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Abstract
The level of abscisic acid (ABA) in any particular tissue in a plant is
determined by the rate of biosynthesis and catabolism of the hormone.
Therefore, identifying all the genes involved in the metabolism is es-
sential for a complete understanding of how this hormone directs plant
growth and development. To date, almost all the biosynthetic genes have
been identified through the isolation of auxotrophic mutants. On the
other hand, among several ABA catabolic pathways, current genomic
approaches revealed that Arabidopsis CYP707A genes encode ABA 8′-
hydroxylases, which catalyze the first committed step in the predom-
inant ABA catabolic pathway. Identification of ABA metabolic genes
has revealed that multiple metabolic steps are differentially regulated to
fine-tune the ABA level at both transcriptional and post-transcriptional
levels. Furthermore, recent ongoing studies have given new insights
into the regulation and site of ABA metabolism in relation to its physi-
ological roles.
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INTRODUCTION

ABA: abscisic acid

MVA: mevalonic acid

MEP pathway:
Isopentenyl
diphosphate derives in
plastids from pyruvate
and glyceraldehyde
3-phosphate via the
formation of
2-C-methyl-d-
erythritol-4-phosphate
(MEP). In higher
plants, both MVA and
MEP pathways
coexist, in contrast to
many eubacteria and
green algae, in which
only the MEP pathway
is present.

ABA belongs to a class of metabolites known
as isoprenoids, also called terpenoids. They
derive from a common five-carbon (C5) pre-
cursor, isopentenyl (IDP). Until recently, it
was thought that all isoprenoids were syn-
thesized from MVA. However, recently, an
alternative pathway to synthesize IDP was dis-
covered, first in certain eubacteria and then
in higher plants (65a, 89a). Plastidic iso-
prenoids, including carotenoids, originate from
IDP synthesized from this MVA-independent
pathway, called the 2-C-methyl-d-erythritol-4-
phosphate (MEP) pathway (24, 89).

Although ABA contains 15 carbon atoms, in
plants it is not derived directly from the C15

sesquiterpene precursor, farnesyl diphosphate
(FDP), but is rather formed by cleavage of C40

carotenoids originating from the MEP pathway
(47, 56, 72). Evidence for ABA synthesis from
carotenoids has been obtained by 18O label-
ing experiments, molecular genetic analysis of
auxotrophs, and biochemical studies. The mile-

stones of the discovery of this “indirect path-
way” are described in detail in the previous re-
view on ABA metabolism in this series (128).

ABA BIOSYNTHETIC AND
CATABOLIC PATHWAYS

The molecular basis of ABA metabolism was
established by genetic approaches. Most of
viviparous mutants in maize are defective in
carotenoid biosynthesis (68). These mutants
showed an albino phenotype with a reduced
ABA level. In contrast, in a variety of plant
species, phenotypes of mutants defective in
downstream of xanthophyll cycle are most likely
due to ABA deficiency, which is characterized
by a wilty plant and production of nondormant
seeds. Several recent reviews described the up-
stream of ABA biosynthesis, particularly MEP
and carotenoid pathways (24, 28, 89). There-
fore, we focus on the current advances in ABA
biosynthetic steps following xanthophyll for-
mation and on the catabolic pathway. Several
other reviews describing the ABA metabolic
pathway were recently published (20, 98, 101,
120).

ABA Biosynthesis

Epoxy-carotenoid synthesis. Zeaxanthin is
produced as a trans-isomer after cyclization
and hydroxylation of all-trans-lycopene via ß-
carotene. The following steps consist of the
synthesis of cis-isomers of violaxanthin and
neoxanthin that will be cleaved to form a C15

precursor of ABA (Figure 1).
Conversion of zeaxanthin to violaxanthin is

catalysed by zeaxanthin epoxidase (ZEP) via the
intermediate antheraxanthin. The ZEP gene,
which was first cloned in Nicotiana plumbagini-
folia by insertional mutagenesis, encodes a pro-
tein with sequence similarities to FAD-binding
monooxygenases that requires ferredoxin (14,
67). Mutants impaired in ZEP have been iso-
lated in several species, including Arabidop-
sis (60, 69, 77, 119), N. plumbaginifolia (67),
and rice (1). They accumulate zeaxanthin and
show a severe reduction in ABA content, which
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Figure 1
ABA biosynthetic pathway. Synthesis of violaxanthin is catalyzed by zeaxanthin epoxidase (ZEP). A reverse
reaction occurs in chloroplasts in high light conditions catalysed by violaxanthin de-epoxidase (VDE). The
formation of cis-isomers of violaxanthin and neoxanthin may require two enzymes, a neoxanthin synthase
(NSY) and an isomerase. Cleavage of cis-xanthophylls is catalysed by a family of 9-cis-epoxycarotenoid
dioxygenases (NCED). Xanthoxin is then converted by a short-chain alcohol dehydrogenase (ABA2) into
abscisic aldehyde, which is oxidized into ABA by an abscisic aldehyde oxidase (AAO3). AAO3 protein
contains a molydenum cofactor activated by a MoCo sulfurase. A list of defective mutants, which have been
named separately depending on species or selective screens, is given on the right side of each enzymatic step.
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leads to a wilty phenotype and production of
nondormant seeds. In Arabidopsis, mutations
causing amino acid substitutions in the
monooxygenase domain impair enzyme func-
tion, indicating that this domain might be im-
portant for activity (69, 119).

SDR: short-chain
dehydrogenase/
reductase

Synthesis of neoxanthin from violaxanthin is
not fully elucidated. By homology to lycopene
β-cyclase (LCYB) and capsanthin capsorubin
synthase from pepper, putative neoxanthin syn-
thase (NSY ) genes of tomato and potato have
been isolated (2, 13). However, no NSY ho-
mologous gene could be found in the Ara-
bidopsis genome that contains a unique LCYB
gene (28). Furthermore, mutations in the puta-
tive tomato NSY gene were later found to af-
fect ß-carotene synthesis from lycopene, there-
fore proving that this gene encoded a LCYB
isoform (90). Recently, mutants lacking neox-
anthin isomers were identified in Arabidopsis
(H. North & A. Marion-Poll, unpublished re-
sults) and tomato ( J. Hirchberg, personal com-
munication). The Arabidopsis gene has been
cloned (H. North & A. Marion-Poll, unpub-
lished) and further biochemical analysis will
indicate whether the encoded protein exhibits
NSY activity and produces only all-trans neox-
anthin or both neoxanthin isomers. The gene
encoding a trans-cis isomerase has not yet been
found.

Xanthophyll cleavage. Nine-cis-epoxycarot-
enoid dioxygenase (NCED) enzymes cleave the
cis-isomers of violaxanthin and neoxanthin to
a C15 product, xanthoxin, and a C25 metabo-
lite (98). The first NCED gene (VP14) was
cloned in maize by insertional mutagenesis
(99, 109). Maize VP14 recombinant protein
was able to cleave 9-cis-violaxanthin and 9′-cis-
neoxanthin but not trans-xanthophyll isomers
(99). Enzyme activity requires iron and oxy-
gen to form a cis-isomer of xanthoxin (99). In
all plant species analyzed, NCED genes be-
long to a multigene family. In accordance, nced
mutants, such as vp14 of maize and notabilis
of tomato, exhibit mild ABA-deficient pheno-
types due to gene redundancy (17, 109). In Ara-
bidopsis, nine NCED-related sequences have

been identified, and the sequence and func-
tional analyses indicate that five of them (At-
NCED2, 3, 5, 6, and 9) are most probably in-
volved in ABA biosynthesis (50, 98). Recently,
a new leading compound for ABA biosynthesis
inhibitors targeting the NCED was developed
(39). This inhibitor might facilitate the study
of ABA-mediated physiology in many plant
species for which genetic approaches are not
available.

As is the case for other carotenoid biosyn-
thesis enzymes, NCED proteins from various
species are chloroplast-targeted (51, 83, 107,
108). Because the following enzymatic reaction
takes place in the cytosol (18), xanthoxin is pre-
sumed to migrate from plastid to cytosol by an
unknown mechanism.

C15 cytosolic pathway. ABA, the biologically
active form, is produced from cis-xanthoxin by
two enzymatic steps via the intermediate ab-
scisic aldehyde (Figure 1). To date, genes en-
coding these enzymes have been identified only
from Arabidopsis. The conversion of xanthoxin
to abscisic aldehyde is catalysed by AtABA2,
belonging to the SDR family. This gene was
identified by map-based cloning (18, 35) after
the isolation of numerous Arabidopsis mutant al-
leles from various genetic screens (35, 65, 69,
74, 85, 91). AtABA2 protein is encoded by a
single gene in the Arabidopsis genome; there-
fore, loss-of-function of this gene leads to a
severe ABA deficiency. Mutations have been
identified in putative functional domains (NAD
binding domain, catalytic center, subunit in-
teracting helix, and substrate binding site) that
affect ABA production, indicating the impor-
tance of these domains for enzyme activity (35).
Furthermore, intragenic complementation be-
tween mutant alleles suggests that AtABA2
might have a multimeric structure in accor-
dance with the dimeric or tetrameric structure
for most SDR proteins from various organisms
(54, 69, 91).

The oxidation of the abscisic aldehyde to
the carboxylic acid is the final step in ABA
biosynthesis, catalyzed by an abscisic aldehyde
oxidase. Among four Arabidopsis aldehyde
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Figure 2
ABA catabolic pathways. Three different hydroxylation pathways are shown. The 8′-hydroxylation is
thought to be the predominant pathway for ABA catabolism. Asterisks indicate targets for the conjugation.
Red and blue asterisks indicate active and less-active hydroxy groups for conjugation, respectively.

oxidases (AAOs), AAO3 encodes an enzyme
active on abscisic aldehyde (102). The aao3-1
mutant, containing a mutation in an
intron-splicing site, showed a wilty phe-
notype but only a minor reduction in seed
dormancy, compared to other Arabidopsis aba
mutants affected on unique genes. This mild
seed phenotype was thought to be attributed
to gene redundancy and it had been postu-
lated that other AAO genes might also be
involved in ABA biosynthesis (100). However,
identification of null aao3 alleles exhibiting
significant ABA-deficient phenotypes in seeds
indicated that AAO3 is most likely the only
AAO gene involved in ABA synthesis (34,
99a).

Aldehyde oxidase requires a molybdenum
cofactor (MoCo) for its catalytic activity.
Therefore, mutations in the genes for MoCo
biosynthesis lead to ABA deficiency. Consistent
with this, mutations in the FLACCA in tomato
(92) and AtABA3 in Arabidopsis (10, 122) en-

coding a MoCo sulfurase confer the expected
ABA-deficient phenotypes.

ABA Catabolism

ABA catabolism is largely categorized into two

PA: phaseic acid

DPA: dihydrophaseic
acid

types of reactions, hydroxylation and conju-
gation (Figure 2). There are three different
ABA hydroxylation pathways that oxidize one
of the methyl groups of the ring structure
(C-7′, C-8′, and C-9′). Three forms of hydrox-
ylated ABA contain substantial biological ac-
tivities (130, 131), but hydroxylation triggers
further inactivation steps. The hydroxylation
at C-8′ position is commonly thought to be the
predominant ABA catabolic pathway (20, 128).
In addition to hydroxylation pathways, ABA
and its hydroxylated catabolites [8′-hydroxy
ABA, PA, DPA, and epi-DPA] are conjugated
to glucose (15, 45). A minor inactive form, 2-
trans-ABA, was also identified. The cis-trans iso-
merization is a photo-permissive equilibrium
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reaction and is not an enzymatic conversion in
tomato (70).

ABA hydroxylation. Among the ABA cata-P450: Cytochrome
P450 monooxygenases
are heme-containing
enzymes that catalyze
the oxidative reaction
of diverse organic
compounds by
utilizing atmospheric
O2.

EST: expressed
sequence tag

bolic pathways, the 8′-hydroxylation is report-
edly the major regulatory step in many phys-
iological events controlled by ABA. In accor-
dance, PA and DPA are the most widespread
and abundant ABA catabolites (20, 128). In
addition, ABA analogs modified at the C-8′

methyl group that are resistant to the hy-
droxylation exhibit stronger ABA-like activi-
ties compared to other substitutions (21, 113,
115). ABA 8′-hydroxylation is catalyzed by a
cytochrome P450 monooxygenase (P450) and
8′-hydroxy ABA is then isomerized sponta-
neously to PA (32, 61). Ninety-eight percent
of 8′-hydroxy ABA exist as PA at the equilib-
rium under normal laboratory conditions (114).
Although this isomerization occurs quickly
in vitro, this reaction is thought to be cat-
alyzed enzymatically in vivo (71). PA is fur-
ther catabolized to DPA by a soluble reductase
(32).

ABA is biologically inactivated in a stepwise
manner during the course of catabolism. The
8′-hydroxy ABA contains substantial biologi-
cal activity (4, 131). Spontaneous cyclization
to form PA causes a significant reduction in
biological activity, although the degree of re-
duction varies among bioassays (8, 9, 38, 44,
88, 131). Recent reports showed that the ABA-
binding proteins from apple fruit and barley
aleurone layers are unable to bind to PA (87,
129), suggesting that PA is an inactive catabolite
at least for some physiological processes. DPA
is inactive in various bioassays; therefore ABA
inactivation is complete by this stage (116).

The 7′-hydroxy ABA is found in a variety of
plant species as the minor catabolite (116, 128),
and 9′-hydroxy ABA and its isomer neoPA were
recently identified as abundant ABA catabolites
in Brassica napus immature seed (130). In ad-
dition, this 9′-hydroxylated product appears to
exist also in other plant species such as pea, or-
ange, barley, and Arabidopsis (130). Further in-
vestigation of this catabolic route should eluci-
date new aspects of ABA catabolism.

Identification of CYP707A genes encod-
ing ABA 8′-hydroxylase. Recently, Arabidop-
sis P450 CYP707A genes were identified by
the reverse genetic approach to encode ABA
8′-hydroxylases (62, 93). Biochemical analysis
showed that the recombinant CYP707A pro-
tein converts ABA to PA in vitro, but none of
the other hydroxylated catabolites (such as 7′-
hydroxy or 9′-hydroxy ABA) were produced.
CYP707A does not appear to be involved in cy-
clization of 8′-hydroxy ABA to PA because ABA
is primarily converted to 8′-hydroxy ABA in a
short incubation period and then 8′-hydroxy
ABA is autoisomerized to PA (93). The ac-
tivity of CYP707A was inhibited by a P450
inhibitor tetcyclasis, which was originally de-
veloped as an inhibitor of GA biosynthesis,
but not by another P450 inhibitor metyrapone
(62). This indicates that CYP707A discrimi-
nates between two different known P450 in-
hibitors. Therefore, it might be possible to de-
velop a specific inhibitor of this enzyme in the
future.

CYP707A appears to be widespread in many
plant species. CYP707A-related sequences are
found in rice genome and among ESTs from
tomato, soybean, and maize (http://drnelson.
utmem.edu/CytochromeP450.html). CYP
707A sequences are also identified in lettuce
and wheat (T. Toyomasu, N. Kawakami & E.
Nambara, unpublished results).

ABA conjugation. The carboxyl (at the C-1)
and hydroxyl groups of ABA and its oxidative
catabolites are the potential targets for conju-
gation with glucose (Figure 2). ABA glucosyl
ester (ABA-GE) is the most widespread con-
jugate (15). In addition to the glucosyl esters,
other conjugates with the hydroxyl groups of
ABA and its hydroxylated catabolites are also
reported. ABA conjugates had been thought to
be physiologically inactive and accumulate in
vacuoles during aging (16, 63). However, re-
cently ABA-GE was proposed to be involved
in long-distance transport of ABA (42, 118).
ABA-GE was identified as an allelopathic sub-
stance of Citrus junis (57), and soil in agricul-
tural fields contains higher concentrations of
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ABA-GE (up to 30 nM) than ABA. It has been
hypothesized that ABA-GE is taken up by the
root (96). Furthermore, ABA-GE is the most
abundant catabolite in the sunflower xylem sap
(40). ß-d-glucosidase releases ABA from ABA-
GE in wheat, barley, and sunflower (23, 64,
95). The ß-d-glucosidase activity is enhanced
by salinity and is inhibited competitively by
ABA-GE or zeatin riboside. However, because
ABA-GE cannot migrate passively through the
plasma membrane, the molecular mechanism
underlying the transport of ABA or its conju-
gates remains unclear.

Identification of the AOG gene encoding
ABA glucosyltransferase. The AOG gene en-
coding ABA glucosyltransferase was identified
from adzuki bean as the first reported gene
for ABA catabolism (123). The AOG recom-
binant protein can conjugate ABA with UDP-
d-glucose. AOG exhibits a broad substrate
specificity compared to other ABA catabolic
enzyme CYP707As. AOG catalyzes the con-
jugation of 2-trans-ABA to glucose more effi-
ciently than natural 2-cis-ABA, consistent with
previous feeding experiments in tomato (70).
AOG can also use an ABA analog (-)-R-ABA
or cinnamic acid as substrates, but not the im-
mediate ABA catabolite PA. Therefore, PA and
DPA glucosylation might be catalyzed by dif-
ferent enzymes (123).

REGULATION OF ABA
METABOLISM IN RELATION
TO ITS PHYSIOLOGICAL ROLES

Regulatory Steps, Factors, and Levels

The endogenous ABA level is modulated by
the precise balance between biosynthesis and
catabolism of this hormone. With regard to
ABA biosynthesis, NCED has been proposed
to be the regulatory enzyme because its expres-
sion is well correlated to endogenous ABA con-
tent (98) and its overexpression confers a signif-
icant ABA accumulation (50, 84, 111). On the
other hand, ABA 8′-hydroxylase is most likely

the major regulatory enzyme in many physio-
logical processes, as described below (20, 62,
93, 128).

Aside from these two main regulatory steps
in the ABA metabolic pathway, metabolic steps
upstream of ABA metabolism also contribute
to determining the ABA level. Overexpres-
sion of genes encoding regulatory enzymes
for the MEP pathway (1-deoxy-d-xylulose 5-
phosphate synthase), carotenoid biosynthesis
(phytoene synthase), and xanthophyll cycle
(ZEP) causes an enhanced accumulation of ABA
in seeds or seedlings (25, 29, 66). Taken to-
gether, this indicates that the regulation of ABA
metabolism is not merely restricted to spe-
cific steps in ABA metabolism (i.e., NCED and
CYP707A), but is also coordinated with the up-
stream metabolism.

To date, the regulation of ABA metabolism
has been studied mostly at the transcription
level. This process is differentially regulated by
external and endogenous signals. In particular,
the expression of AtNCED3, AAO3, AtABA3,
and AtZEP, but not AtABA2, genes are induced
by dehydration in Arabidopsis, as detailed be-
low, whereas the expression of AtABA2, AtZEP,
and AAO3, but not AtNCED3, are induced by
application of glucose that induces ABA accu-
mulation (18). Moreover, all four Arabidopsis
CYP707A genes are induced by osmotic stresses
(62). In addition to external signals, the expres-
sion of the CYP707A3 is positively regulated by
gibberellin (GA) and brassinolide (93), indicat-
ing that CYP707A genes function as the node
of hormone interactions. Aside from these in-
teractions, several reports indicate that many
biosynthetic and catabolic genes are also up-
regulated by the application of ABA, suggesting
that ABA might regulate its own accumulation
(18, 62, 93, 119, 121, 123).

Genetic analysis of the sad1 (supersensitive
to ABA and drought) mutant of Arabidopsis in-
dicated that ABA biosynthesis is also regulated
at the level of mRNA stability. The SAD1 lo-
cus encodes a peptide similar to multifunctional
Sm-like snRNP proteins required for mRNA
processing (121). The sad1 mutant shows re-
duced levels of ABA and PA, and expression
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Figure 3
Localization of the
pAAO3::AAO3-GFP
protein in guard cells.
A representative view
of turgid transgenic
Arabidopsis carrying
pAAO3::AAO3-GFP
is shown.

and feeding analyses demonstrated that SAD1
is a positive regulator of AAO3 and AtABA3.
Although it is unclear how SAD1 functions in
regulating feedback on ABA metabolism and
signaling, the identification of several RNA
processing genes through genetic screens sug-
gests that RNA processing is closely tied to the
regulation of these processes.

The Sites of ABA Biosynthesis

Study on the site of ABA biosynthesis is essen-
tial to link the understanding of the regulation
of ABA metabolism to physiology and develop-
ment. Especially, in contrast to stress-induced
ABA accumulation, little is known about the
role and function of ABA in plant growth
and development under unstressed conditions.
Identification of ABA metabolic genes enables
the study of where and when these genes are
expressed in the plant life cycle.

In turgid tissues the expression of AtNCEDs,
AtABA2, and AAO3 genes is observed in vascu-
lar bundles (18, 59, 108). Koiwai et al. (2004)
reported that the AAO3 protein is abundantly
localized in phloem companion cells and xylem
parenchyma cells of turgid plants (59). There-
fore, vascular tissues are probably the main site
of ABA biosynthesis in unstressed plants and

ABA and its precursors might be synthesized in
vascular tissues and transported to target cells
such as stomata.

The localization and regulation of the ex-
pression of biosynthetic genes in guard cells is
particularly interesting with regard to the role
of ABA in stomatal closure. Although many
studies have given evidence for the transport
of ABA to target cells (94), recent data indicate
that ABA synthesis is also active in guard cells.
Through reporter gene analysis AtNCED2 and
AtNCED3 transcripts were expressed in guard
cells of senescent leaves and cotyledons, respec-
tively (108). In addition, the AAO3 encoding
the enzyme for the final step in ABA biosynthe-
sis is induced in guard cells upon stress. In the
same study, by immuno-fluorescence and ex-
pression studies using a reporter-fused protein,
the AAO3 protein was also present in guard
cells (59) (Figure 3). It is, therefore, probable
that ABA synthesized inside guard cells, in con-
cert with transported ABA, triggers the down-
stream signaling cascade leading to stomatal
closure.

Nevertheless, it remains to be elucidated
whether ABA synthesis is still restricted to the
same sites or becomes activated in other plant
tissues under stress conditions.

Regulation of ABA metabolism depends on
internal and external signals, as well as de-
velopmental stages, organs, or tissues. This is
illustrated in the two sections below, which de-
scribe in more detail the regulation of ABA
metabolism genes in two physiological pro-
cesses highly controlled by the hormone, i.e.,
seed physiology and stress tolerance.

ABA Metabolism in Seeds

Embryogenesis and seed maturation. ABA
has a dual role in embryo growth during seed
development, as deduced from the physiologi-
cal analysis of ABA-deficient mutants. In early
embryogenesis, ABA prevents seed abortion
and promotes embryo growth (18, 30). In con-
trast, during late embryogenesis when the hor-
mone level increases, ABA blocks the embryo
growth by counteracting the action of GA to
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promote germination (86, 117). Recent stud-
ies show that the transcription factor FUS3
prevents vivipary in Arabidopsis seeds by posi-
tively regulating ABA levels and downregulat-
ing GA synthesis (31, 73). In addition, mater-
nal ABA can inhibit viviparous germination in
fus3 mutants defective in embryo growth arrest
(86). It will be interesting to see if other de-
velopmental mutants that affect embryogenesis
impinge on ABA metabolism.

Despite the low levels of ABA generally de-
tected during early embryogenesis, the ABA
biosynthetic pathway is apparently active at
this stage. AtZEP, AtNCED5, and AtNCED6
transcripts have been detected in Arabidopsis
young embryos (7, 108). In maternal tissues, the
AtZEP gene was expressed in testa, AtNCED3
and AtABA2 in funicules, and AtNCED5 and
AtNCED6 in maternal nucellar tissues of newly
fertilized ovules (18, 108). These tissues might
provide ABA or its precursors to the embryo,
and in agreement, high ABA levels have been
found in the pedicel/placento-chalazal complex
of maize kernels (53).

A major increase in ABA levels occurs during
the maturation phase in relation to the positive
regulation of a number of genes for seed re-
serves (27). Carotenoid precursors accumulate
in seeds of most plant species and their syn-
thesis is expected to precede their cleavage into
xanthoxin. Consistent with this, maximal ZEP
gene expression in N. plumbaginifolia appears
to peak earlier (6) than that found in Arabidop-
sis NCED genes. Indeed, AtNCED5 and At-
NCED6 show the strongest expression in Ara-
bidopsis embryos at mid- to late-developmental
stages (108). A decrease in the ABA level dur-
ing the desiccation phase is expected to re-
sult from decreased ABA synthesis, as evi-
denced by very low ZEP transcript levels at this
stage (6).

Although ABA catabolites have been de-
tected in developing seeds and reproduc-
tive organs (19, 103), expression studies of
catabolic genes are still limited. CYP707A1 and
CYP707A3 are expressed abundantly during the
mid-stage of Arabidopsis seed development and

are downregulated during late embryo devel-
opment (62).

Seed dormancy and germination. Aside
from its role in embryogenesis and seed mat-
uration, ABA is absolutely required to induce
seed dormancy during late embryogenesis. Ge-
netic studies show that ABA produced by the
embryo itself, and not maternal ABA, is neces-
sary to impose dormancy (37, 55). Besides in-
duction of dormancy in developing seeds, ABA
is involved in maintaining dormancy during im-
bibition (3, 22, 36). Germination is preceded
by a decrease in ABA levels resulting from both
the suppression of de novo synthesis and the
activation of catabolism (26, 62). In contrast,
dormant seeds generally maintain endogenous
ABA at the high levels, and dormancy is ef-
fectively released by the application of fluri-
done, which blocks the synthesis of carotenoid
precursors of ABA. When ABA levels decrease
during seed imbibition, concomitant increases
in PA/DPA levels were observed in barley
(52), lettuce (33), yellow-cedar (97), white pine
(26), and Arabidopsis (62). In high-temperature-
induced dormant lettuce seeds, ABA catabolism
is positively regulated by GA because PA/DPA
accumulation is accelerated by GA application
(33).

In Arabidopsis, the catabolic enzyme
CYP707A2 plays a major role in the rapid
decrease in ABA levels during early seed imbi-
bition (62). CYP707A2 transcripts accumulate
to a high level in dry seed, whereas other
CYP707A transcripts are scarce. CYP707A2
transcript levels increase within six hours of im-
bibition and decrease thereafter. The cyp707a2
seeds exhibit hyperdormancy when sown
without stratification. Furthermore, cyp707a2
dry seeds accumulate sixfold more ABA than
wild type and this high ABA level is maintained
during seed imbibition (62). In addition, gene
expression analysis suggests that CYP707A1
and CYP707A3 are possibly involved in seed
germination and early seedling develop-
ment because their transcripts are gradually
accumulated after 12 hours of imbibition.
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ABA Metabolism in Abiotic Stress
Adaptation

Transcript levels of several ABA biosynthetic
genes are upregulated by osmotic stresses. The
expression of the ZEP gene is induced by both
rapid or progressive drought stress in roots
of N. plumbaginifolia, tomato, and Arabidop-
sis (6, 7, 110). In leaves, the high carotenoid
levels are not likely to contribute positively
to ABA synthesis even under stress condi-
tions. In agreement, no upregulation of the
ZEP gene has been reported in Arabidopsis or
in N. plumbaginifolia and tomato (6, 7, 110).
Moreover, N. plumbaginifolia transgenic plants
overexpressing ZEP transcripts do not exhibit
higher ABA levels and water stress tolerance
compared to wild type (12). However, oppo-
site results were also reported in Arabidopsis
leaves, in which overexpression of the ZEP
gene upregulates the expression of genes in-
duced by drought, salt, and osmotic stress
(119).

The induction of NCED gene expression
has been observed in several species, both in
roots and in leaves (51, 83, 108, 109, 111). De-
tailed studies with the PvNCED1 gene from
Phaseolus vulgaris provide evidence that the
oxidative cleavage of xanthophylls is a major
regulatory step of ABA accumulation under
drought stress. Water stress–induced ABA ac-
cumulation is preceded by large increases in
both PvNCED1 transcript and protein levels
in leaves and roots (83). In Arabidopsis, among
the five NCED genes involved in ABA biosyn-
thesis, only AtNCED3 is highly induced by de-
hydration, although a positive but minor reg-
ulation of the other NCED genes was also
observed (50, 108). In addition, AtNCED3 over-
expression in transgenic Arabidopsis plants in-
creases both ABA levels and desiccation tol-
erance. This result is also seen in tomato and
N. plumbaginifolia after transformation with the
LeNCED1 and PvNCED1 genes, respectively
(84, 111). Interestingly, the induction of At-
NCED3 under stress conditions is reduced in
carotenoid-deficient mutants, suggesting that
the expression level of this gene is correlated

with the levels of its substrates and/or ABA
(112). Furthermore, the induction of this gene
in response to exogenous ABA is highly en-
hanced in ABA-deficient mutant backgrounds
(119).

Biochemical studies indicate that the ac-
tivity of the last two biosynthetic enzymes
is constitutive (105) and AtABA2 transcripts
are not induced upon osmotic stress in Ara-
bidopsis (18). However, the expression of the
two other genes, AAO3 and AtABA3, involved
in the conversion of abscisic aldehyde into
ABA, is upregulated under osmotic stresses
(122).

Although it is clear that ABA biosynthe-
sis is responsive to stress conditions, it is be-
coming evident that the catabolism is also
required to determine the ABA level in re-
sponse to environmental conditions. PA levels
and occasionally DPA levels increase following
the increase in ABA content. Furthermore, the
PA level continues to increase even after ABA
levels reach the plateau. However, when dehy-
drated plants are subsequently rehydrated, the
ABA level decreases and a concomitant increase
in the PA level is observed in the P. vulgaris,
Xanthium strumarium and Arabidopsis (41, 62,
126). In Arabidopsis, multiple CYP707A genes
are expressed in most organs and the ratio of
CYP707A transcripts varies among tissues. The
expression of all CYP707A genes is induced by
dehydration, although the induction is slower
than that of AtNCED3, which encodes the key
biosynthetic enzyme under dehydration condi-
tions in Arabidopsis (62). A significant increase in
all CYP707A transcripts is observed upon rehy-
dration, in accordance with the increase in PA
levels. CYP707A are also upregulated by salin-
ity and osmotic stresses (93). In contrast to PA
and DPA, ABA conjugate levels do not always
vary in parallel to the change in ABA levels,
suggesting that the conjugation is regulated in
particular tissues and conditions (127). In
agreement with this, AOG gene expression
is significantly induced by dehydration and
wounding in adzuki bean hypocotyls, but not
in leaves (123).
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EVOLUTION OF ABA
METABOLISM

ABA Metabolism in Fungi

Some phytopathogens are known to synthe-
size ABA (81). The ABA level is thought
to determine a plant’s susceptibility to these
fungi by negatively regulating the salicylic acid–
dependent defense pathway (5). Studies on fun-
gal ABA biosynthesis have been mostly con-
ducted in Cercospora rosicola, Cercospora cruenta,
Cercospora pini-densiflorae, and Botrytis cinerea.
Feeding experiments using [1-13C]-d-glucose
clearly demonstrate that fungal ABA is derived
from the MVA pathway (47, 124), in contrast
to plant ABA, which originates from the MEP
pathway.

ABA biosynthesis in fungi can be divided
largely into two parts (Figure 4). The isomers
of ionylideneethanol and/or ionylideneacetate
have been identified from several fungi (81).
Therefore, the early steps seem to convert FDP
derivatives to ionylideneacetate, and the lat-
ter steps in their oxidation at C-1′ and C-4′

to produce ABA. Feeding experiments show
that similar but distinct intermediates are iden-
tified among fungal genera (81, 128). This sug-
gests that ABA biosynthetic pathway and/or
its regulation might be different among these
fungi.

In early steps, MVA is converted into ionyli-
deneacetoaldehyde via cyclization and isomer-
ization of FDP derivatives. Direct cyclization of
the sesquiterpene was proposed in fungal ABA
biosynthesis, although experimental evidence is
still missing. 18O2 labeling experiments demon-
strate that the oxygen atom at C-1 of ABA is de-
rived from molecular oxygen in C. cruenta and
B. cinerea (49, 124). This opens two possibili-
ties. One is that dephosphorylation and reduc-
tion of FDP occurs to produce allofarnesene
prior to the cyclization, which is then ox-
idized to ionylideneacetoaldehyde. Alterna-
tively, ionylideneacetoaldehyde is produced via
the cleavage of C40 carotenoids. Some fungi,
such as C. rosicola and C. cruenta, produce β-
carotene and other carotenoids (78, 124), but
carotenoids (except for phytoene) are not found

MVA pathway:
Isopentenyl
diphosphate derives in
the cytosol from
acetyl-coenzymeA via
the formation of MVA.
It is the only pathway
for isoprenoid
synthesis in
archaebacteria, fungi,
and animals.

in other ABA-synthesizing fungus B. cinerea (49,
49a). Recently in B. cinerea and C. cruenta, allo-
farnesene and ionylideneethane were shown to
be endogenous compounds that were able to
convert to ABA (49, 49a). This indicates that
ABA is synthesized by the direct pathway via
the cyclization of allofarnesene and oxidation
of ionylideneethane in this fungus.

The latter steps involve the oxidation
of C-1′ and C-4′ of ionylideneacetate. α-
Ionylideneethanol/ionylideneacetate were con-
verted to ABA and 1′-deoxy ABA in C. rosicola
(75). 1′-Deoxy ABA is thought to be the precur-
sor of ABA in this fungus, because it is oxidized
stereoselectively to ABA (75). On one hand, in
B. cinerea and C. pini-densiflorae, 1′,4′-trans-diol
ABA is likely the predominant precursor whose
endogenous levels are correlated with ABA syn-
thesis (46, 80). On the other hand, 1′,4′-trans-
dihydro-γ -ionylideneacetoaldehyde is thought
to be the intermediate of ABA biosynthesis in
C. cruenta (82). Three oxygen atoms at C-1, C-
1′, and C-4′ derive from atmospheric oxygen
in C. cruenta and B. cinerea (49, 124). In ad-
dition, it has been reported that several P450
inhibitors block the ABA synthesis in C. rosicola
(79), indicating that P450 is most likely involved
in these oxidations. This was recently proven
by the genomic approach, which showed that
targeted inactivation of P450 oxidoreductase
reduced ABA production in B. cinerea (104).
Furthermore, loss-of-function of a P450 gene,
BcABA1, whose expression is associated with
the ABA production, abolished the accumula-
tion of ABA in this fungus (104). The BcABA1
gene will likely be the first ABA biosynthetic
gene identified from fungi. Because function-
ally related genes are often clustered in fun-
gal genomes, the molecular basis of fungal
ABA biosynthesis will be elucidated in the near
future.

ABA Metabolism in Lower Plants

In addition to higher plants and fungi, ABA is
synthesized in moss, fern, and algae. ABA is
found in all divisions and classes of algae, in-
cluding colorless species (48). In green algae
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Chlamydomonas reinhardtii, application of ABA
enhances the resistance to the oxidative stress
(125). A study using carotenoid biosynthesis in-
hibitors suggests the direct pathway is proposed
to be active in green algae Dunaliella (11). How-
ever, this issue is still in debate about whether
these organisms synthesize ABA through a di-
rect pathway or a carotenoid-derived indirect
pathway.

In Riccia fluitans, ABA and its catabolite con-
tent fluctuates in response to water status (43).
Accumulation of ABA in Riccia thalli is inhib-
ited by the application of fluridone, suggest-
ing that ABA is synthesized via carotenoids.
Feeding experiments using radio-labeled ABA
show PA and DPA as major catabolites, and
minor catabolites include ABA-GE. PA/DPA
production is inhibited by tetcyclacis, a P450
inhibitor. Therefore, it is likely that Riccia syn-
thesizes and catabolizes ABA through the same
metabolic pathway as that in higher plants.
Interestingly, the same ABA responsive ele-
ment as in higher plants acts on ABA-mediated
transcription in the moss Physcomitrella patens
(58).

Current genome sequencing and EST
projects in many organisms facilitate the under-
standing of the evolutionary aspects of the ABA
metabolic pathway. The EST project of the
moss Physcomitrella patens reveals genes highly
similar to NCED and CYP707A (76). This in-
dicates that this moss synthesizes and catabo-
lizes ABA through pathways similar to those in
higher plants. Chlamydomonas contains a gene
highly homologous to ZEP, consistent with
the identification of endogenous xanthophylls
(such as 9′-cis-neoxanthin) (106). In addition,
Chlamydomonas contains several genes belong-
ing to the RPE65 family, although protein
sequences are more related to the carotenoid-
cleaving dioxygenases acting at the 15′ posi-
tion rather than NCED, which cleaves at the

Figure 4
Proposed ABA biosynthetic pathways in fungi.
Direct (cyclization of C15 terpenoid) is proposed
in fungal ABA biosynthesis. Identified potential
intermediates with fungal species are shown.
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9′ or 9 positions of xanthophylls. Interestingly,
Chlamydomonas also contains a P450 gene that is
related to CYP707 (85-clan). Functional anal-

yses of these genes will elucidate the nature
of evolution of ABA and carotenoid metabolic
pathways in lower plants.

SUMMARY POINTS

1. Both forward and reverse genetic analyses have been instrumental in identifying
ABA biosynthetic genes, and most of the genes have been identified in higher
plants.

2. Arabidopsis CYP707A genes were recently shown to encode ABA 8′-hydroxylases, which
catalyze the committed step in the predominant ABA catabolic pathway.

3. Localization analyses of biosynthetic enzymes and their transcripts indicate that the
vascular bundles are the active site of ABA synthesis in turgid plants.

4. Expression of ABA metabolism genes is temporarily and spatially regulated during seed
development and germination.

5. Transcriptional and post-transcriptional gene regulation plays a crucial role in the ABA
accumulation in response to osmotic stresses.

6. ABA biosynthesis in fungi is thought to occur through the direct cyclization of FDP
derivatives, and allofarnesene and ionylideneethane are proposed to be intermediates
in Botrytis cinerea. Furthermore, the first fungal ABA biosynthetic gene, BcABA1, was
recently identified in B. cinerea.

FUTURE ISSUES TO BE RESOLVED

1. In higher plants, the enzymes catalysing the isomerization of xanthophylls are the only
biosynthetic enzymes remaining to be identified. Furthermore, recent isolation of genes
encoding two major catabolic enzymes encourages the identification of other genes in-
volved in the diverse catabolic pathways.

2. A large research field needs to be explored to unravel the signaling pathways regu-
lating the metabolic genes and their interactions with endogenous and environmental
signals.

3. In other organisms, such as fungi, algae, or mosses, the ABA biosynthetic and catabolic
pathways require further investigation to identify all the genes, enzymes, precursors,
and catabolites. The regulation of ABA produced by phytopathogenic fungi might be of
particular interest to study plant-pathogen interaction.
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