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Abscisic acid (ABA) is a stress hormone that accumulates under different abiotic and

biotic stresses. A typical effect of ABA on leaves is to reduce transpirational water

loss by closing stomata and parallelly defend against microbes by restricting their

entry through stomatal pores. ABA can also promote the accumulation of polyamines,

sphingolipids, and even proline. Stomatal closure by compounds other than ABA also

helps plant defense against both abiotic and biotic stress factors. Further, ABA can

interact with other hormones, such as methyl jasmonate (MJ) and salicylic acid (SA).

Such cross-talk can be an additional factor in plant adaptations against environmental

stresses and microbial pathogens. The present review highlights the recent progress

in understanding ABA’s multifaceted role under stress conditions, particularly stomatal

closure. We point out the importance of reactive oxygen species (ROS), reactive

carbonyl species (RCS), nitric oxide (NO), and Ca2+ in guard cells as key signaling

components during the ABA-mediated short-term plant defense reactions. The rise in

ROS, RCS, NO, and intracellular Ca2+ triggered by ABA can promote additional events

involved in long-term adaptive measures, including gene expression, accumulation of

compatible solutes to protect the cell, hypersensitive response (HR), and programmed

cell death (PCD). Several pathogens can counteract and try to reopen stomata.

Similarly, pathogens attempt to trigger PCD of host tissue to their benefit. Yet, ABA-

induced effects independent of stomatal closure can delay the pathogen spread and

infection within leaves. Stomatal closure and other ABA influences can be among the

early steps of defense and a crucial component of plants’ innate immunity response.

Stomatal guard cells are quite sensitive to environmental stress and are considered good

model systems for signal transduction studies. Further research on the ABA-induced

stomatal closure mechanism can help us design strategies for plant/crop adaptations

to stress.

Keywords: pathogen resistance, water use, stress adaptation, guard cells, signaling components

Abbreviations: ABA, Abscisic acid; BRs, Brassinosteroids; CO, Carbon monoxide; ET, Ethylene; Flg22, Flagelling 22; H2S,
hydrogen sulfide; HR, Hypersensitive response; MJ, Methyl jasmonate; MPK, Mitogen activated protein kinase; NO, Nitric
oxide; OST1, Open stomata 1; PAs, Polyamines; PCD, Programmed cell death; RCS, Reactive carbonyl species; ROS, Reactive
oxygen species; SA, Salicylic acid; SLAC1, Slow anion channel 1; SLAH3, S-type anion channel 3.
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INTRODUCTION: ABA AND PLANT
DEFENSE

Plants need to respond quickly to diverse stress conditions,
as they cannot move away. Stress can be due to abiotic (e.g.,
drought, salinity, chilling, and high-temperature) or biotic factors
(e.g., pathogens, insects, herbivores) (Zhu, 2016; Lamers et al.,
2020). Plants developed various adaptation strategies to cope up
with these situations. A typical example is the stomatal closure,
limiting the water loss and restricting pathogen entry into the
leaves (Melotto et al., 2008; Gudesblat et al., 2009a; Sussmilch
and McAdam, 2017; Agurla et al., 2018a). Plants accumulate
hormones [e.g., abscisic acid (ABA) or salicylic acid (SA) or
methyl jasmonate (MJ)] under abiotic stress conditions and
elicitors [e.g., flagellin 22 (flg22)] under pathogen attack. Among
the hormones, ABA is involved in several abiotic and biotic
stress conditions and is therefore considered an essential and
versatile compound. In contrast, SA, MJ, and ethylene (ET) help
in resistance against biotic stress. Under drought, salinity, or cold
stress, ABA accumulation causes stomatal closure to conserve
water while up-regulating genes to promote osmotic adjustment
in leaves (Lim et al., 2015; Zhao et al., 2017; Niu et al., 2018).
The enhanced ABA levels in plants mediate the cross-adaptation
against drought and pathogens besides insect herbivores (Lee and
Luan, 2012; Nguyen et al., 2016).

Several compounds other than ABA also accumulated in
plants in response to different stresses (Table 1). These
compounds can close stomata and, in many instances, improve
plants’ resistance to pathogens. The plant hormones and
elicitors can further regulate transcription factors and induce
pathogenesis-related (PR) genes (Bielach et al., 2017; Breen
et al., 2017). There can also be a cross-talk between the factors
involved in abiotic and biotic stress signaling (Nejat and Mantri,
2017; Saijo and Loo, 2020). However, these compounds either
require ABA for their action or interact with ABA to activate
defense responses.

Since its discovery, studies on ABA (a sesquiterpene) and its
role in plant processes were studied extensively. Plant processes
such as seed dormancy, seed development, promotion of
desiccation tolerance, abscission, and,most importantly, stomatal
closure were all regulated by ABA (Lim et al., 2015). Further,
ABA can be crucial in also non-stress conditions (Yoshida et al.,
2019). The action of ABA was complemented by hormones,
such as SA (Robert-Seilaniantz et al., 2011; Wang H.Q. et al.,
2020). Similarly, some of the secondary messengers triggered
by ABA can also participate in plants’ adaptation to abiotic
and biotic stress. Examples are reactive oxygen species (ROS),
nitric oxide (NO), and cytosolic free Ca2+ (León et al., 2014;
Huang et al., 2019). Several compounds like polyamines (PAs),
hydrogen sulfide (H2S), and brassinosteroids (BRs) promote
drought tolerance by regulating ABA synthesis and vice versa (Jin
et al., 2013; Ha et al., 2014; Adamipour et al., 2020).

Readers interested in ABA and its role in plants may refer to
some recent reviews (Kumar et al., 2019; Chen K. et al., 2020;
Gietler et al., 2020; McAdam and Sussmilch, 2020). Our review
emphasizes the role of ABA’s stomatal closure as an adaptive
measure against both abiotic and biotic stresses. We have also

TABLE 1 | A spectrum of compounds that accumulate in plant cells along with

ABA during biotic/abiotic stress and can promote stomatal closure.

Hormone/

compound

Type of stress References Reason of

closure

ABA Drought, cold,

salinity and heat

Nakashima et al.,

2014

Increased ABA

levels

Allyl

isothiocyanate

(AITC)

Wounding, insect,

herbivore (biotic)

Khokon M.A. et al.,

2011

Production of ROS

and NO. elevated

Ca2+ levels

Ethylene (ET) Drought, ozone Wilkinson and

Davies, 2010

Mediated H2O2

production in ABA

signaling

Hydrogen

sulfide (H2S)

Drought Jin et al., 2013 H2S affected ABA

responses and ABA

increased H2S

levels

Inositol 1,4,5-

trisphosphate

(IP3)

Drought and salt

stress

Jia et al., 2019 Stimulated Ca2+

release in the cell

and ABA responses

Methyl

jasmonate (MJ)

Wounding (biotic) Förster et al., 2019 Signaling events

overlap with ABA

action

Pathogen, insects

(biotic)

Verma et al., 2016 Marked interaction

with ABA and SA

Phosphatidic

acid (PA)

Heavy metal

(Arsenic) stress

Armendariz et al.,

2016

Induced

accumulation of

PLD and PA, are

due to ABA

Polyamines

(PAs)

Drought Adamipour et al.,

2020

ROS and NO

production. ABA

caused

accumulation of

PAs

PEG-induced

osmotic stress,

chilling

Pál et al., 2018 Increased PAs

stimulated ABA

accumulation

Proline and

G-substances

Drought Raghavendra and

Reddy, 1987

Decreased proton

efflux and K+

content, as in case

of ABA

Salicylic acid

(SA)

Bacterial invasion

(biotic)

Melotto et al., 2006 SA-action

overlapped with

ABA signaling

Sphingosine-1-

phosphate

(S1P)

Drought Ng et al., 2001 Mobilized Ca2+

and mediated

stomatal closure by

ABA

Strigolactone

(SL)

Drought and salt

stress

Ha et al., 2014 ABA and SL

cross-talk positively

regulated stomatal

closure

Sulfate (in

xylem sap)

Drought Malcheska et al.,

2017

Promoted ABA

synthesis in guard

cell

The compounds are arranged in alphabetical order. The abbreviations are listed in

the Appendix (last page).

discussed other compounds that can improve plant adaptations,
still involving ABA. The stomatal closure by ABA follows a typical
scheme of signal transduction. The interactions of these signaling
components with others to synergize the plant’s adaptation
against pathogen attacks are described. To limit the length of
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our article, reviews were cited when available. In some instances,
original articles were referred, due to their classic importance.

INCREASED ABA LEVELS UNDER
DIFFERENT STRESS CONDITIONS

When plants were exposed to water stress (drought), an increase
in ABA was typical due to either synthesis or degradation of
ABA or both (Ma et al., 2018; Chen K. et al., 2020; Gietler et al.,
2020). The soil-water deficit could be perceived as a signal by
roots to trigger ABA’s de novo synthesis (Jiang and Hartung,
2008; Fang and Xiong, 2015; Qi et al., 2018). The increase
in ABA of roots in response to drought was correlated with
an increase in foliar-ABA concentrations, suggesting drought-
induced ABA played a significant role in controlling leaf water
potential (Zegada-Lizarazu and Monti, 2019). ABA accumulated
in roots was transported to trigger stomatal closure in leaves
and limit transpirational water-loss (Haworth et al., 2018). An
increase in ABA could also occur in response to temperature-
stress (high or low) (Tao et al., 2016; Karimi, 2019) or a newly
discovered small peptide, CLE25 (Takahashi et al., 2018). Sato
et al. (2018) found that NCED3 could be the trigger to enhance
ABA biosynthesis in Arabidopsis under drought stress. Under
these conditions, increased ABA and stomatal closure could limit
the water-loss and restrict pathogen entry (Wu et al., 2007;
Alazem and Lin, 2015). This phenomenon was complemented
with additional steps of ABA transport from roots to shoots,
conversion of bound ABA into free form to mobilize ABA within
leaf (Hewage et al., 2020; Xylogiannis et al., 2020).

An increase in endogenous levels of ABA was also observed
when plants were infected with pathogens, for e.g., Phaseolus
by Colletotrichum (Dunn et al., 1990), flax by Fusarium (Boba
et al., 2020), and nced5 mutant of Arabidopsis by Alternaria
(Fan et al., 2009). Similarly, the clonal variation of chestnut
susceptibility or resistance to Fusarium was related to ABA levels
under infection (Camisón et al., 2019). The exact relationship
between endogenous ABA levels and disease susceptibility of
plants appeared to be complex, as the relationship depended on
the duration of infection, other stresses, and the type of pathogen
(Asselbergh et al., 2008). During the early stages of pathogen
infection, the increased ABA levels helped in resistance, while
at later stages, high levels of ABA made the plants susceptible
to pathogens (Maksimov, 2009). The differential effects of ABA
on the modulation of pathogen sensitivity need to be examined
further, particularly in relation to the predisposition of plant
tissue. Readers interested in ABA accumulation mode may
refer to relevant articles for further details (Maksimov, 2009;
Finkelstein, 2013; Ali et al., 2020; Chen K. et al., 2020).

STOMATAL CLOSURE: A FIRST LINE OF
DEFENSE AGAINST DIVERSE STRESS
CONDITIONS

Stomatal closure is one of the initial responses of plants to stress
conditions to retain water status and provide innate immunity

against pathogens (McLachlan et al., 2014; Arnaud and Hwang,
2015; Agurla et al., 2018a). The physical barriers on the plant’s
outer surface, such as bark, cuticle, and cell wall, could protect
against physical and biological factors. However, the microscopic
pores on leaf surfaces called stomata are the accessible entrances
to several microbes. Stomata form the gateways for transpiration,
photosynthetic gas exchange as well asmicrobial entry into leaves.
Stomatal guard cells are quite dynamic in sensing and responding
to external microbial pathogens. Stomatal closure can be an
essential strategy to defend against abiotic and biotic factors such
as drought or pathogens (Lim et al., 2015; Melotto et al., 2017;
Nejat and Mantri, 2017). Several instances of stomatal closure
induced by plant pathogens are listed in Table 2. Stomatal closure
was triggered by either elicitors or other compounds produced
in the leaf in response to pathogens, such as SA, MJ, or PAs.
Stomata can sense and respond to microbe-associated molecular
patterns, including chitosan, flagellin, and harpin (Zhang L.
et al., 2017; Klessig et al., 2018). The sensing of ABA or other
compounds and the final response of stomatal closure follows a
common signaling pathway involving receptors, protein kinases,
secondary messengers, ion channels, ion efflux, and turgor loss in
guard cells. Among kinases, OST1 is a primary activating factor
NADPH oxidase and raises the ROS levels of guard cells.

During ABA-induced stomatal closure, an increase in OST1
kinase was followed by the activation of RBOHD/F, and increases
in ROS/NO/Ca2+ levels. In turn, Ca2+ dependent CDPKs
activated slow anion channel 1 (SLAC1), S-type anion channel 3
(SLAH3) and K+out channels to promote ion efflux from guard
cells and forced stomata to close. However, in presence of flg22
or yeast elicitor, the activity of OST1 did not increase (Montillet
et al., 2013; Ye et al., 2015). Albeit in a resting stage, OST1
participated in stomatal closure by variety of signals including
PAMPs (e.g., flg 22, yeast elicitor, chitosan) or environmental
components, such as high CO2 or high humidity (Melotto et al.,
2006; Ye et al., 2015, 2020b; Ye and Murata, 2016; Pantin and
Blatt, 2018). Besides its action through ROS/NO/Ca2+, OST1
could directly modulate ion channels to cause stomatal closure
(Figure 1). In a recent study, the events involving OST1/SnRK2s
were studied in real-time using FRET sensors (Zhang et al., 2020).
These experiments provided a visual evidence of the interaction
of OST1 with signaling components of ABA and elevated CO2.
It is obvious that OST1 is an important point of convergence of
signals from abiotic and biotic factors. It would be interesting
to assess the mechanism by which OST1 keeps up such dual
mode of activation and modulating downstream components, all
converging to mediate stomatal closure.

There are reports indicating that stomatal closure can be
induced by biotic and abiotic stresses in an "OST1-independent
manner" (Hsu et al., 2018; Zheng et al., 2018). For e.g., plant
elicitor peptides (Peps), a group of damage-associated molecular
patterns, can trigger stomatal closure by activating SLAC1
and SLAH3 in an OST1-independent manner (Zheng et al.,
2018). Similarly, elevated CO2 can bypass OST1 kinase and
activate SLAC1 (Hsu et al., 2018). SLACs may be activated
without the involvement of OST1 but other kinases. For e.g.,
the signaling events in guard cells can utilize MAPK cascade
to up-regulate SLAC1/SLAH3 (Jagodzik et al., 2018). MAP
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TABLE 2 | Several compounds that induce stomatal closure can also promote pathogen resistance of plants.

Compound/Hormone Effect on stomata References Response to Pathogen References

ABA Closure Cummins et al., 1971 Increased callose deposition

and enhanced resistance

against Leptosphaeria

maculans and Pseudomonas

syringae

Oide et al., 2013

Allyl isothiocyanate (AITC) Closure Khokon M.A. et al., 2011 Required ccoperative

MJ-priming to evade

pathogens

Khokon M.A. et al., 2011

Cerato-platanin Closure Baccelli et al., 2014 Increased ROS levels, and

interaction with SA/ethylene for

resistance against Botrytis

cinerea and P. syringae

Baccelli et al., 2014

Chitin Closure Ye et al., 2020b Converted to chitosan and

caused guard cell death to

restrict fungal pathogen

invasion

Ye et al., 2020b

Chitosan Closure Srivastava et al., 2009 Immunity against Fusarium

associated with stomatal

closure

Narula et al., 2020

Cryptogein Closure Gayatri et al., 2017 Produced ROS and induced

PCD for resistance against

Hyaloperonospora

arabidopsidis

Kurusu et al., 2018

Cyclodipeptides Closure Wu et al., 2017 Increased defense responses

to Phytophthora nicotianae and

Tobacco mosaic virus

Wu et al., 2017

Ethylene (ET) Closure Desikan et al., 2006 Promoted production of ROS

accumulation and phytoalexin

to boost resistance against

Magnaporthe oryzae

Yang et al., 2017

Cytokinin Closure Novák et al., 2013 Induced HR-like response, cell

death and activation of PR

genes, in response to

Agrobacterium tumefaciens

Novák et al., 2013

Methyl jasmonate (MJ) Closure Raghavendra and Reddy, 1987 Interacted with ethylene for

resistance against B. cinerea

Song et al., 2014

PAMP-induced peptide (PIP1) Closure Hou et al., 2014 Stimulation of MAPK, ROS

accumulation and callose

deposition for resistance

against F. oxysporum and

P. syringae

Hou et al., 2014

Salicylic acid (SA) Closure Manthe et al., 1992 Promoted synthesis of catechin

and proanthocyanidins to

defend against Melampsora

larici-populina

Ullah et al., 2019

Strigolactone (SL) Closure Lv et al., 2018 Down-regulated MYC2 and

upregulated plant defense

factor upon Meloidogyne

incognita infection

Xu et al., 2019

Further details of the mechanism of stomatal closure by several of these are indicated in Table 3. The abbreviations are listed in the Appendix (last page).

kinases 3/6 participated upstream of NO during stomatal
closure in darkness (Zhang T.Y. et al., 2017), while MPK
9/12 activated SLAC1 integrating with Ca2+/CDPK system
during the cross-talk of ABA and SA (Prodhan et al., 2018),
though the exact mechanism is not known. When exposed
to a small elicitor peptide, AtPeps, a two-kinase component
of BRASSINOSTEROID INSENSITIVE 1-associated receptor
kinase 1 (BAK1)/BORTRYTIS-INDUCED KINASE 1 (BIK1)

was turned on to activate SLAC1 and SLAH3 in guard cells
(Zheng et al., 2018). However, further experiments are necessary
to identify the exact components involved in the activation of
SLAC1 by MPK 9/12 or BAK1/BIK1.

There can be additional components of a leaf that can
provide resistance to microbes as well as environmental stresses,
e.g., callose or silicon deposition (Ellinger and Voigt, 2014;
Alhousari and Greger, 2018; Islam W. et al., 2020), cuticular
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FIGURE 1 | Schematic representation of eventsm during signal transduction pathway induced by ABA leading to stomatal closure. Binding of ABA to its receptor

(PYR/PYL/RCAR) blocks the function of PP2C. As a result, OST1, which stays phosphorylated, activates multiple components like NADPH oxidase (to generate

ROS) and anion channels [quick anion channel 1 (QUAC1) and slow anion channel 1 (SLAC1)] to trigger anion efflux. The secondary messengers: ROS, NO, and

cytosolic Ca2+, exert multiple effects. The rise in cytosolic pH, another secondary messenger, appears to stimulate NADPH oxidase, but neither the origin nor the

mode of pH action is understood. The high levels of ROS can promote NO production with the involvement of mitogen-activated protein kinases and elevate pH and

Ca2+ in the cytosol. In turn, Ca2+ can activate RBOH-D/F and elevate ROS levels. The rise in NO downregulates K+ inward channels and elevates cytosolic Ca2+

levels through cyclic guanosine monophosphate (cGMP) and cyclic ADP ribose (cADPR). An increase in Ca2+ can activate calcium-dependent protein kinases to

facilitate a further influx of Ca2+ from outside. Ca2+-activated calcium-dependent protein kinases stimulate SLAC1 and S-type anion channel 3 while inhibiting K+

(Continued)
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FIGURE 1 | Continued

influx through K+
in channels. When present, NO activates two enzymes, phospholipase C and phospholipase D (PLD), resulting in the synthesis of inositol

1,4,5-triphosphate (IP3) phosphatidic acid. In turn, IP3 releases Ca2+ levels from internal stores of plant cells, while phosphatidic acid can stimulate NADPH oxidase

and inhibit the inward K+ channel. ABA can stimulate the formation of sphingosine 1-phosphate (S1P) and phytosphingosine-1P, which activate PLD through

G-protein α-subunit 1 (GPA1). NO can promote K+ efflux channels and cytosolic alkalization while inhibiting K+ influx channels via calcium-dependent protein

kinases. These three secondary messengers involved in ABA signaling, namely ROS, NO, Ca2+, and their interactions, play a significant role in regulating stomatal

closure. Ion channels are terminal points of signal transduction, causing the loss of turgor in guard cells and stomatal closure. Further details are described in the

text. Arrows (→) indicate stimulation, and the symbol ⊣ represents inhibition. Abbreviations used here are listed in the Appendix.

waxes (Lewandowska et al., 2020) and trichomes (Fürstenberg-
Hägg et al., 2013). ABA was involved in some of these responses.
Cuticular wax biosynthesis was ABA-dependent and mediated
by MYB94 and MYB96 transcription factors (Lewandowska
et al., 2020). A light-induced increase in trichome density
and thick leaves was due to high ABA levels in the leaves
(Escobar-Bravo et al., 2018). Furthermore, ABA promoted
callose synthesis and deposition by negatively regulating callose
degrading pathogenesis-related protein 2 (PR2) (Oide et al.,
2013). Similarly, ABA up-regulated callose deposition and
antiviral RNA silencing mechanism to evade virus attack
(Alazem and Lin, 2020).

STOMATAL CLOSURE BY COMPOUNDS
OTHER THAN ABA AND THEIR
INTERACTIONS DURING STOMATA
CLOSURE

Besides ABA, several other compounds increase when plants
are exposed to stress, which close stomata and help plant
defense responses. These compounds can be grouped into three
categories: hormones, elicitors, and metabolites (Table 3). The
hormones include MJ, SA, ET, and BRs. MJ was the most
effective one and induced stomatal closure by elevating pH,
ROS, NO, and Ca2+ leading to activation of anion channels,
similar to ABA action (Munemasa et al., 2007; Gonugunta
et al., 2009; Agurla and Raghavendra, 2016). Further studies
in detail are needed to understand the effects of ET as well
as BRs on closure.

Salicylic acid (SA) is considered a plant defense hormone
with overlapping functions as an elicitor (Ding and Ding, 2020).
SA-induced stomatal closure was mediated by ROS produced
primarily through peroxidase (not NADPH oxidase, as in ABA).
The other downstream events of NO production and ion
channel modulation in guard cells were similar to ABA’s action
(Hao et al., 2010; Khokon A.R. et al., 2011; Khokon et al.,
2017; Wang et al., 2018). Thus, there is an overlapping of
signaling pathways mediated by SA and ABA to cause stomatal
closure in Arabidopsis. Several microbial elicitors (chitosan,
flg22, harpin, and cryptogein) promoted stomatal closure and
prevented pathogens’ entry. These elicitors produce NO and
ROS via nitric oxide synthase (NOS) and NADPH oxidase,
respectively (Klüsener et al., 2002; Melotto et al., 2006; Agurla
and Raghavendra, 2016; Gayatri et al., 2017; Prodhan et al.,
2020). The combined action of ROS and NO could be imparting
pathogen resistance.

TABLE 3 | A spectrum of hormones (other than ABA)/elicitors/PAMPs and other

metabolites capable of inducing stomatal closure and the basis of their action.

Compound Effect on stomata Plant References

Allyl isothiocyanate

(AITC)

Produces ROS and

NO and elevates of

cytosolic Ca2+

Arabidopsis

thaliana

Khokon M.A. et al.,

2011

β-aminobutyric acid

(BABA)

Triggers ABA

accumulation under

drought

Triticum

aestivum

Du et al., 2012

Cerato-platanin

(CP)

Produces ROS and

closes stomata

A. thaliana Baccelli et al., 2014

Chitin

oligosaccharide

(CTOS)

Elevates Ca2+ and

activates SLAC1

A. thaliana Ye et al., 2020b

Chitosan Mediates the

production of NO,

ROS and Ca2+

levels

Pisum sativum Srivastava et al.,

2009

Cryptogein Increases the levels

of ROS and NO

A. thaliana Gayatri et al., 2017

γ-aminobutyric acid

(GABA)

Represses 14-3-3

proteins and influx

of anions into the

vacuole

A. thaliana Mekonnen et al.,

2016

Flagellin22 (flg22) Accumulates ROS

and activates SLAC

A. thaliana Deger et al., 2015

Harpin Increases the levels

of ROS and NO

A. thaliana Gayatri et al., 2017

Lipopolysaccharide

(LPS)

Activates NOS and

produces NO in

guard cells

A. thaliana Melotto et al., 2006

Methyl jasmonate

(MJ)

Promotes H2O2

production and

cytosolic

alkalinization

A. thaliana Suhita et al., 2004

Oligogalacturonic

acid (OGA)

Increases cytosolic

Ca2+ and ROS

levels

Lycopersicon

esculentum

Lee et al., 1999

PAMP induced

peptide 1 (PIP1)

Activates Ca2+

channels and

S-type anion

channels

A. thaliana Shen et al., 2020

Salicylic acid (SA) Induce production

of ROS, NO and

cytosolic Ca2+

A. thaliana Khokon M.A. et al.,

2011

Yeast elicitor (YEL) Produces ROS and

NO production

A. thaliana Khokon et al., 2010

The abbreviations are listed in the Appendix (last page).

Allyl isothiocyanate (AITC), proline, and PAs are examples of
metabolites that accumulate under stress. Despite accumulation
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in large quantities, proline, a compatible osmolyte, caused only
a partial closure (Raghavendra and Reddy, 1987). PAs (including
putrescine, spermidine, and spermine) accumulated during water
stress and pathogen attack (Alcázar et al., 2010; Hatmi et al.,
2018). The oxidation of PAs by polyamine oxidase raised ROS
levels, followed by NO to cause stomatal closure similar to ABA
(Agurla et al., 2018b). Similarly, AITC promoted stomatal closure
and defense responses against biotic components (Khokon M.A.
et al., 2011; Ye et al., 2020a).

The hormones, elicitors, and metabolites described above
interact markedly with ABA and act in tandem to promote
abiotic stress tolerance (Table 4). ABA’s interactions with
SA or MJ to work together during stomatal closure and
pathogen resistance are well-known (Koo et al., 2020; Wang
J. et al., 2020). For e. g., MJ promoted ABA biosynthesis
by inducing the AtNCED3 gene expression in Arabidopsis
(Hossain et al., 2011). ABA was needed during SA-action
on stomata (Wang et al., 2018). Conversely, elevated ABA
triggered SA biosynthesis by activating SID2 and promoted
stomatal closure (Prodhan et al., 2018). These reports
confirm the synergy between MJ, SA, and ABA during
stomatal closure.

An SA-receptor, NPR1, mediated chitosan signaling in
guard cells (Prodhan et al., 2020). SA, chitosan, and ABA
interacted during stomatal closure by activating MAP kinases
(MPK9 and MPK12) (Salam et al., 2012; Khokon et al.,
2017). Elevated levels of PAs stimulated biosynthesis of ABA
(Yamasaki and Cohen, 2006; Alcázar et al., 2010). In turn,
ABA stimulated oxidation of Pas to elevate H2O2 and NO, and
stomatal closure (An et al., 2008; Konstantinos et al., 2010).
Such interactions could fine-tune ABA’s effects to strengthen
the plant defense reactions against both abiotic and biotic
stresses. The direct role of PAs and proline in pathogen
resistance is not clear.

COUNTERMEASURES BY PATHOGENS

The stomatal closure by ABA cannot be a permanent strategy
to prevent microbial entry, as pathogens, such as Puccinia,
can enter leaves through places other than stomata (Mendgen
et al., 1996; Solanki et al., 2019). Therefore, we do not mean to
overemphasize the role of ABA-induced stomatal closure as the
solemode of adaptation. Also, stomata need to open subsequently
to keep up the gas exchange and normal plant function. At the
same time, microbial pathogens initiate counteractive measures
to reopen stomata, by either effectors, (such as coronatine or
fusicoccin, Schulze-Lefert and Robatzek, 2006; Gudesblat et al.,
2009a; Melotto et al., 2017), locking the open-stomata (Prats
et al., 2006) or even killing guard cells to prevent their closure
(Ye et al., 2020b).

Some of the pathogens secrete a cocktail of cell wall
digesting enzymes to facilitate the entry through the epidermis
into the leaves (Mendgen et al., 1996). The pathogens can
also restrict the biosynthesis/actions of ABA and related
hormones (Zeng et al., 2010; Robert-Seilaniantz et al., 2011).
Further, pathogens too can trigger programmed cell death

(PCD) of host tissue facilitating the spread of infection
(Hofius et al., 2017; Huysmans et al., 2017). Despite the
counteractive efforts by pathogens, ABA can still contribute to
plant defense. It is known that ABA could initiate multifaceted
measures involving hypersensitive response (HR) and long-term
adaptation on its own or by synergetic interaction with other
hormones, such as SA or MJ, to ensure improved resistance
(described below).

ABA-INTERACTION WITH
GASOTRANSMITTERS

The role of gasotransmitters in stomatal regulation requires
special mention. In addition to NO, two more gaseous
signaling molecules (gasotransmitters), hydrogen sulfide (H2S),
and carbon monoxide (CO) produced within plant cells are
an integral part of ABA-dependent stomatal closure as well as
other stress conditions. These three gasotransmitters interacted
with ABA-signaling during drought (García-Mata and Lamattina,
2013; Yao et al., 2019; Gahir et al., 2020). Under abiotic
stress, ABA could elevate the levels of NO as well as CO or
H2S. For e.g., ABA activated heme oxygenase (HO), thereby
increased CO levels and caused stomatal closure (Cao et al.,
2007; Wang and Liao, 2016). In turn, NO elevated the levels
of H2S by regulating H2S producing enzymes (L/D-cysteine
desulfhydrases) (Kolupaev et al., 2019; Gahir et al., 2020).
Similarly, CO promoted both NO and ROS synthesis, facilitating
stomatal closure during abiotic stress (Song et al., 2008; He and
He, 2014). Thus, a triangular interaction appears to be operating
in guard cells. These interactions and synergistic actions need
to be examined further. We, however, feel that among the
three gasotransmitters, NO could be the significant signaling
molecule. Like in the case of ROS, the production of NO can also
be triggered by microbial pathogens to activate defense-related
genes (e.g., phenylalanine ammonia-lyase and pathogenesis-
related protein-1) that play a significant role in acquired pathogen
resistance (Romero-Puertas et al., 2004;Ma and Berkowitz, 2016).
NO produced in response to lipopolysaccharide contributed
towards resistance against Pst DC3000 (Melotto et al., 2006). The
upregulation of H2S production suggested a strong association
between H2S and plant defense (Shi et al., 2015; Gahir
et al., 2020). Further studies on these protective abilities of
gasotransmitters to improve pathogen resistance could help
achieve plants’ resilience.

Gasotransmitters exert their actions by mediating post-
translational modifications (PTMs) such as S-nitrosylation,
nitridation, and persulfidation of target proteins (Scuffi et al.,
2016; Kolupaev et al., 2019; Gahir et al., 2020). These PTMs
seem to exert different effects. Accumulation of H2S by ABA
mediates the persulfidation of SnRK2.6 to promote stomatal
closure by ABA (Chen S. et al., 2020). S-nitrosylation, mediated
by NO, inhibited OST1/SnRK2.6 kinase activity and limited
stomatal closure (Fancy et al., 2017). Detailed experiments on
such contrasting effects of NO and H2S would unravel the
mechanism of interaction between gasotransmitters and ABA
during stomatal closure and plant defense against pathogens.
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TABLE 4 | Interaction of ABA with other compounds during the stress responses that induce stomatal closure.

Hormone / Compound Interaction with ABA Stress / or HR response Plant References

Hormones

Methyl-Jasmonate (MJ) Common signaling components with

ABA action

Drought Arabidopsis thaliana Suhita et al., 2004

Ethylene (ET) Interacts with ABA signaling and inhibits

stomatal closure

Drought A. thaliana Tanaka et al., 2005

Salicylic acid (SA) Increases ABA signaling via MAPKs

and CPKs

Abiotic/biotic stress A. thaliana Wang H.Q. et al., 2020

Brassinolide (active BR) Promote and inhibit ABA-mediated

stomatal closure

Drought A. thaliana Ha et al., 2016

Elicitors/PAMPs

Chitosan Rise in NO, ROS and cytosolic free

Ca2+, as in case of ABA

External elicitor application Pisum sativum Srivastava et al., 2009;

Gonugunta et al., 2009

Yeast elicitor (YEL) Regulates ABA action through MPK9

and MPK12 positively regulate ABA

External elicitor application A. thaliana Salam et al., 2013

12-oxo-phytodienoic acid

(12-OPDA)

Functions together with ABA and

controls stomatal aperture

Drought A. thaliana Savchenko et al., 2014

Flagellin Merge with ABA at OST1kinase and

activates SLAC1 and SLAH3

Bacterial infection A. thaliana Deger et al., 2015

Harpin signaling merge at RBOH and induces

ROS production

External application Nicotiana benthamiana Zhang et al., 2009

Lipopolysaccharide (LPS) Produces rapid NO production via NOS External application A. thaliana Melotto et al., 2006

Other factors

Polyamines (PAs) ABA increases PA biosynthesis Polyethylene glycol-induced

osmotic stress

Triticum aestivum Pál et al., 2018

Strigolactone (SL) Integrates with ABA signaling and

enhances stomatal closure

Drought Oryza sativa Haider et al., 2018

Carbon dioxide (CO2) Enhances ABA signaling via MPKs Elevated CO2 A. thaliana Tõldsepp et al., 2018

Trehalose Enhanced drought tolerance and ABA

signaling

Drought Solanum lycopersicum Yu et al., 2019

Signaling components

Cytosolic free Ca2+ Cross-talk with H2O2 and NO during

ABA action

Extra cellular Ca2+ A. thaliana Wang et al., 2012

Phospholipase D (PLDα and

PLDδ)

Mediates ABA signaling in guard cells Multiple abiotic stresses A. thaliana Uraji et al., 2012

Hydrogen sulfide (H2S) Regulates ABA signaling by

persulfidation OST 1

Drought A. thaliana Chen S. et al., 2020

Phosphatidic acid (PA) Gα subunit mediates ABA action in

response to PA

Drought A. thaliana Mishra et al., 2006

The abbreviations are listed in the Appendix (last page).

SIGNALING COMPONENTS IN GUARD
CELLS TRIGGERED BY ABA: ROLE IN
STOMATAL CLOSURE AND PATHOGEN
RESISTANCE

Stomatal closure is the result of turgor loss in guard cells because
of increased cation/anion efflux. A well-defined transduction
pathway mediates the events during stomatal closure by ABA
or other compounds, as illustrated in Figure 1. Binding of
ABA to its receptor inactivates protein phosphatase 2C resulting
in the activation of OST1 kinase, which stimulates NADPH
oxidase (due to phosphorylation) enzyme to generate ROS and
then the production of NO. Both ROS and NO can elevate
levels of cytosolic Ca2+. The high levels of ROS, NO, and
Ca2+ act either directly or together to activate anion/cation

efflux channels while inhibiting the influx channels. The final
result is the loss of cations/anions from guard cells, resulting
in turgor loss and stomatal closure (Agurla et al., 2018a).
These three secondary messengers (ROS, NO and Ca2+) can
also stimulate the production of other signaling components
such as phospholipase C, phospholipase D, phosphatidic acid,
and inositol 1,4,5-triphosphate besides raising cytosolic pH, all
contributing to stomatal closure. Apart from well-known NO,
other gasotransmitters, i.e., CO and H2S, are also involved in
ABA-induced stomatal closure.

In recent years, another signaling component, reactive
carbonyl species (RCS) was found to play a significant role in
stomatal closure. These RCS are products of lipid oxidation,
produced and scavenged during various developmental
processes, including PCD (Biswas and Mano, 2015). Montillet
et al. (2013) suggested that RCS (also called oxylipins) played
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TABLE 5 | List of Arabidopsis mutants deficient in ABA biosynthesis/signaling pathway and their susceptibility to pathogen attack.

Mutant Deficiency Response to pathogens References

ABA biosynthesis / Reception

aao3 and aba2 (Abscisic aldehyde

oxidase)

Impaired ABA biosynthesis Susceptible to Pythium irregulare Adie et al., 2007

aba3 (Abscisic acid) Abscisic acid biosynthesis Neither flg22 nor lipopolysaccharide (LPS), failed to

induce closure

Melotto et al., 2006

ataf1 (NAC protein) Increased ABA levels Reduced resistance to biotrophic fungus Wu et al., 2009

abi1 and abi2 (ABA insensitive) PP2C, needed for ABA

signaling

Stomatal closure is absent in response to Trichoderma

species

Contreras-Cornejo et al., 2015

coi1 (Coronatine-insensitive) MeJA-induced stomatal closure COR not able to prevent ABA-induced stomatal closure Melotto et al., 2006

ABA-signaling components

agb1 (Arabidopis G β-subunit) G-protein β subunit, involved in

GTPase activity

Stomata remained open and highly susceptible to

Pseudomonas sps

Lee et al., 2013

cpk3-2 cpk6-1 Ca2+-dependent protein

kinases

SA and ABA-induced stomatal closure is impaired Prodhan et al., 2018

gcn2 (General control

non-derepressible 2)

GCN kinase activity Less effective in closing stomata and resisting

P. syringae

Liu et al., 2019

lcbk1(Long-chain base kinase1) Long-chain base kinase1 Susceptible to virulent pathogens and not able to close

stomata

Gupta et al., 2020

mpk3 mpk6 and mkk4 mkk5 Mitogen-activated protein

kinases

Unable to close stomata in response to PAMP or Pst Su et al., 2017

ost1 (Open stomata1) Reduced K+efflux Stomatal closure is impaired in response to flg22 Deger et al., 2015

ost2 (open stomata2) H+-ATPase ABA-insensitive and flg22/LPS unable to induce

stomatal closure

Liu et al., 2009

rbohD (Respiratory burst oxidase

homologue)

Impaired ROS production Impaired flg22 responses and stomatal closure Kadota et al., 2014

slac1(Slow anion channel 1) Slow anion channel Hyposensitive to Pst and reduced stomatal closure Shen et al., 2020

Other effectors

era1 (Enhanced response to ABA1) Farnesyl transferase β subunit Hypersensitive to ABA and virulent pathogens Jalakas et al., 2017

eds1 (Enhanced Disease Susceptibility) Salicylic acid biosynthesis Ability to close stomata in response to bacteria and

LPS is compromised

Melotto et al., 2006

lox1 (Lipoxygenase) Lipoxygenase activity Compromised ability to close stomata in response to

virulent and avirulent pathogens

Montillet et al., 2013

pip2;1 (Plasma membrane intrinsic

protein)

Plasma membrane aquaporin Impaired stomatal closure in response to ABA and flg22 Rodrigues et al., 2017

rpfF and rpfC (Regulation of

pathogenicity factor)

Synthesis and perception of

diffusible molecule

Stomatal closure is absent in response to Xcc and Pst Gudesblat et al., 2009b

A few other instances of mutants altered in stomatal closure and pathogen sensitivity are also included. The abbreviations are listed in the Appendix (last page).

a dominant role during stomatal closure by biotic factors
(e.g., elicitors from pathogens), compared to ROS during the
action of ABA (typical of abiotic stress factor). Soon, detailed
reports appeared that RCS could function downstream of ROS
production during closure by ABA and MJ in Nicotiana tabacum
and Arabidopsis thaliana (Islam et al., 2016, 2019; Islam M.M.
et al., 2020). Recently, RCS was found to activate CPK6, promote
the elevation of Ca2+ and activate SLAC1, leading to stomatal
closure (Islam M.M. et al., 2020). These observations imply
that RCS and ABA could enable guard cells to respond to both
biotic and abiotic stress conditions. Several authors had reviewed
the details of the ABA-induced signal transduction pathway
(Raghavendra et al., 2010; Munemasa et al., 2015; Sierla et al.,
2016; Agurla et al., 2018a; Kolbert et al., 2019; Saito and Uozumi,
2019; Sun et al., 2019).

Several of the signaling components during ABA-induced
stomatal closure can protect against pathogens (Table 2).
The three major secondary messengers, triggered by ABA

(namely ROS, NO, and Ca2+) can initiate defense processes
such as stomatal closure and PCD (Sewelam et al., 2016;
Suzuki and Katano, 2018). ABA-induced NO can act as a
signaling molecule to initiate adaptive responses against abiotic
(UV, drought, and salinity) or biotic factors (pathogens
or elicitors). The reaction products of ROS and NO
(like peroxynitrite) and NO-mediated post-translational
modifications can all act together to initiate defense responses
(Bellin et al., 2013; León et al., 2014; Arnaud and Hwang, 2015).
The rise in cytosolic Ca2+ was often required to induce HR as
a plant immunity response (e.g., against microbial pathogens).
Other compounds involved in ABA signaling, like phospholipase
D and phosphatidic acid, were also associated with plants’ defense
against pathogens (Li and Wang, 2019; Moeder et al., 2019). The
ability of H2S, a gasotransmitter, to impart resistance against
typical plant pathogen (Pseudomonas syringae) suggests a link
between stomatal closure and adaptation to plant pathogens (Shi
et al., 2015; Gahir et al., 2020). The promotion or inhibition of
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ROS and NO production by gasotransmitters can be a significant
factor during plant defense.

Arabidopsis thaliana had been an excellent model to study and
validate the components/mechanisms of plant function. Several
mutants ofA. thalianawere employed to establish ABA’s signaling
components (Table 5). These mutants fall under three groups:
those with altered ABA biosynthesis/reception or deficient in
signaling compounds or those with altered stomatal response
independent of ABA. The mutants who cannot close their
stomata also lose their ability to resist pathogens, becoming
hypersensitive to pathogens. These observations emphasize the
strong association of stomatal closure by ABA or related
compounds with altered pathogen resistance.

Other Points to Be Considered
Evidence is emerging that ABA may not always impart resistance
but increase plants’ susceptibility to abiotic or biotic factors by
compromising defense responses (Gietler et al., 2020). For e.g.,
ABA can act differently depending on the pathogen status: pre-
entry or post-entry phases. During the early stages, induction
of stomatal closure along with stimulation of wax and callose
synthesis could reinforce the plant’s defense. However, in the
post-invasion stage, ABA can be antagonistic and increase
susceptibility to microbes (Alazem and Lin, 2015; Arnaud
and Hwang, 2015). Accumulation of ABA at infection site
repressed events involving disease resistance against Cercospora
in beetroot (Schmidt et al., 2008). Elevated ABA levels promoted
sugar transport to fungi and enhanced the infection of wheat
by Puccinia striiformis sp. tritici (pst) (Huai et al., 2019).
Furthermore, increased ABA levels antagonized plant’s defense
responses by suppressing SA or MJ induced defense gene
expression, callose deposition, and basal resistance against
Fusarium oxysporum or Magnaporthe grisea (Anderson et al.,
2004; Jiang et al., 2010; Lim et al., 2015; Ulferts et al., 2015).

We believe that ABA could play a significant role in restricting
or at least delaying the pathogen entry and subsequent infections,
at least in the case of bacteria (Table 5 and description below).We
acknowledge that the role of stomata should not be generalized,
as the experiments done on pathogen infection with Arabidopsis
(non-host) may not be all applicable with typical host species,
such as wheat or barley.

SUBSEQUENT EFFECTS OF ABA
BESIDES STOMATAL CLOSURE
TOWARDS ADAPTIVE RESPONSES:
PRE-ENTRY AND POST-ENTRY
PHENOMENA

Pathogen resistance cannot be entirely due to stomatal closure,
and the action of ABA needs to continue beyond stomata. Often
during infection, an increase in ABA levels led to multiple events
that help against abiotic stress and disease resistance (Shafiei
et al., 2007). Even if pathogens manage to enter the intercellular
spaces, elevated ABA can initiate a spectrum of events that
restrict the multiplication and spread of plant pathogens inside

FIGURE 2 | Stomatal closure induced under conditions of abiotic (e.g.,

drought) or biotic (e.g., pathogens) stress serves as a common defense

mechanism. In guard cells, ABA typically raises the levels of ROS, NO, and

Ca2+. These three secondary messengers bring out stomatal closure through

a series of signaling events (as illustrated in Figure 1). The retention of water

within leaves, when stomata are closed, helps to relieve water stress. In

parallel, the closed stomata restrict microbial pathogens’ entry into leaves.

The trio of ROS, NO, and Ca2+ parallelly induce adaptive events to mitigate

water stress and limit pathogen spread by triggering HR and PCD. Thus,

ROS, NO, and Ca2+ can be considered vital regulators, participating in

ABA-induced defense against abiotic and biotic stress. Further details are

described in the text. Abbreviations used here are listed in the Appendix.

leaves. For e.g., ABA can raise the levels of ROS, NO, and Ca2+

(Wendehenne et al., 2004; Moeder et al., 2019; Sadhu et al., 2019).
An important consequence of elevated ROS, NO, and Ca2+ is HR
response, leading to PCD in several crop species while protecting
against pathogens. The HR may also include callose deposition
in cell walls, increased cuticular biosynthesis (Luna et al., 2011;
Lewandowska et al., 2020), and blocking of plasmodesmata
(Huysmans et al., 2017). Further, the modulation by ABA of
miRNA can restrict viral replication and the viral movement
due to blocked plasmodesmata, thus causing antiviral silencing
(Staiger et al., 2013; Alazem and Lin, 2017).

Other ABA-promoted events include the activation of genes
involved in either accumulation of compatible solutes for osmotic
adaptation or PCD to restrict the spread of pathogens within
leaves or enhanced secondary metabolites production (Figure 2).
For example, ABRE-binding proteins (AREBs) and ABRE-
binding factors (ABFs) up-regulate stress-responsive genes,
involved in short-term and long term adaptations to abiotic
stresses, including drought, cold, and heat (Verma et al., 2016;
Vishwakarma et al., 2017). The accumulation of proline on
exposure to water stress or ABA (Stewart, 1980; Planchet et al.,
2014) can serve the dual purpose of providing compatible solute
for osmotic adjustments in leaves and causing partial stomatal
closure in the epidermis (Raghavendra and Reddy, 1987).
Elevated proline levels due to ABA can further offer the plant
defense against pathogens (Qamar et al., 2015; Christgen and
Becker, 2019). There have been claims that proline accumulation
is not all ABA-dependent (Savouré et al., 1997). It is not
clear if ABA is the master regulator of proline accumulation
or a consequence of stomatal closure. ABA and proline’s
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combined action can be beneficial under hypoxic stress (Cao
et al., 2020). Similarly, ABA, proline, and PAs can help together
during plant adaptation to osmotic stress (Pál et al., 2018).

Several ABA responses are beneficial during biotic stress,
as well. ABA and SA promoted the accumulation of anti-
microbial flavan-3-ols, enhancing the plant defense against rust
infection in two popular trees, Poplar and Malus (Lu et al.,
2017; Ullah et al., 2019). Similarly, the ABA-activated MYC2
transcription factor was essential for defense againstMeloidogyne
incognita (Xu et al., 2019). PCD is a controlled process and
is a consequence of high ROS and NO levels typically up-
regulated by ABA (Petrov et al., 2015; You and Chan, 2015). In
plants, PCD is often an adaptive response during abiotic/biotic
stress (Fagundes et al., 2015; Burke et al., 2020). However, PCD
can also aggravate plant disease (Huysmans et al., 2017). ABAwas
involved in the induction of cell death around the wounded site
(Cui et al., 2013). Further experiments are needed to establish if
the process of PCD is incidentally associated with ABA or if ABA
is the causal factor.

Enhanced production of secondary metabolites is another
defense mechanism of plants against stress (Kumar and Sharma,
2018; Khare et al., 2020). Abscisic acid itself is a secondary
metabolite produced during stress and can play a significant
role in secondary metabolite production when plants encounter
abiotic or biotic stress factors (Murcia et al., 2017). ABA-
induced increase in flavonoids and other metabolites served
as a defensive measure against UV-B radiation (Mazid et al.,
2011). Trichoderma harzianum infection increased ABA levels,
which helped in osmotic adaptation under drought by restricting
water loss and increasing osmolytes, like proline (Mona et al.,
2017). Such interactions between ABA and secondary metabolite
production are quite exciting and need to be examined in detail.

CONCLUSION

Based on the extensive literature available, we tried to emphasize
the role of ABA-induced stomatal closure as an essential
component of plant defense against both limited water and
pathogens (Figure 2). ABA’s role is complemented further by
the cross-talk and interaction of ABA with other hormones,
microbial elicitors, and metabolites. We, therefore, emphasize
ABA can play either a direct role or an indirect role as well.
The stomatal closure by ABA can be considered a quick short-
term response. However, the three vital secondary messengers
involved in ABA-signaling, namely ROS, NO, and cytosolic
free Ca2+, can promote events, such as osmolyte accumulation,
up-regulation of adaptive genes, HR and PCD. These events

facilitate the long-term adaptation of plants against abiotic stress
as well as pathogens. ABA’s ability to induce stomatal closure
may not always be due to changes occurring in guard cells’
secondary messengers. For e.g., chitosan, a microbial elicitor,
can cause the death of guard cells (Ye et al., 2020b), likely to
make them non-functional. This aspect is thought-provoking and
needs to be examined further using ABA or other hormones,
such as SA or MJ.

There are emerging areas that are related to the role of
ABA and stomatal closure in plant defense. ABA’s ability to
induce priming could help plants tolerate heat or drought stress
occurring later (Zhang et al., 2019; Wang X. et al., 2020).
Similarly, plants could have a transcriptional memory of ABA
and MJ that can be useful for long-term adaptations (Avramova,
2019). Because of the well-documented importance, there had
been recurring attempts to discover ABA-analogs or ABA-
agonists. Stomatal closure and signaling components in guard
cells can be excellent model systems to monitor such compounds.
A few ABA-analogs were found, which mimic ABA to induce
stomatal closure (Puli and Raghavendra, 2012; Vaidya et al.,
2019). An extension of such work would open up an exciting
possibility of exploiting ABA-analogs to improve plants/crops’
water-use efficiency. There were reports that ABA and or stomatal
closure may not be crucial, particularly during fungal pathogen
infection of crops, e.g., barley and wheat. A few experiments on
mutants of such crop plants deficient in ABA or ability to close
stomata may help us clarify the exact situation. Plants are indeed
known to employ more than one strategy to overcome stress
conditions or to optimize metabolism. ABA-induced stomatal
closure is one of the approaches, while plants/pathogens could
evoke other strategies, as well.
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APPENDIX

TABLE A1 | List of sentences used in the syntactic awareness task.

12-

OPDA,

12-oxo-phytodienoic acid;

AAO, Abscisic aldehyde oxidase;

ABA, Abscisic acid;

ABI, ABA insensitive;

AGB1, Arabidopsis G β-subunit;

AITC, Allyl isothiocyanate;

BABA, β-aminobutyric acid;

COI1, Coronatine insensitive1;

CPK, Ca2+-dependent protein kinases;

CTOS, Chitin oligosaccharide;

EDS1, Enhanced disease susceptibility;

ERA1, Enhanced response to ABA1;

ET, Ethylene;

GABA, γ-aminobutyric acid;

GCN2, General control non-depressible2;

H2S, Hydrogen sulfide;

IP3, Inositol 1,4,5-triphosphate;

LCBK1, Long-chain base kinase1;

LOX, Lipoxygenase;

LPS, Lipopolysaccharide;

MJ, Methyl jasmonate;

MPK, Mitogen-activated protein kinase;

OGA, Oligogalacturonic acid;

OST, Open stomata;

PA, Phosphatidic acid;

PIP2/1, PAMP-induced peptide 2/1;

PLD, Phospholipase D;

RBOH- Respiratory burst oxidase homologue;

RPF, Regulation of pathogenicity factor;

S1P, Sphingosine-1-phosphate;

SA, Salicylic acid;

SL, Strigolactone;

SLAC, Slow anion channel;

YEL, Yeast elicitor.
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