 2.455/k̄ as predicted in
refs 1,3. Similarly, we are able to predict that tc grows as the degree
distribution of the network becomes more broad14, in the same way
as numerically observed in ref. 1.

Although we are not able to directly map the algebraic transition
to the percolation one, we believe that the existence of a first-
order transition at the algebraic level represents indirect support
for the discontinuity of the percolation transition. We further
emphasize that the transition is effectively present only if tc ≤ 1,
and thus according to equation (9) only if λ2(LA+LB)≥ 4. This
condition is verified for network layers that have a sufficiently
large connectivity, and this qualitatively confirms the observation
in ref. 30 regarding a change in the nature of the percolation phase
transition in interdependent networks with variable numbers of
interdependent nodes.

In conclusion, we would like to briefly discuss the deep practical
implications of our results. The abrupt nature of the structural
transition is, in fact, not only visible in the limit of infinitely
large systems, but for networks of any size. Thus, even real
networked systems composed of few elements may be subjected to
abrupt structural changes, including failures. Our theory provides,
however, fundamental aids for the prevention of such collapses.
It allows, in fact, not only the prediction of the critical point
of the transition, but, more importantly, to accurately design
the structure of such systems to make them more robust. For
example, the percolation threshold of interconnected systems
can be simply decreased by increasing the algebraic connectivity
of the superposition of the network layers. This means that
an effective strategy to make an interdependent system more
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robust is to avoid the repetition of edges among layers, and
thus bring the superposition of the layers as close as possible to
an all-to-all topology.
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