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Hydrogen sulfide is a signaling molecule that regulates essential processes in plants, such as autophagy. In Arabidopsis
(Arabidopsis thaliana), hydrogen sulfide negatively regulates autophagy independently of reactive oxygen species via an
unknown mechanism. Comparative and quantitative proteomic analysis was used to detect abscisic acid-triggered
persulfidation that reveals a main role in the control of autophagy mediated by the autophagy-related (ATG) Cys protease
AtATG4a. This protease undergoes specific persulfidation of Cys170 that is a part of the characteristic catalytic Cys-His-Asp
triad of Cys proteases. Regulation of the ATG4 activity by persulfidation was tested in a heterologous assay using the
Chlamydomonas reinhardtii CrATG8 protein as a substrate. Sulfide significantly and reversibly inactivates AtATG4a. The
biological significance of the reversible inhibition of the ATG4 by sulfide is supported by the results obtained in Arabidopsis
leaves under basal and autophagy-activating conditions. A significant increase in the overall ATG4 proteolytic activity in
Arabidopsis was detected under nitrogen starvation and osmotic stress and can be inhibited by sulfide. Therefore, the data
strongly suggest that the negative regulation of autophagy by sulfide is mediated by specific persulfidation of the ATG4

protease.

INTRODUCTION

Hydrogen sulfide (H,S) is currently recognized as a signaling
molecule. In plant systems, H,S is considered to be as important
as NO and H,0, and regulates essential processes of plant
performance (Garcia-Mata and Lamattina, 2013; Calderwood and
Kopriva, 2014; Jin and Pei, 2015; Gotor et al., 2017). Sulfide
mediates tolerance against a range of plant stresses from heavy
metal toxicity to salinity and drought to enhance plant viability
(Gotor et al., 2019). Sulfide regulates critical processes, including
autophagy (Alvarez et al., 2012; Gotor et al.,, 2013, 2015;
Laureano-Marin et al., 2016a, 2016b) and the abscisic acid (ABA)-
dependent stomatal movement (Jin et al., 2013; Scuffiet al., 2014,
2018; Papanatsiou et al., 2015).

Despite increasing evidence of the biological function of H,S,
there is a considerable lack of information on the mechanism of
action of H,S in particular physiological processes. The mecha-
nism of action must be related to chemical reactivity of H,S with
other molecules. H,S was suggested to coordinate the metal
centers of metalloproteins (Vitvitsky et al., 2018) or act as
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a reductant of reactive oxygen species (Zaffagnini et al., 2019). A
third mechanism of action of H,S is based on its ability to modify
the thiol group (—SH) of the Cys residues in target proteins to form
a persulfide group (—SSH) resulting in functional changes in the
protein structure, activity, or subcellular localizations (Aroca et al.,
2015, 2017b). This posttranslational modification is called per-
sulfidation (known previously as S-sulfhydration) and has been
initially demonstrated in the mammalian (Mustafa et al., 2009; Paul
and Snyder, 2012) and plant systems (Aroca et al., 2015, 2017a)
using specific labeling methods.

Our previous investigations in Arabidopsis (Arabidopsis thali-
ana) demonstrated that hydrogen sulfide functions as a signaling
molecule in the cytosol that negatively regulates autophagy
(Alvarez etal., 2012; Gotor et al., 2013; Romero et al., 2013), which
is a highly conserved process involving digestion of the cell
contents for recycling and maintenance of cell homeostasis.
Autophagy occurs at the basal levels in eukaryotic cells and is
induced by internal or external perturbations. In plants, autophagy
is involved in development, immune response, and senescence
and is induced by stress conditions, including nutrient limitation
and other abiotic stresses (Liu and Bassham, 2012; Pérez-Pérez
et al., 2012; Masclaux-Daubresse et al., 2017; Ustiin et al., 2017;
Marshall and Vierstra, 2018). This catabolic process is charac-
terized by de novo synthesis of autophagosomes in the cytosol, in
which cytoplasmic materials to be recycled are sequestrated,
transported, and released into the plant vacuole. Various re-
ceptors have been described to assist with specific cargo
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ATG4 Is a Target of Sulfide

IN A NUTSHELL

Background: Hydrogen sulfide (H2S) is a poisonous substance hazardous to life and the environment, but it is also
present in biological tissues. Intense investigation showed that H.S functions as an important regulator of essential

processes in animals and plants. For example, our previous research on the plant Arabidopsis demonstrated that H.S

regulates autophagy. In autophagy (which is conserved in plants and animals), cell contents are digested for
recycling. The materials to be digested are sequestered in a double membrane-bound structures called
autophagosomes and the proteins involved in the main molecular machinery are referred to as autophagy-related
(ATG). Autophagy is involved in plant development, immune responses, and adaptation to adverse environmental
conditions.

Question: We wanted to know the mechanism of action by which H,S regulates autophagy. Previous findings
showed that H,S is not a reductant in autophagy. We want to determine if the mechanism is persulfidation, a
posttranslational protein modification of the thiol group of cysteines to form a persulfide group, and to identify the
target ATG proteins.

Findings: Using proteomic analysis of Arabidopsis leaves treated with the hormone abscisic acid (ABA), we found
that persulfidation of the cysteine protease ATG4 controls autophagy. When the persulfidation level of ATG4 is
reduced after a short ABA treatment the autophagy progresses. This ATG4 protease undergoes specific
persulfidation of the Cys170 residue that is a part of the catalytic site. ATG4 catalyzes the processing of newly
synthetized ATG8, which is essential for the synthesis of autophagosomes. This activity was measured in a
heterologous assay using Chlamydomonas ATG8 as substrate and we demonstrated that H2S significantly and
reversibly inactivates the proteolytic activity of ATG4. Under autophagy-inducing conditions such as nitrogen
starvation and osmotic stress, we detected a significant increase in the overall ATG4 proteolytic activity that can be
inhibited by sulfide.

Next steps: Our study demonstrated that negative regulation of autophagy by H»S is mediated by persulfidation of
ATG4. Probably this is not the only protein and additional targets remain to be identified. We will also investigate the

e T ———

role of H2S in the regulation of selective autophagy and the interplay between H.>S and other regulators.

recruitment and degradation via selective autophagy. The core
autophagy machinery is highly conserved in all studied eukar-
yotes, and involved proteins are referred to as autophagy-related
(ATG). These ATG proteinsinclude the ATG8 and ATG12 ubiquitin-
like conjugation systems that catalyze the covalent attachment of
ATGS8 to the phospholipid phosphatidylethanolamine (PE), which
is an essential adduct for the formation of autophagosomes
(Mizushima et al., 2011). Before this conjugation, the C-terminal
extension of newly synthetized ATG8 has to be cleaved by the
Cys-type protease ATG4 to expose a highly conserved Gly, which
is necessary for conjugation to PE. Additionally, ATG4 functions
as a deconjugating enzyme that cleaves the amide bond between
ATG8 and PE allowing the recycling of free ATG8 (Nair et al., 2012;
Nakatogawa et al., 2012; Yu et al., 2012).

Therole of sulfide as arepressor of autophagy is independent of
nutrient conditions and specific tissues because sulfide inhibits
autophagy in leaves under dark-induced carbon starvation
(Alvarez et al., 2012) or in roots under nitrogen deprivation
(Laureano-Marin et al., 2016b), and both conditions are unrelated
to sulfurmetabolism. A study aiming to decipher the mechanism of
action of H,S showed that it is independent of the formation of
reactive oxygen species, such as hydrogen peroxide or super-
oxide anions, and therefore H,S does not serve as areducerin the
regulation of autophagy (Laureano-Marin et al., 2016b). In-
terestingly, a comparative and quantitative proteomic analysis
was performed to detect endogenous persulfidated proteins; the
results indicated that at least 10% of the entire Arabidopsis
proteome undergoes persulfidation under physiological con-
ditions, suggesting a widespread distribution of this post-
translational modification (Aroca et al., 2017a). Furthermore,

persulfidation of various components of the ABA signaling
pathway has been recently described as a specific mechanism of
action by which H,S controls the guard cell ABA signaling (Chen
et al., 2020; Shen et al., 2020).

In this study, a comparative and quantitative proteomic
analysis was used to detect persulfidated proteins in the leaves
of Arabidopsis exogenously treated with ABA. Interestingly,
comparison of the untreated and ABA-treated samples indicated
that AtATG4a was the protein with the highest difference in the
persulfidation level. We then sought to determine whether
persulfidation is the mechanism of the regulation of autophagy
by sulfide in Arabidopsis under the stress conditions and to
ascertain whether persulfidation regulates the activity of ATG4.
To this aim, an enzymatic assay using Chlamydomonas rein-
hardtii CrATG8 as ATG4 substrate was developed. In-depth
analysis of ATG4 proteolytic activity was performed in vitro
and in a cell-free system using total extracts from Arabidopsis
under basal or autophagy-activating conditions, including ni-
trogen limitation or osmotic stress. The results indicate that
ATG4 is a specific target of persulfidation.

RESULTS

Autophagy Induction by ABA-Triggered Persulfide
Modification Is Mediated by AtATG4a Regulation by
Hydrogen Sulfide in Arabidopsis

ABA can trigger changes in hydrogen sulfide level and protein
persulfide modification in the guard cells to modulate stomatal
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closure (Shen et al., 2020). To assess whether ABA also regulates
protein persulfidation levels in the mesophyll cells, a sequential
window acquisition of all theoretical spectra-mass spectrometry
(SWATH-MS) quantitative approach was combined with the tag-
switch method to measure protein persulfidation (Aroca et al.,
2017a). Protein samples from three biological replicates (in-
dependent pools) of leaf tissue treated with ABA for 0 h (control
sample), 3 h, and 6 h were isolated and subjected to the tag-switch
procedure (Figure 1A). The proteins eluted from the streptavidin
beads were digested, and the peptide solutions analyzed in two
sequential steps: a shotgun data-dependent acquisition ap-
proach to generate the spectral library and SWATH acquisition by
the data-independent acquisition (DIA) method. In the first step,
integration of the nine data sets resulted in identification of a total
of 10,329 peptides (1% false discovery rate [FDR] and 90%
confidence) and 1434 unique proteins (1% FDR) that were used as
aspectral library (Supplemental Data Set 1). In the second step, to
quantify protein levels using SWATH acquisition, the same six
biological samples were analyzed in two technical replicates by
the DIA method using the liquid chromatography (LC) gradient and
LC-MS equipment employed in generation of the spectral library.

Therefore, six data sets were generated from the control and
ABA-treated (for 3 and 6 h) samples to yield a total of 18 data sets
used for the quantitative analysis. The fragment spectra were
extracted for the 18 runs, and 33,887 ion transitions, 4871 pep-
tides, and 1157 proteins were quantified. Principal component
analysis of the protein sample subgroups revealed significant
reproducible data between the replicates and differences be-
tween the ABA treatments (Figure 1B).

Comparison between the control (0 h)and the 3 h ABA treatment
samples (0 h versus 3 h ABA; Supplemental Data Set 2) showed
that 192 proteins were more abundant in the control samples with
the fold change > 1.5 (P < 0.05), and 242 proteins were less
abundant with the fold change <0.66 (P < 0.05; Supplemental Data
Set 3). Higher abundance of a protein in the control samples than
that in the samples prepared after 3 h ABA treatment means that
the protein is more persulfidated in the control because the tag-
switch labeling recovers more protein from the streptavidin col-
umn. Lower abundance in the control means that a protein is more
persulfidated in the 3 h ABA samples.

Atotal of 192 proteins with reduced persulfidation level after 3 h
of ABAtreatment were analyzed based on their assigned functions
and classified into 32 functional groups using the MapMan no-
menclature (Supplemental Table 1; Thimm et al., 2004; Klie and
Nikoloski, 2012). The most numerous set corresponded to the
general protein group (bin 29; Supplemental Table 2), which in-
cluded 18.2% of the total identified proteins with 35 total ele-
ments, 29 of which are involved in protein amino acid activation
(eight elements, tRNA ligases), protein synthesis (12 elements)
and protein degradation (nine elements). The latter group included
the Cys-type protease AtATG4a involved in autophagy, which
showed the highest persulfidation change (5.20-fold change), and
the S1 RNABINDING RIBOSOMAL PROTEIN 1 (3.69-fold change)
that regulates seedling growth in the presence ABA or under
abiotic stress conditions (Gu et al., 2015). Additional proteins
involved in the regulatory process and with a reduction in their
persulfidation levels included MAPK kinase 6 (MPKB6,
AT2G43790), Tyr phosphatase 1 (PTP1, AT1G71860), Gly-rich

protein 8 (GRP8, AT4G39260), and 9-cis-epoxycarotenoid diox-
ygenase 4 (NCED4, AT4G19170).

The quantitative analysis of the control and the 6-h ABA
treatment samples (Supplemental Data Set 4) showed a reduction
in the number of regulated proteins; only 120 proteins were more
abundant inthe control versus the ABA treatment samples with the
fold change > 1.5 (P < 0.05), and 198 proteins were less abundant
with the fold change < 0.66 (P < 0.05; Supplemental Data Set 5).

Comparison of differentially regulated proteins at 3 and 6 h of
ABA treatment showed that 42% of the proteins are regulated
under both conditions and had different levels of persulfidation.
The Cys protease AtATG4a showed a reduction in the level of
persulfidation down to only 2.45-fold after 6 h of ABA treatment
compared to that under the control conditions; this level was
higher than that in the 3-h ABA treatment samples (Figure 1C).
Therefore, persulfidation level of AtATG4a was transiently re-
duced after a short ABA treatment, and this reduction was very
significant compared to the untreated control.

The proteomics data suggest that AtATG4a protease is dif-
ferentially persulfidated depending on the treatment conditions;
this difference may be related to the progress of autophagy. To
test this assumption, we analyzed the regulation of autophagy by
ABA treatments and the effects of sulfide under these conditions.
Arabidopsis seedlings expressing GFP-ATG8e fusion protein
(Xiong et al., 2007) were treated with 50 wuM ABA for 3 and 6 h and
subjected to additional treatment of 200 M NaHS for 1 h. Total
protein extracts were obtained, and immunoblot analysis was
performed using anti-GFP antibodies to detect free GFP and the
GFP-ATG8e fusion protein (Figure 2A). A clear increase in the free
GFP protein level in ABA-treated seedlings was detected com-
pared with the control and a significant reduction in the GFP
accumulation after the additional sulfide treatment was observed
resulting in protein levels lower than those detected in the control.
Quantification of the ratio-free GFP/GFP-ATG8 under each
condition showed that ABA induced the autophagic flux and that
this ABA-induced autophagy was repressed by NaHS (Figure 2B).
These findings and the proteomic data suggest that sulfide is
a negative regulator of bulk autophagy independently of the
condition used to induce this catabolic process, including at least
nutrient limitation (Alvarez et al., 2012; Laureano-Marin et al.,
2016b) and ABA-dependent stress (this study). Furthermore,
persulfidation appears to be the mechanism of action of sulfide
and the AtATG4a protease may be one of the specific targets.

Persulfidation of AtATG4a at Cys170

To demonstrate the persulfidation-based modification of Cys
residues in AtATG4a, recombinant protein was purified, subjected
to the tag-switch procedure, and analyzed by immunoblotting
using anti-biotin antibodies (Aroca et al., 2017a). A biotin-labeled
protein band corresponding to AtATG4a was clearly detected by
the antibody. Moreover, when AtATG4a was pretreated with DTT
to reduce the persulfide residues, the biotin-labeled protein bands
were not detected (Figure 3A). These results clearly indicate that
AtATG4a undergoes persulfidation in vitro. To identify the Cys
residue that can be modified by persulfidation, recombinant
AtATG4a was analyzed by LC-tandem mass spectrometry (MS/
MS). The protein was digested with trypsin under nonreducing
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Figure 1. Proteomic Analysis of Protein Persulfidation in Response to ABA in Mesophyll Cells.

(A) Workflow of ABA leaf treatments followed by tag-switch protein labeling with CN-biotin, protein purification, and quantitative SWATH analysis of eluted

proteins.

(B) Principal component analysis representation plot of the 18 samples after SWATH analysis. Score for PC1 (70%) versus PC2 (9.9%), Pareto scaling.
(C) Level of persulfidated AtATG4a after ABA treatments. Values represent the mean peak areas of extracted ion chromatogram of identified AtATG4a

peptides. *P < 0.05.
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Figure 2. Effect of Sulfide on Autophagy Induced by ABA Treatment.

(A) Immunoblot analysis of GFP-ATG8e fusion protein. One-week-old
seedlings expressing GFP-ATG8e fusion protein were transferred to liquid
MS media and were not treated (control) or treated with 50 uM ABA for 3
and 6 hand then 200 WM NaHS for 1 h. Total protein extracts were prepared
and subjected to SDS-PAGE and immunoblot analysis with anti-GFP
antibodies. Anti-tubulin antibodies were used as the protein-loading
control.

(B) Quantification of the free GFP/GFP-ATGS ratio. For each condition, the
levels of free GFP and GFP-ATG8e fusion protein were quantified in a less
exposed blot shown in Supplemental Figure 6. The value of 100% was
assigned to the free GFP/GFP-ATGS ratio of the control sample. Data are
from three independent experiments and evaluated by two-factor ANOVA.
Same letters indicate no significant differences. P < 0.05.

conditions in the absence of alkylating agents to avoid the re-
duction or modification of the persulfide residues. The digested
peptides were analyzed to detect a 32 D molecular mass increase
in the fragmentation spectrum. The identified peptides included
DTTYTSDVNWGCMIR that showed a persulfidation modification
of Cys170 (Figure 3B). AtATG4a protein was identified with
a sequence coverage of 97%, and no other persulfidated pep-
tides were detected despite the presence of another 11 Cys
residues in the primary structure (Figure 3C). Cys170is located in
the highly conserved catalytic site of ATG4 proteins from various
organisms (Satoo et al., 2009; Pérez-Pérez et al., 2014, 2016)
suggesting that the modification by persulfidation may have an
important impact on the AtATG4a proteolytic activity and bi-
ological function.

In Vitro Processing of CrATG8 by AtATG4a

To determine whether modification of AtATG4 by persulfidation
has an effect on its biological activity, an in vitro assay using
CrATG8 from C. reinhardftii as a substrate was established (Pérez-
Pérez et al., 2010). CrATG8 was previously used to monitor the
activity of yeast (Saccharomyces cerevisiae) ATG4 (Pérez-Pérez
et al., 2010, 2014). ATG4 processes ATG8 at a conserved Gly
residue located at the C terminus of the protein (Kirisako et al.,
2000). Arabidopsis contains nine different ATG8 isoforms, none of
which has more than five amino acid residues after the conserved
Gly (Doelling et al., 2002). In contrast, CrATG8 harbors a 14-amino
acid extension after the Gly, and CrATG8 processing can be easily
monitored by Coomassie Blue-stained SDS-PAGE due to dif-
ferences in mobility between the unprocessed and processed
CrATG8 forms (Supplemental Figure 1). When purified AtATG4a
was incubated with CrATG8 in the presence of DTT, the processed
protein with the same mobility as a truncated form lacking the last
14 amino acids (CrATG8%120, referred to as pCrATG8) was de-
tected (Figure 4A). Therefore, AtATG4a was active and was able to
process CrATG8 at its C-terminal Gly validating the ATG4 pro-
cessing activity assay. The results indicated that AtATG4a activity
was increased in a time-dependent manner and required a re-
ducing agent to adopt the monomeric form required for the activity
(Figure 4A), as described previously in other systems (Pérez-Pérez
et al,, 2010).

To analyze the effect of a reducing agent on AtATG4a activity,
thein vitro assay in the presence or in the absence of different DTT
or tris(2-carboxyethyl)phosphine (TCEP) concentrations was
performed. In the absence of DTT and TCEP, recombinant
AtATG4a was in an oligomeric form that was retained in the upper
part of the acrylamide gel. Increasing concentrations of the re-
ducing agent enhanced the monomerization of recombinant
AtATG4a and consequently the processing of CrATG8 by AtAT-
G4a (Figures 4B and 4C). Therefore, properties of Arabidopsis
ATG4a were similar to those of the Chlamydomonas and yeast
ATG4 (Pérez-Pérez et al., 2014, 2016). Interestingly, TCEP was
more efficient than DTT in the activation of CrATG8 cleavage,
showing the maximum level of ATG4 activity at 0.5 mM TCEP while
two orders of magnitude higher DTT concentration was required
for optimal activity (Figures 4B and 4C).

Sulfide Inhibits the Proteolytic Activity of AtATG4a

Asuitable ATG4 enzyme activity assay was developed and used to
study whether persulfidation plays a role in the regulation of this
activity. Thus, purified recombinant AtATG4a was pretreated with
TCEP to produce an active enzyme and then incubated with in-
creasing concentrations of NaHS as a sulfide donor. The
ATG4 activity-dependent CrATG8 processing was determined
using the Coomassie-stained gel method (Figure 5A). An increase
in the accumulation of the unprocessed CrATG8 form was de-
tected when AtATG4a was incubated in the presence of NaHS at
a concentration as low as 0.1 mM. ATG4 activity was determined
as the ratio of the band intensity of the processed CrATGS to the
sum of the intensities of the unprocessed and processed CrATGS;
the data indicate that 0.1 mM NaHS significantly inhibits the ATG4
activity to ~40% of the activity in the absence of sulfide
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Figure 3. Persulfidation of Arabidopsis AtATG4a.

(A) Immunoblot analysis of persulfidated AtATG4a. Purified recombinant AtATG4a was treated in the absence (—) or in the presence of 50 mM DTT (+) for
30 min at 4°C, dialyzed, and subjected to the tag-switch labeling as described in the Methods. Then, the proteins were subjected to immunoblot analysis
using anti-biotin antibodies. Sypro Ruby fluorescent staining is shown as the protein loading control.

1202 1990100 #0 UO oSN B[IIASS 8p PepisIoaun Aq 91,981 L 9/Z06E/Z L/ZE/P101E|[99]d/woo°dnodlwapese)/:sdjy Wwolj papeojumoq



3908 The Plant Cell

(Figure 5B). Interestingly, analysis of the aggregation state of
AtATG4a in the presence of the sulfide donor demonstrated that
NaHS has different effects on monomerization and activity of
AtATG4a (Figure 5C). Sulfide did not promote the oligomerization
of the active monomeric AtATG4a to the same extent as it inhibited
ATG4 proteolytic activity under the conditions used in the assays.
Concentrations of NaHS from 0.1 to 0.5 mM did not significantly
increase the abundance of high molecular weight and inactive
oligomers of AtATG4a (Figure 5C). These results indicate that
sulfide donor inhibits AtATG4a activity but does not directly in-
fluence the aggregation state of the protein in contrast to the effect
of DTT or thioredoxin on yeast and C. reinhardtii ATG4 proteins
(Pérez-Pérez et al., 2014, 2016).

Recent studies have questioned whether NaHS can be the
sulfurating molecule instead of the proposed polysulfide and
persulfide molecules. These molecules contain sulfane sulfur, the
form of sulfur (S°) with the ability to reversibly attach to other sulfur
atoms. Most of the reported biological activity associated with
sulfide may be due to persulfides, which are considered re-
sponsible for intracellular signal transduction through persulfi-
dation in vivo (Toohey, 2011; Ida et al., 2014; Mishanina et al.,
2015). Thus, assays similar to those described above were per-
formed using various concentrations of polysulfide Na,S, used as
a sulfur donor. Our results indicated that polysulfide inactivates
AtATG4a more efficiently than NaHS (Figures 6A and 6B). Con-
centrations of Na,S, three orders of magnitude (10 to 50 uM) lower
than those of NaHS were necessary to achieve a similar inhibition,
and complete inactivation of the enzyme was observed at 100 uM
Na,S,. Furthermore, polysulfides were more active in promoting
the aggregation of AtATG4a, and the differences in the effects on
activity and oligomerization were not as pronounced as those
observed with NaHS (Figure 6C).

Collectively, ourresults indicate that sulfide can inhibit the ATG4
proteolytic activity and that this inhibition is independent on the
ATG4 aggregation state, at least at low concentrations of sulfu-
rating species. Our results also suggest that this inhibitory effect is
mediated by specific persulfidation of the catalytic Cys170 resi-
due. Site-directed mutagenesis of this catalytic Cys inactivates
ATG4 activity in all tested systems and conditions (Scherz-
Shouval et al., 2007; Shu et al., 2010; Pérez-Pérez et al., 2014,
2016), and therefore the mutant enzyme cannot be used to test the
inhibitory effect of sulfide.

To examine the impact of posttranslational modification of
Cys170 by persulfidation on the interaction between AtATG4a and
its substrate AtATG8a, 3D homology modeling was performed
using the structure of the Homo sapiens HsATG4b-LC3 complex
(Satoo et al., 2009). AtATG4a shares up to 33.4% sequence
identity with HsAtg4B (E-value 7.3 X 107°0) and AtATG8a shares
up to 59.4% sequence identity with HsLC3 (E-value 1.8 X 10749)
with conserved residues covering the whole sequence.

Persulfidation of Cys170 in the AtATG4a-AtATG8a protein
complex caused conformational changes and intramolecular
rearrangements of the catalytic site (Figure 7A) influencing sub-
strate recognition. Addition of the —SH group to Cys170 induced
an unfavorable steric effect particularly affecting the His366
residue since the imidazole C32 and Ne2 atoms are 2.9 Aand 3.4 A
from the S atom of Cys170, respectively. The additional sulfur and
hydrogen atoms have a covalent radius of 1.02 A and 0.37 A,
respectively (Figure 7B). Therefore, this Cys modification can
inhibit the activity of the plant AtATG4a protein.

Interestingly, the simulation of surface electrostatic potential
reveals the differences between HsATG4b-LC3 and AtATG4a-
AtATG8a protein complexes; specifically, the electrostatic po-
tential surface around the catalytic site of the human complex is
more electronegative compared to that of the Arabidopsis com-
plex (Supplemental Figure 2). However, Cys persulfidation does
not perturb the charge, since the additional —SH group is a neutral
contribution. A closer look at the catalytic cavity region suggests
that it is somewhat smaller and less exposed to the solvent in
Arabidopsis compared to the human homologue likely hampering
the accessibility of the substrate. Overall, these data suggest that
inhibition of the processing activity of Arabidopsis AtATG4a may
be due to a conformational change of the catalytic site induced by
persulfidation.

Endogenous Arabidopsis ATG4 Processes CrATG8
for Conjugation

Our results indicate that sulfide can regulate ATG4 proteolytic
activity through persulfidation of a specific Cys residue. This
conclusion is based on in vitro experiments. If sulfide has a bi-
ological role in the control of ATG4 activity in living plants, the
inhibitory effect of sulfide should be reversible. To explore this
hypothesis, active AtATG4a was inhibited by a high concentration
of Na,S, to promote complete inactivation and to determine the
extent of reversion by reduction of all persulfide residues with
TCEP. The reactivation of AtATG4a was monitored as the ratio of
the protein band intensities of unprocessed and processed
CrATGS8 (Figure 6D). The results clearly confirm that the inhibition
of ATG4 proteolytic activity by sulfideis reversible, suggesting that
it may play a role in the control of ATG4 in vivo.

To determine whether sulfide regulation of ATG4 also occurs
in vivo, ATG4 enzyme activity was detected in Arabidopsis leaves
using the addition of exogenous CrATGS8 to leaf protein extracts.
Immunoblot analysis using antibodies against CrATG8 indicated
that CrATG8 was efficiently processed by incubation with Ara-
bidopsis leaf protein extracts (Figure 8A, right). To confirm the
specificity of the CrATG8 cleavage assay, Arabidopsis leaf protein
extracts were incubated with a mutant of CrATG8 with conserved
Gly120 replaced by Ala (G120A). This CrATG8 mutant is not

Figure 3. (continued).

(B) Analysis of AtATG4a using mass spectrometry. LC-MS/MS analysis of a tryptic peptide of AtATG4a containing Cys170. The table inside the spectrum
contains the predicted ion types for the modified peptide, and the ions detected in the spectrum are highlighted in red.
(C) AtATG4a protein sequence identified with 97 % coverage. The peptide containing persulfidated Cys170 s highlighted in yellow, and all the Cys residues

are red.
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ATG4 activity of the recombinant AtATG4a was assayed by monitoring the cleavage of CrATG8 from the unprocessed (CrATG8) to processed (pCrATG8)

forms (indicated by arrowheads) using SDS-PAGE followed by Coomassie Blue staining and quantification of protein band intensities. The ATG4 activity

(relative units) was determined as the ratio of the band intensity of the processed CrATGS8 to the sum of the intensities of the unprocessed and processed
CrATG8. Activity value of 1 corresponds to the maximum. Processed pCrATG8 (lane 1) and unprocessed CrATG8 (lane 2) were loaded as controls.

Representative images are shown. Data are from three independent experiments and evaluated by two-factor ANOVA. Same letters indicate no significant

differences. P < 0.05.

(A) Effect of incubation time. AtATG4a was incubated with CrATG8 in the absence or in the presence of 10 mM DTT for the indicated times.
(B) Effect of DTT concentration. AtATG4a was incubated with CrATG8 in the absence or in the presence of increasing concentrations of DTT for 4 h.
(C) Effect of TCEP concentration. AtATG4a was incubated with CrATG8 in the absence or in the presence of increasing concentrations of TCEP for 4 h.

processed by ATG4 (Pérez-Pérez et al.,2010,2016). When G120A
was used as the substrate, the processed form was not detected,
demonstrating the specificity of the endogenous ATG4 activity in
Arabidopsis (Figure 8A, left). Moreover, in addition to full-length
and processed CrATG8, the antibodies specifically recognized

other bands with faster mobility than pCrATG8 (Figure 8, aster-
isks). These bands were exclusively detected when wild-type
CrATG8, but not the G120A mutant, was used in the assay and
they apparently correspond to the conjugated form of CrATG8
protein, as demonstrated previously in Chlamydomonas (Pérez-
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Figure 5. Effect of NaHS on AtATG4a Enzyme Activity.

(A) AtATG4a was incubated with 0.5 mM TCEP for 2 h and treated in the
absence or in the presence of indicated concentrations of NaHS for 1 h.
Then, CrATG8 was added to the incubation mixture, and ATG4 activity was
monitored after 4 h using Coomassie-stained gels as described in
Methods. All procedures were performed at 25°C. Lanes 1 and 2, un-
processed and processed CrATG8, respectively. Lane 3, AtATG4a in-
cubated with CrATG8 in the absence of TCEP and of NaHS. Lanes 4 to 8,
TCEP-pretreated reduced AtATG4a incubated with CrATGS in the pres-
ence of increasing concentrations of NaHS (from 0 to 1 mM). A repre-
sentative image is shown.

(B) Quantification of ATG4 activity (relative units) determined as the ratio of
the band intensity of the processed CrATG8 to the sum of the intensities of
the unprocessed and processed CrATG8. A value of 1 corresponds to
AtATG4a in the absence of NaHS (lane 4).

(C) Quantification of the protein band intensity corresponding to the
monomeric AtATG4a form marked by a rectangle in (A). A value of 100%
corresponds to AtATG4a in the absence of NaHS (lane 4).

Data are from three independent experiments and evaluated by two-factor
ANOVA. Same letters indicate no significant differences. P < 0.05.

Pérez et al., 2010). Incubation of the Arabidopsis protein extract
with the processed form of the CrATG8 (pCrATG8), which does not
require cleavage by ATG4 and can be conjugated to PE
(Supplemental Figure 3), confirmed that the faster mobility bands
correspond to lipidated forms. The antibodies detected mainly an
intense protein band that was progressively accumulated with
incubation time and fully lipidated at the shortest time of in-
cubation with the extracts under autophagy-activating conditions
induced by nitrogen deficiency (Supplemental Figure 3). There-
fore, our data demonstrated that the Arabidopsis protein extracts
contain all the active proteins required for the conjugation of ATG8
and efficiently recognize CrATG8, thus validating the results of the
ATG4 activity assay in the cell-free total extract.

To confirm the conclusion that Arabidopsis ATG4 proteins
catalyze the processing of CrATG8 in the cell-free total extract
assay, the ATG4 enzyme activity of the Arabidopsis protein ex-
tracts prepared from the atg4ab double mutant seedlings was
assayed (Supplemental Figure 4; Yoshimoto et al., 2004; Chung
et al., 2010). When CrATG8 was incubated with the Arabidopsis
atg4ab protein extract, the processed form of CrATG8 was not
detected even after extended incubation. Similarly, when protein
extracts were prepared from nitrogen-limited seedlings, the im-
munoblot analysis revealed a prominent protein band corre-
sponding to the lipidated form of CrATG8 only in the presence of
protein extracts form wild-type plants but not from the atg4ab
mutant (Figure 8B).

Therefore, our data show that endogenous Arabidopsis ATG4
proteins recognize the cleavage site of the Chlamydomonas ATG8
substrate, which is efficiently processed in the cell-free
enzymatic assay.

Sulfide Reversibly Inhibits the ATG4 Activity in
Arabidopsis Seedlings

The effect of a sulfurating species on endogenous Arabidopsis
ATG4 proteins was investigated to confirm the results obtained in
in vitro analysis. Leaf protein extracts were treated with poly-
sulfide, and CrATG8-processing activity was compared with that
in the untreated extract. A pronounced decrease in the ATG4
activity was observed when the Arabidopsis extract was pre-
treated with Na,S, (Figure 9A). Additionally, treatment of the
Arabidopsis leaf protein extract with the alkylating agent iodoa-
cetamide inhibited ATG4 activity as expected because ATG4 is
a Cys protease and its activity is dependent on the catalytic Cys;
this effect was similar to the effect of polysulfide (Figure 9A, left).
Thus, these findings strongly suggest that sulfide negatively
regulates ATG4 activity in vivo, at least the cleavage activity of the
C-terminal extension of ATG8. Reversibility of the inhibitory effect
of polysulfide was also analyzed. When the polysulfide-incubated
Arabidopsis extract was treated with TCEP as a reducing agent to
reduce the persulfide-modified Cys residues in the protein extract,
a significant difference in the activity was detected compared with
that in the polysulfide-treated extract (Figure 9A, right). When the
extract was incubated with Na,S,, the processed CrATG8 form
was barely detected; however, incubation with TCEP significantly
increased the abundance of this band, suggesting that sulfide may
inhibit Arabidopsis ATG4 activity in a reversible manner.
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(A) AtATG4a was incubated with 0.5 MM TCEP for 2 hand subsequently treated in the absence orinthe presence of indicated concentrations of Na,S, for 1 h.
Then, CrATG8 was added to the incubation mixture, and ATG4 activity was monitored after 4 h using Coomassie-stained gels as described in Methods. All

procedures were performed at 25°C. A representative image is shown.

(B) Quantification of ATG4 activity (relative units) determined as the ratio of the band intensity of the processed CrATGS to the sum of the intensities of the
unprocessed and processed CrATGS8. A value of 1 corresponds to AtATG4a treated in the absence of Na,S, (lane 1).
(C) Quantification of the protein band intensity corresponding to the monomeric AtATG4a form marked by arectangle in (A). A value of 100% corresponds to

AtATG4a treated in the absence of Na,S, (lane 1).

(D) Reversibility of the effect. AtATG4a was incubated with 0.25 mM TCEP for 2 h (lane 1) and treated with 100 uM Na,S, for 1 h (lane2)and 1 MM TCEP for 1 h
(lane 3). ATG4 activity was monitored using Coomassie-stained gels. The experiment was performed at least three times and arepresentative image used for

the quantification of the activity is shown.

Data are from three independent experiments and evaluated by two-factor ANOVA. Same letters indicate no significant differences. P < 0.05.

To characterize the inhibition of ATG4 proteolytic activity by
sulfide, the effect of polysulfide on the ATG4 activity was assayed
under basal and autophagy-inducing conditions. Two different
established conditions of autophagy induction were tested: ni-
trogen deficiency, which has been extensively characterized
previously by Doelling et al. (2002), Hanaoka et al. (2002), Xiong

et al. (2005), Phillips et al. (2008), Guiboileau et al. (2013), and
Laureano-Marin et al. (2016b), and osmotic stress (Liu et al., 2009)
imposed by the addition of mannitol to the growth medium, which
induces the ABA-dependent signaling pathway. The processed
form of CrATG8 was detected in total extracts under the control
and autophagy-activating conditions, and sulfide inhibited
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(A) 3D modeling of the AtATG4a-AtATG8a complex based on the structure of the HsAtg4B-LC3 protein complex (PDB ID: 2Z0E). The AtATG8 protein
sequence (Q8LEM4 in UniProtkB) corresponds to the splice variant 1. Surface representation of the protein complex and the equivalent residues sur-
rounding the catalytic cavity Cys170, Trp192, Asp364, and His366 in AtATG4a (red) and Phe116, Gly117, Thr120, and Ala122 in AtATG8a (blue) are shown in

the structural models.

(B) Zoomed view of the putative conformation of the active site showing the spheres corresponding to the position and distance (A) of catalytic residues

Cys170, Trp192, Asp364, and His366 in AtATG4a.

endogenous ATG4 activity under both conditions (Figure 9B). The
faster-mobility protein band corresponding to the lipidated form of
CrATG8 was more prominent under nitrogen limitation than os-
motic stress; however, sulfide treatment decreased the accu-
mulation of the conjugated forms of CrATG8 under both
conditions.

DISCUSSION

Accumulating evidence emphasizes the importance of autophagy
in plant growth and development. This catabolic process is highly
dynamic and occurs at the basal levels to maintain cellular ho-
meostasis during growth; however, autophagy is fine-tuned to
adjust plant metabolism to internal and external perturbations.
Various regulators of autophagy have been identified in plant
systems, such as the energy sensor Snf1-related protein kinase 1
(SnRK1), the kinase Target of Rapamycin (TOR), the TOR
downstream substrate ATG1 kinase complex, and the endo-
plasmic reticulum stress sensor inositol-requiring enzyme-1
(IRE1; Marshall and Vierstra, 2018; Soto-Burgos et al., 2018).
Other regulators of autophagy, such as hydrogen sulfide, have
been identified, although the details of the molecular mechanism
of action of these regulators remain poorly understood. In the
animal systems, interactions of sulfide with autophagy have been
described in various pathologies; depending on the disease,
sulfide can either suppress or activate autophagy. In all cases,
hydrogen sulfide has protective effects (Sen, 2017; Wang et al.,
2017; Wu et al., 2018). Despite substantial progress, the exact
mechanism of autophagy regulation by sulfide in mammals re-
mains unknown. In plants, particularly in Arabidopsis, the interplay

between sulfide and autophagy has been shown, and progress in
understanding of the mechanism has been obtained. Hydrogen
sulfide generated in the cytosol functions as a signaling molecule
negatively regulating autophagy independently of the nutritional
conditions. Furthermore, sulfide was shown to repress autophagy
via a mechanism that is independent of redox conditions (Alvarez
et al., 2012; Laureano-Marin et al., 2016b).

Sulfur and autophagy are also linked by the mechanism of
Arabidopsis sensing of the sulfur-containing amino acid Cys. Two
different pathways have been identified for sensing of its carbon/
nitrogen precursor and its sulfur precursor. The sulfur precursor is
transduced to TOR by downregulation of Glc metabolism;
therefore, sulfide increases Gic levels and TOR kinase activity,
downregulating autophagy (Dong et al., 2017). This study dem-
onstrated that cytosolic sulfide is not the signal responsible for the
regulation but does not exclude chloroplast sulfide as the sig-
naling molecule. In fact, a proteomic study showed that other
sulfurating species in addition to the cytosolic sulfide can be
responsible for regulation of diverse biological processes (Aroca
et al., 2017a).

The data of this study emphasize sulfide regulation of
autophagy. Our findings indicate that ABA activates autophagy
and hydrogen sulfide downregulates this catabolic process. A link
between autophagy and ABA was previously described through
the Arabidopsis multistress regulator tryptophan-rich sensory
protein-related (TSPO). ABA induces TSPO as a heme scavenger,
which binds the excessive or deleterious heme and then is tar-
geted for degradation through autophagy (Vanhee and Batoko,
2011; Vanheeetal., 2011). Other connections between autophagy
and ABA signaling via TOR have been described. Under
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Figure 8. Cleavage and Conjugation of Chlamydomonas ATG8 by Arabidopsis Proteins.

(A) ATG4 proteolytic activity in wild-type Arabidopsis leaves. Arabidopsis protein extracts prepared from leaves of wild-type seedlings grown for 11 don MS
medium were incubated with CrATG8 or site-directed mutant G120A proteins at 25°C for the indicated times, and ATG4 activity was monitored as the
cleavage of the ATG8 forms to the processed (pCrATG8) forms by immunoblotting analysis with anti-CrATG8. Processed pCrATGS8 (lane 1), unprocessed
CrATG8 (lane 2), and site-directed mutant G120A (lane 6) were loaded as controls.

(B) ATG4 proteolytic activity in the Arabidopsis atg4ab mutant. Arabidopsis protein extracts were prepared from the leaves of wild-type and atg4ab double
mutant seedlings grown for 7 d on the MS medium and transferred to the same medium (+N) or to a nitrogen-deficient medium (—N) for additional 4 d. The
protein extracts were incubated with CrATG8 at 25°C, and ATG4 activity was monitored after 0, 0.5, or 2 h as indicated by immunoblotting analysis with anti-

CrATGS.

The arrowheads show the unprocessed CrATG8 and processed pCrATGS8 protein bands, and the asterisks indicate faster-mobility protein bands. Ponceau

staining is shown as the protein loading control of the Arabidopsis extract.

nonstressed conditions, TOR phosphorylation of ABA receptors
leads toinactivation of SNRK2 kinases and disrupts ABA signaling.
Under abiotic stress conditions, ABA activates SnRK2 that
phosphorylates RAPTOR, resulting in the inhibition of TOR and
consequential activation of autophagy (Wang et al., 2018).
Previous studies have shown that the main mechanism of action
of sulfide involves persulfidation of reactive Cys residues of the
target proteins resulting in changes in enzyme structure, activity,
and subcellular localization demonstrated in several target plant
proteins (Aroca et al., 2015, 2017b, 2018). A proteomic analysis
performed on mature leaves from Arabidopsis plants grown under

nonstress conditions revealed that a high proportion of the whole
Arabidopsis proteome may undergo persulfidation under the
basal conditions (Aroca et al., 2017a). In this study, a comparative
and quantitative proteomic analysis has been performed on ABA-
treated leaves to determine whether persulfidation mechanism is
involved in sulfide regulation of the ABA signaling pathways.
Significant differences in the levels of persulfidation were ob-
served after ABA treatment compared to that under the control
conditions. Surprisingly, the protein with the lowest level of per-
sulfidation after 3 h ABA treatment was identified as Cys-type
protease AtATG4a (5.20-fold change, P < 0.05, control versus 3 h
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Figure 9. Sulfide Inhibits the Endogenous Proteolytic Activity of Arabidopsis ATG4.

(A) Effect of polysulfides on endogenous enzyme activity of Arabidopsis ATG4. Arabidopsis protein extracts (Ex) were prepared from the leaves of seedlings
grown for 11 d onthe MS medium. The extracts were treated in the absence (un-Ex) and in the presence of 200 uM Na,S, (Na,S,-Ex) or20 mMiodoacetamide
(IAM-Ex) for 30 min, or in the presence of 200 wM Na,S, for 30 min and 1 mM TCEP for 30 min (Na,S,-Ex + TCEP). Then, CrATG8 was added to the incubation
mixture, and ATG4 proteolytic activity was monitored. Lane 1, unprocessed CrATG8.

(B) Sulfide reverts the endogenous enzyme activity of Arabidopsis ATG4 under autophagy-induced conditions. Arabidopsis protein extracts were prepared

from the leaves of seedlings grown for 7 d on the MS medium and transferred

to the same medium (+N) or to a nitrogen-deficient medium (—N; left); or

transferred to the same medium (—mannitol) or to same medium containing 300 mM mannitol (+mannitol; right) for additional 4 d. The extracts were treated
in the absence (un-Ex) or in the presence of 200 uM Na,S, for 30 min (Na,S,-EX); CrATG8 was added to the incubation mixture, and ATG4 activity was

monitored. Lane 1, processed pCrATG8, and lane 2, unprocessed CrATGS.

The ATG4 activity was monitored at the indicated times by immunoblotting analysis with anti-CrATGS8. All procedures were performed at 25°C. Ponceau

staining is shown as the protein loading control.

ABA), and even after 6 h of ABA treatment, the reductioninthe level
of persulfidation remained very significant (2.46-fold change, P <
0.05, control versus 6 h ABA). These data suggest that AtATG4a
may be a target of persulfidation and that this posttranslational
modification may be the molecular mechanism mediating sulfide
regulation of autophagy. A detailed analysis of the ABA-triggered
changes in the persulfidation proteome will be performed in
a future study. Our results demonstrated that ATG4 proteolytic
activity in Arabidopsis is reversibly regulated by sulfide, and this
regulation effectively controls the progression of autophagy.
Thus, our findings contribute to the understanding of the mech-
anism of regulation of autophagy by sulfide in the plant systems
and add another level of regulation to this process.

The AtATG4a protease contains a specific site of persulfidation
detected by the tag-switch procedure and confirmed by mass
spectrometry. The specifically persulfidated Cys residue is
Cys170, which is a part of the characteristic catalytic triad Cys-
His-Asp of Cys proteases (Sugawara et al., 2005). Comparison of
the amino acid sequences of ATG4s from various biological
systems indicated low similarity, although the amino acids re-
quired for the Cys protease activity, including the catalytic
Cys170, are highly conserved. Interestingly, Cys170 is the only
Cys residue that is conserved in all known ATG4s (Supplemental
Figure 5; Pérez-Pérez et al., 2014, 2016; Seo et al., 2016). In
contrast, redox regulation of specific Cys residues has been
detected in ATG4 from human, yeast, and Chlamydomonas.
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Figure 10. Graphical Model of ABA-Triggered Induction of Autophagy Mediated by Posttranslational Modification of ATG4.

Under basal conditions, intracellular sulfide maintains high levels of persulfidation of the ATG4 pool, which inhibits the proteolytic activity of the enzyme for
ATG8 C-terminal processing. An increase in the intracellular level of ABA transiently decreases the level of persulfidation of the ATG4 population activating
the protease activity of the enzyme and the processing of ATG8 that can be further lipidated to progress autophagy. Yellow circles represent ATG8 protein
with or without the processed C terminus (represented as X). Blue semicircles represent persulfidated ATG4 at the thiol group of Cys170 residue. Blue
Pacman symbols represent ATG4 with reduced thiol group of Cys170 residue. The conjugation process of ATG8 with PE, and autophagosome initiation and

closure are also shown.

However, these residues are not conserved in various organisms,
and therefore the details of the regulatory mechanisms may be
different. In humans, HsATG4a and HsATG4b proteases are the
targets of reversible oxidation by H,O,, and the Cys residue Cys81
located close to the catalytic Cys residue (Cys77, analogous to
Cys170 in Arabidopsis) was shown to be critical for this regulation
(Scherz-Shouval et al., 2007). Recently, Cys292 and Cys361 have
been shown to be HsATG4b sites essential for reversible oxidative
modification (Zheng et al., 2020). Redox regulation of the yeast
ScATG4 protein is due to the formation of a disulfide bond be-
tween the noncatalytic residues Cys338 and Cys394, which is
thioredoxin dependent (Pérez-Pérez et al., 2014). In Chlamydo-
monas reinhardtii, CrATG4 activity depends on the formation of
a single disulfide bond regulated by the NADPH/thioredoxin
system; however, only Cys400, which is the equivalent to Cys338

in yeast, has been demonstrated to be required for redox regu-
lation of the algal CrATG4 enzyme (Pérez-Pérez et al., 2016). In
Arabidopsis, the activity of AtATG4a and AtATG4b is reversibly
inhibited in vitro by reactive oxygen species (Woo et al., 2014),
although redox regulation of the critical Cys residues was not
reported. Additionally, other posttranslational modifications of
Cys residues of ATG4 proteases have been described, such as
S-nitrosylation of HsSATG4b at Cys189 and Cys292, though these
two residues are not conserved in the HsATG4a amino acid se-
quence (Li et al., 2017). Therefore, persulfidation of the catalytic
Cys residue of Cys proteases ATG4 can be a posttranslational
modification conserved in various biological systems.

Because the target residue of persulfidation involves the active
site, an effect of the sulfide donor molecules on the enzymatic
activity of AtATG4a was anticipated. In fact, a 3D modeling
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analysis predicted that the addition of a sulfur atom to the —SH
group of Cys170 can cause unfavorable effects on the catalytic
site of AtATG4a that should affect substrate recognition and
impair the enzyme activity. To test this hypothesis, a heterologous
activity assay was developed using CrATGS8 as a substrate similar
to assays previously reported by Pérez-Pérez et al. (2014) and Seo
et al. (2016). Our results indicate that the plant protease is func-
tional and can process the algal substrate.

Our findings demonstrate that sulfide plays a specific role in
the regulation of ATG4 enzymatic activity. The sulfide donor
molecules used in this study, such as hydrosulfide and tetra-
sulfide, significantly inactivate AtATG4a cleavage activity even
at relatively low concentrations, polysulfide being the most ef-
ficient inhibitor. The chemical mechanism of the reaction of the
thiol groups with the sulfide molecule remains a matter of debate.
H,S cannot directly react directly with thiols, and the Cys group
must be partially oxidized (converted to disulfide, glutathiolated,
S-nitrosylated, or to sulfenic acid) prior to sulfide attack. Alter-
natively, certain chemical studies have demonstrated that sul-
fane sulfur (S°) of the polysulfide molecule is responsible for the
production of persulfide during interaction with the thiol group
(Toohey, 2011; Kimura, 2015; Mishanina et al., 2015). This
phenomenon can explain why polysulfide is a more potent in-
hibitor of ATG4 activity than hydrosulfide. Moreover, the in-
hibitory effect of low concentrations of sulfide on AtATG4a
activity compatible with the in vivo conditions is reversible by
a reducing agent, suggesting a biological role of this effect.
Interestingly, an enzymatic mechanism of reversing persulfi-
dation by the thioredoxin system has been demonstrated in
animal systems (Wedmannetal.,2016; Dokaetal.,2020). Thus, it
is plausible that the thioredoxin systemalso functionsin plants to
modulate the activity of AtATG4.

The biological significance of sulfide regulation of autophagy
through reversible inhibition of ATG4 protease is reinforced by the
assays in Arabidopsis leaves under basal and autophagy-
inducing conditions. Our experimental system was shown to be
suitable for specific assay of Arabidopsis ATG4 processing ac-
tivity by using various experimental approaches. Endogenous
plant ATG4 Cys proteases specifically recognize the Gly120
cleavage site in the substrate from green algae based on the
experiment with the G120A mutant of the CrATG8 substrate. The
processed form was not detected when the Arabidopsis protein
extracts were deficient in ATG4a and ATG4b enzymes, demon-
strating the specificity of our experimental system. The endog-
enous Arabidopsis ATG4 proteins mimic the effect of sulfurating
molecules on AtATG4a in vitro, including significant inhibition by
the sulfide donor and reversal by a reducing agent. A significant
increase in the overall ATG4 protease activity in Arabidopsis was
detected under autophagy-inducing conditions, including nitro-
gen starvation and osmotic stress. Thus, a correlation was de-
tected between the progress of autophagy and the ATG4
enzymatic activity estimated using the heterologous assay
method. Additionally, the inhibitory effect of sulfide on the pro-
tease activity was observed under the conditions of induced
autophagy. Overall, our findings suggest that negative regulation
of the progress of autophagy by sulfide is mediated by specific
persulfidation of Cys protease ATG4. However, additional targets
of sulfide cannot be ruled out and further analysis is needed.

In conclusion, our data suggest a new level of regulation of
ATG4 activity by sulfide. Based on our findings, we propose that
intracellular sulfide maintains high levels of persulfidation of the
ATG4 pool under basal conditions, resulting in the inhibition of
ATG4 proteolytic activity. ATG4 inhibition limits the formation of
ATG8-PE adducts and consequently de novo synthesis of au-
tophagosomes. An increase in the intracellular level of ABA
transiently reduces the level of persulfidation of the ATG4 pop-
ulation and then activates the protease activity of the enzyme to
process ATG8 that can be further lipidated (Figure 10).

METHODS

Plant Material, Treatments, and Protein Extraction

Plant growth conditions were 16 h of light (120 kEm~2s~") at22°Cand 8 h
of dark at 20°C. The Arabidopsis (Arabidopsis thaliana) wild-type and the
atg4ab mutant (Nottingham Arabidopsis Stock Center) seeds were sown
on Murashige and Skoog (MS) solid medium containing 0.8% (w/v) agar,
synchronized at 4°C for 2 d, and incubated vertically in a growth chamber
(LUMILUX cool white bulbs). For exposure to the nitrogen-starvation
conditions, nitrogen-deficient MS medium was prepared by replacing
nitrate salts with chloride salts. For mannitol treatment, 300 mM was added
to the MS medium. One-week-old seedlings were transferred to nitrogen-
deficient or mannitol-containing MS solid medium for an additional 4 d of
growth.

For proteomic analysis, wild-type Arabidopsis plants were grown in soil
for 30 d and then sprayed with water (control conditions) or 50 uM ABA for 3
and 6 h. To assess the autophagic activity, 1-week-old Arabidopsis
seedlings overexpressing GFP-ATG8e (Xiong et al., 2007) were transferred
to the MS liquid medium and treated with 50 uM ABA for 3 and 6 h and with
200 wM NaHS for 1 h.

Arabidopsis material (200 mg) was ground in liquid nitrogen with 400 pL
of extraction buffer (100 mM Tris-HCI, pH 7.5, 400 mM Suc, 1 mM EDTA,
0.1 mM phenylmethylsulfonyl fluoride) using a mortar and pestle. After
centrifugation at 5009 for 10 min at 4°C, the supernatant was used as the
Arabidopsis protein extract.

Persulfidated Protein Quantitation by Label-free SWATH-MS
Acquisition and Analysis

Protein samples from three biological replicates (independent pools) of leaf
tissues treated with ABA for 0 h (control sample), 3 h, and 6 h were isolated,
and 1 mg of protein per sample was used for the tag-switch labeling for
enrichment of persulfidated proteins as described by Aroca et al. (2017a).
After elution from the streptavidin beads, the proteins were precipitated by
trichloroacetic acid/acetone. Precipitated samples were resuspended in
50 mM ammonium bicarbonate with 0.2% (v/v) Rapigest (Waters) for
protein determination. Protein (50 pg) was digested with trypsin as pre-
viously described by Garcia et al. (2019), and the SWATH-MS analysis was
performed at the Proteomic Facility of the Institute of Plant Biochemistry
and Photosynthesis (Seville, Spain). A data-dependent acquisition ap-
proach using nano-LC-MS/MS was initially performed to generate the
SWATH-MS spectral library as described by Garcia et al. (2019).

The peptide and protein identifications were performed using Pro-
teinPilot software (version 5.0.1, Sciex) with the Paragon algorithm. The
search was conducted against a Uniprot proteome (June 2017 release),
and the corresponding reversed entries and common contaminants were
assembled in the FASTA format using ProteinPilot software version 5.0.1
(AB Sciex) with the Paragon algorithm. Samples were input as unlabeled
with no special factors, trypsin digested, and methylsulfonyl benzothiazole
alkylated. The automatically generated report in ProteinPilot was manually
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inspected for FDR cut-off proteins, and only proteins identified at FDR
=1% were considered for output and subsequent analysis.

For relative quantification using SWATH analysis, the same samples
used to generate the spectral library were analyzed using a DIA method.
Each sample (2 plL) was analyzed using the SWATH-MS acquisition
method on the LC-MS equipment with the LC gradient as described. The
method consisted of repeated acquisition cycles of time-of-flight (TOF)
MS/MS scans (230 to 1500 m/z, 60 ms acquisition time) of 60 overlapping
sequential precursor isolation windows of variable width (1 m/z overlap)
covering the 400 to 1250 m/z mass range from a previous TOF MS scan
(400to 1250 m/z, 50 ms acquisition time) for each cycle. The total cycle time
was 3.7 s.

Autocalibration of the equipment and chromatographic conditions were
controlled by an injection of a standard of digested 3-galactosidase from
Escherichia coli between the replicates.

SWATH MS spectra alignment was performed with the PeakView 2.2
(Sciex) software with the MicroApp SWATH 2.0 using the reference spectral
library generated as described above. Two DIA raw files for each biological
replicate were loaded in unison using the following parameters: 10 pep-
tides, seven transitions, peptide confidence > 99%, 1% FDR including
shared peptides, and extracted-ion chromatogram width set at 0.05 Da.
After data processing, three distinct files were exported for subsequent
quantification. The processed mrkvw files containing protein information
from PeakView were loaded into MarkerView (version 1.2.1, AB Sciex) for
normalization of protein intensity (peak area) for all runs using the built-in
total ion intensity sum plug-in. Log, transformation was performed prior to
statistical analysis. A histogram plot was used to check the normality of
distribution of each technical replicate. Mean values of protein expression
were used for calculation of fold change. Proteins with adjusted P < 0.05
and fold change = 1.5 were considered differentially expressed.

The mass spectrometry proteomic data have been deposited to the
ProteomeXchange Consortium viathe PRIDE (Vizcaino et al., 2016) partner
repository with the identifier PXD019802.

Expression of AtATG4a in E. coli

Total RNA was extracted from wild-type Arabidopsis leaves using an
RNeasy plant mini kit (Qiagen) and reverse transcribed using an oligo (dT)
primer and a SuperScript first-strand synthesis system for RT-PCR (In-
vitrogen). Subsequently, a 1404-bp sequence encoding the full-length
AtATG4a (At2g44140) protein was amplified by PCR using the primers
ATG4-F, CACCATGAAGGCTTTATGTGA, and ATG4-R, ATGACTGGC
AAATGCTCTGA and the proofreading Platinum Pfx DNA polymerase
(Invitrogen). The PCR conditions were as follows: a denaturation cycle of
2 min at 94°C followed by 30 amplification cycles of 15 s at 94°C, 30 s at
57°C, and 1 min at 68°C. The amplified cDNA was then ligated into the
pPENTR/D-TOPO vector using the pENTR directional TOPO cloning kit
(Invitrogen) according to the manufacturer’s instructions. Positive clones
were identified by PCR and selected for plasmid DNA isolation. The
AtATG4a cDNA was then clonedinto the expression vector pDEST17 using
an E. coli expression system with gateway technology (Invitrogen), which
generates a fusion protein with an N-terminal 6X His tag that was con-
firmed by sequencing; the expression was induced with L-arabinose in
BL21-Al E. coli cells.

Purification of the Recombinant AtATG4a Protein

The 6 X His-tagged recombinant protein was isolated from 200 mL of BL21-
Al E. coli cells that were cultured at 37°C to an optical density of 0.5 at 600
nm and induced with 0.2% (w/v) L-arabinose for 2.5 h at 37°C. Prior to
purification, His-tagged AtATG4a was solubilized with 6 M urea because
the recombinant protein was contained in the inclusion bodies. Then, the
protein was purified from the soluble fraction by nickel affinity
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chromatography using an Invitrogen Ni-NTA purification system (Thermo
Fisher Scientific), according to the manufacturer’s instructions. The pu-
rified protein was concentrated and desalted using 10-kD cutoff pore size
centrifugal filter units (Millipore). The purity of the protein was confirmed by
SDS-PAGE using 12% (w/v) polyacrylamide gels stained by
Coomassie Blue.

Detection of Persulfidation on the Recombinant AtATG4a

An untreated aliquot of the purified recombinant AtATG4a and another
aliquot pretreated with 50 mM DTT for 30 min at 4°C to reduce all persulfide
groups were precipitated with acetone for 20 min at —20°C and centrifuged
at a maximum speed for 20 min at 4°C. After acetone removal, the proteins
were resuspended in 50 mM Tris-HCI (pH 8) buffer supplemented with
2.5% (w/v) SDS and subjected to the tag-switch procedure as previously
described by Aroca et al. (2017a). The cyano-biotinylated proteins were
then detected using an immunoblot assay as follows. The CN-biotinylated
proteins were separated using nonreducing SDS-PAGE through 12% (w/v)
polyacrylamide gels and transferred to polyvinylidene difluoride mem-
branes (Bio-Rad) according to the manufacturer’s instructions. The anti-
biotin (Abcam, catalog no. ab191354) and secondary antibodies (Bio-Rad,
catalog no.170-6515) were diluted 1:500,000 and 1:100,000, respectively,
and enhanced chemiluminescent select protein gel blotting detection
reaction (GE Healthcare) was used to detect the proteins using horseradish
peroxidase-conjugated anti-rabbit secondary antibodies. For protein
loading control, the membranes before immunodetection were stained
with SYPRO Ruby (Invitrogen) to detect all protein bands.

Identification of Persulfidated Cys Residues of Recombinant
AtATG4a Using Mass Spectrometry

Recombinant AtATG4a was separated using nonreducing SDS-PAGE
through 12% (w/v) polyacrylamide gels, and the band corresponding to
AtATG4a was manually excised from Coomassie-stained gels. Gel plugs
were washed twice using 50 mM ammonium bicarbonate and acetonitrile
and dried under a steam of nitrogen. Then, proteomics-grade trypsin
(Sigma-Aldrich) at a final concentration of 16 ng/pL in 25% (v/v) aceto-
nitrile/50 mM ammonium bicarbonate solution was added; the samples
were digested at 37°C for 5 h. The reaction was stopped by adding 50% (v/
v) acetonitrile/0.5% (v/v) trifluoroacetic acid for peptide extraction. The
eluted tryptic peptides were dried by speed-vacuum centrifugation and
resuspended in 6 pL of 0.1% (v/v) formic acid in water. Digested peptides
were subjected to nanoliquid chromatography electrospray ionization MS/
MS analysis using a nanoliquid chromatography system (ExcionLC AD,
Sciex) coupled to a TripleTOF 5600+ mass spectrometer (Sciex) with
a spray ionization source. Mass spectrometry and MS/MS data of in-
dividual samples were processed using the Analyst TF 1.5.1 software
(Sciex). Peptide mass tolerance was set to 25 uD D' and 0.05 D for
fragment masses, and only one or two missed cleavages were allowed.
Peptides with anindividual M, search score = 20 were considered correctly
identified.

In Vitro ATG4 Enzyme Activity Assay

The typical reaction mixture contained 5 wuM recombinant AtATG4a, 5 uM
CrATG8 (Pérez-Pérez et al., 2010), and 1 mM EDTA in Tris-buffered saline
(50 mM Trizma base, 138 mM NaCl, and 27 mM KCI at pH 8). When in-
dicated, AtATG4a was incubated in the presence of DTT, TCEP, NaHS, Na,
S,, or iodoacetamide (IAM) alone or in combination at the indicated times
and concentrations. The reaction mixtures were incubated at 25°C, and the
reaction was stopped by the addition of B-mercaptoethanol-free Laemmli
sample buffer followed by 5 min boiling. The proteins were resolved using
nonreducing SDS-PAGE through 15% (w/v) polyacrylamide gels and
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stained with Coomassie Birilliant Blue (Sigma-Aldrich). The gels were
scanned with a GS-800 densitometer (Bio-Rad), and the signals corre-
sponding to the unprocessed and processed CrATG8 forms were quan-
tified with the Quantity One software (Bio-Rad). The ATG4 activity (in
arbitrary units) was calculated as the ratio of the band intensity of the
processed CrATG8 to the sum of the intensities of the unprocessed and
processed CrATG8. An activity value of 1 corresponds to the
maximum value.

Assay of Endogenous ATG4 Enzyme Activity in Cell-free
Total Extract

Theinvivo assay of ATG4 activity in cell-free total extract was performed in
a typical reaction mixture containing 40 p.g of leaf or 20 p.g of root protein
extract and 0.05 wM purified unprocessed CrATGS8, processed pCrATGS,
or Gly-to-Ala mutant protein (G120A). When required, a sulfur donor (Na,
S,), areducing agent (TCEP), or an alkylating agent (IAM) was added at the
indicated concentrations. The reaction mixture was incubated at 25°C for
the indicated time, stopped by addition of B-mercaptoethanol-free
Laemmli sample buffer, and boiled for 5 min. Then, proteins were separated
using nonreducing SDS-PAGE through 15% (w/v) polyacrylamide gels and
transferred to nitrocellulose membranes (Bio-Rad) as previously described
by Pérez-Pérez et al. (2010). Anti-CrATG8 (Pérez-Pérez et al., 2010) and
secondary antibodies were diluted 1:3000 and 1:10,000, respectively. An
enhanced chemiluminescent select protein gel blotting detection reaction
(GE Healthcare) was used to detect the proteins. For protein loading
control, the membranes before immunodetection were stained with
Ponceau S (Sigma-Aldrich) to detect all protein bands.

Protein Modeling

3D homology modeling was driven by Modeler (Sali and Blundell, 1993)
using the structure of the Homo sapiens Atg4B-LC3 complex (PDB ID:
2Z0E; Sato et al., 2009) as a template. Molecular crystal X-ray structures
and structural model of Arabidopsis AtATG4a-AtATG8a complex were
inspected, analyzed, and plotted with PyMol 1.4.1 (Schrodinger). Surface
electrostatic potentials were calculated and visualized using the PyMol
1.4.1 software.

Accession Numbers

The mass spectrometry proteomic data have been deposited to the
ProteomeXchange Consortium via the PRIDE partner repository with the
identifier PXD019802. Sequence data from this article can be found in the
EMBL/GenBank data libraries under the following accession numbers:
AtATG4a (At2g44140), AtATG4b (At3g59950), AtATGS8a (At4g21980), and
CrATG8 (Cre16.9689650.t1.1).
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