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Abscisic and Jasmonic Acids 
Contribute to Soybean Tolerance to 
the Soybean Aphid (Aphis glycines 
Matsumura)
Kaitlin M. Chapman1, Lia Marchi-Werle1, Thomas E. Hunt1, Tiffany M. Heng-Moss1 & 

Joe Louis1,2

Plant resistance can provide effective, economical, and sustainable pest control. Tolerance to the 
soybean aphid has been identified and confirmed in the soybean KS4202. Although its resistance 
mechanisms are not fully understood, evidence suggests that enhanced detoxification of reactive 
oxygen species (ROS) is an active system under high aphid infestation. We further explored tolerance by 

evaluating the differences in constitutive and aphid-induced defenses in KS4202 through the expression 
of selected defense-related transcripts and the levels of the phytohormones abscisic acid (ABA), 

jasmonic acid (JA), JA-isoleucine (JA-Ile), cis-(+)-12-oxo-phytodienoic acid (OPDA), and salicylic acid 
(SA) over several time points. Higher constitutive levels of ABA and JA, and basal expression of ABA- 

and JA-related transcripts were found in the tolerant genotype. Conversely, aphid-induced defenses in 

KS4202 were expressed as an upregulation of peroxidases under prolonged aphid infestation (>7 days). 
Our results point at the importance of phytohormones in constitutive defense in KS4202 tolerance to 
the soybean aphid. Understanding the underlying mechanisms of tolerance will assist breeding for 

soybean with these traits, and perhaps help extend the durability of Rag (Resistance to Aphis glycines)-

mediated resistance genes.

Insects are important pests of plants that cause substantial loss in plant productivity and �tness. In response 
to insect feeding, plants have evolved a wide array of defense strategies to protect themselves against herbivore 
attack. Plant resistance to insects can be categorized into three main categories: antibiosis, antixenosis, and toler-
ance1. Plants exhibiting antibiosis negatively a�ect an insect’s biology upon feeding, resulting in increased mortal-
ity, reduced longevity, and reduced fecundity. Antixenosis, or non-preference, a�ects the insect’s behavior to deter 
or reduce colonization on resistant plants. Tolerance, a less understood plant resistance category, is composed of 
multiple plant characteristics. Relative to susceptible hosts, tolerant plants can maintain insect populations while 
withstanding or recovering from herbivore injury and still yielding signi�cantly more biomass1. In contrast to 
the other plant resistance categories, which have a direct e�ect on the insect’s biology or behavior, tolerance does 
not impose the same selection pressure on the insect, therefore the likelihood of biotype emergence is generally 
considered minimal1,2.

Hemipterans, within the family Aphididae, are one of the most economically important insect pests on plants 
worldwide, representing 26% of the 45 major crop pests of main food crops in temperate climates3. Aphids can 
build extraordinary populations due to high reproductive potential (parthenogenesis), short generation times, 
and the high proportion of viviparous females in the population. Additionally, short-term changes in population 
size, as well as deprivation of host nutrition, induce the formation of winged forms that disseminate by wind cur-
rents over long distances4. Because the interaction of demographic factors impose high variability in aphid build 
up, aphid management is particularly challenging. For several years, farmers have been using insecticides as one 
of the major tactics to control aphids. However, the continued reliance on insecticides has led to the loss of aphid 
resistance in �eld-grown crops, and leading to cascading negative e�ects on non-target and bene�cial organisms 
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and environmental safety5–8. Alternatively, aphid management can be best performed by blending plant resistance 
with integrated pest management (IPM)9–11.

Arthropod-tolerant plants blend well with IPM, as it exerts minimal negative impacts on the targeted pest 
as well as most natural enemies, and may have higher economic injury levels (EILs) relative to susceptible geno-
types12,13. Higher EILs generally translate into a delayed chemical control, reducing the need for frequent chem-
ical applications14. Despite the evident bene�ts of implementing tolerance for mitigating insect damage, the 
absence of detailed knowledge in the mechanisms and genetics underlying plant tolerance limits its incorporation 
in breeding programs and IPM.

Existing research on tolerance to hemipteran pests emphasize the upregulation of photosynthetic activity and 
reactive oxygen species (ROS)-detoxi�cation mechanisms15. In plants, redox control is governed by enzymes 
and antioxidants that rapidly detoxify ROS. Environmental stressors, such as insect feeding, may cause oxidative 
bursts leading to ROS accumulation, and ultimately cell toxicity and death. Several studies have indicated that 
insect feeding increases localized and plant-wide peroxidase activity, and that this activity is higher in tolerant 
plants16–19.

�e current literature on compatible and incompatible interactions between plants and several aphid species 
has uncovered that plants defend themselves using a variety of defense signaling pathways. Many of these interac-
tions are dependent on several hormonal pathways, including but not limited to salicylic acid (SA), jasmonic acid 
(JA) and ethylene (ET) signaling20–22. Plant receptors recognize aphid-feeding via elicitors, which may be derived 
from an aphid’s saliva or even products of endosymbiotic bacteria23–25. Upon aphid probing, a cascade of defense 
reactions occurs via the recognition of aphid elicitors, where calcium- and ROS- related signaling play important 
roles in triggering the activation of defense pathways such as JA, SA, and ET21,26.

Accumulation of SA as a response to aphid colonization has been documented in multiple plant systems and is 
credited with being important in plant resistance to phloem-feeding insects27–29. SA also mediates localized plant 
tissue hypersensitive and systemic acquired responses, and induces the expression of defense responsive tran-
scripts, including pathogenesis-related (PR) genes and proteins. In soybean, Glycine max (L.) Merrill, PR1 was 
highly expressed in aphid resistant Rag1 (Resistance to Aphis glycines1) plants infested with soybean aphids (Aphis 
glycines Matsumura), when no changes occurred in the susceptible genotype30,31. Studies have also shown that 
phloem feeding insects may induce JA-associated transcripts as well, although this pathway is better character-
ized in plants stressed by chewing insects32,33. Aphid-infested wheat (Triticum aestivum) and barley (Hordeum 
vulgare) have also induced JA-associated transcripts including lipoxygenases (LOX), coronatine-insensitive1 
(COI1), 12-oxophytodienoate reductase (OPR) and cytochrome P45034,35. In addition, abscisic acid (ABA) plays 
an important role in abiotic stress tolerance and pathogen resistance though its role in insect-plant interactions 
is less understood.

�e soybean aphid (Aphis glycines Matsumura) is considered as the most economically important pest of soy-
bean in the U.S.3. Upon introduction of the soybean aphid from Asia in 2000, the application of chemical insec-
ticides, development of economic thresholds and injury levels, and deployment of aphid-resistant cultivars have 
been the primary methods for controlling soybean aphids5,6,36. Traditional aphid-resistant soybeans contain one 
or more dominant Rag genes, which exhibit antibiosis and/or antixenosis, that deters aphid feeding and subse-
quent damage37–40. However, the sustainable implementation of these traits faces challenges due to the emergence 
of soybean aphid biotypes41–43.

Soybean tolerance to the soybean aphid was observed in the soybean genotype KS420244–46. Tolerance in 
KS4202 was demonstrated in other studies where aphid feeding reduced soybean yield at a rate of 3.1% for every 
10,000 aphid-days that accumulates14,45,46. Conversely, the same comparison in susceptible soybean resulted in 
yield losses of ~7%36. Defensive mechanisms in KS4202 may be composed of metabolic changes that involve 
oxidative enzymes and a primed photosynthetic system16,17. Functional transcriptomic approaches revealed a 
wide variety of responses induced by soybean aphids in KS4202, including the overexpression of peroxidases, 
cytochrome P450s, and WRKY transcription factors in the tolerant soybean47. Two peroxidase transcripts, 
Peroxidase 52 (PRX52) and Ascorbate peroxidase 4 (APX4), were reported to be signi�cantly induced by soybean 
aphids in KS4202 at 15 days post-infestation (dpi). KS4202 also exhibits tolerance to Bemisia tabaci biotype B via 
unknown factors that are independent of the oxidative enzymes, such as superoxide dismutase, polyphenoloxi-
dase, and peroxidases48.

While the upregulation of peroxidase activity in aphid-tolerant soybean is generally understood, other defense 
mechanisms remain unknown. Additional knowledge may help to identify phenotypic characteristics linked to 
tolerance that will assist breeding of tolerant plants. In this study, we evaluated the di�erences in constitutive and 
induced responses between tolerant KS4202 and susceptible soybeans by monitoring the expression of selected 
defense-related transcripts, including peroxidases, phytohormone-associated transcripts and quantifying the lev-
els of ABA, JA, and SA over the time of aphid infestation. Finally, we propose a working hypothesis for soybean 
aphid tolerance in KS4202.

Results
Aphid colonization pattern in KS4202 is similar to aphid-susceptible soybeans. To demonstrate 
the similarities in aphid colonization between KS4202 and susceptible soybean, total soybean aphid numbers 
(adults and nymphs) were recorded in the late response study (Fig. 1). Consistent with previous studies17,47, aphid 
population numbers were similar between soybean genotypes and the brief duration of soybean aphid infestation 
did not result in visual damage (i.e. visual damage = 1) for either tolerant or susceptible soybean.

KS4202 exhibits higher constitutive levels of ABA and JA. To assess both constitutive and aphid-induced 
di�erences in phytohormone levels between KS4202 and susceptible soybeans, a time-course experiment was per-
formed in which plant tissue (V3 stage) was harvested pre- and at 6 and 24 hours post-infestation (hpi). Tolerance 
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Figure 1. KS4202 is susceptible to aphid colonization. Mean aphid number (±SE) for infested soybean in the 
late response study (N = 5).
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Figure 2. KS4202 shows higher constitutive levels (ng/g fresh weight [FW]) of ABA, JA, and JA-Ile. ABA, 
SA, JA, JA-Ile, and OPDA levels in tolerant KS4202 and susceptible K03-4686 and Wyandot soybean (N = 3). 
Di�erent lowercase letters indicate signi�cant di�erences between genotypes within the same treatment 
(P < 0.05). Di�erent uppercase letters indicate signi�cant di�erences between treatments within the same 
genotype (P < 0.05). Error bars represent mean ± SE.
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in KS4202 is well defined during this stage and continues to be expressed as soybean plants enter reproductive 
stages39. Our results indicate that KS4202 had higher levels of ABA within each time point analyzed compared to 
aphid-susceptible soybeans (Fig. 2a). �e constitutive levels of ABA in the tolerant soybean were over 2x greater than 
K03-4686 (P = 0.0004) and Wyandot (P = 0.0002) while similar in both susceptible soybeans (P = 0.3693). A�er aphid 
infestation, ABA levels decreased in KS4202 at 6 hpi (P = 0.0313) but remained higher compared to both susceptible 
genotypes K03-4686 (P = 0.0245) and Wyandot (Fig. 2a; P = 0.0382). �ere were no signi�cant di�erences in the ABA 
levels before and a�er infestation in both aphid susceptible soybeans .

Similarly, constitutive levels of both JA and JA-Ile were higher in the tolerant soybean (Fig. 2b,c; JA: P = 0.0003, 
JA-Ile: P < 0.0001). While not statistically signi�cant, levels of JA in KS4202 were also higher than suscepti-
ble genotypes at 6 (K03-4686: P = 0.0759; Wyandot: P = 0.1168) and 24 hpi (K03-4686: P = 0.102; Wyandot: 
P = 0.0886) with similar trends seen with JA-Ile. Aphid feeding induced no noticeable changes in the accumu-
lation of these hormones in any genotype (Fig. 2b,c; P > 0.05). Endogenous levels of the JA precursor, cis-(+)-
12-oxo-phytodienoic acid (OPDA), were similar across all soybeans tested (Fig. 2d; P > 0.05). Furthermore, our 
results indicate that constitutive levels of SA do not appear to be di�erent between tolerant and susceptible geno-
types (Fig. 2e; P = 0.21); however, aphid infestation resulted in higher SA levels at 6 hpi in all soybean genotypes 
(Fig. 2e; KS4202: P = 0.0168; K03-4686: P = 0.0041; Wyandot: P = 0.0421).

To further evaluate constitutive di�erences related to tolerance, additional studies focused on the relative 
expression of JA-, SA-, and ABA-related transcripts. �e same biological replicates used for hormone analysis 
were used to test constitutive and aphid-induced expression at early feeding time points (6 and 24 hpi). A second 
study evaluated the expression of the same transcripts at later aphid infestation time points (1, 3, and 7 dpi). 
�e NAC domain protein NAC19 (previously described as ARABIDOPSIS TRANSCRIPTION ACTIVATING 
FACTORS1 or ATAF1) and soybean cold‐inducible zinc finger transcription factor, SCOF-1, were used as 
ABA-responsive marker transcripts49,50. Overall, constitutive expression of both NAC19 and SCOF-1 were higher 
in KS4202 relative to aphid-susceptible soybeans (Fig. 3a,b; P < 0.0001).

�ere were also signi�cant interactions between soybean genotype × aphid treatment (P = 0.0028) and gen-
otype × hpi (P < 0.0001) treatments for NAC19. In KS4202, a sharp increase in expression of this transcript 
occurred at 6 hpi (P < 0.001) followed by a decrease at 24 hpi (P = 0.02) in infested plants relative to uninfested. 
Aphid-mediated suppression of NAC19 was also seen at both early time points in the susceptible, K03-4686, 
although no notable changes occurred with Wyandot (Table 1). Expression of SCOF-1 did not change in tolerant 
plants as a response to aphid feeding and was suppressed at 24 hpi in K03-4686 (P = 0.001) and 6 hpi in Wyandot 
(P = 0.08). Expression of both NAC19 and SCOF-1 were not evaluated at 1 and 3 dpi in the late-response study; 
however at late infestation (7 dpi) aphid feeding triggered 2.53x relative fold change of NAC19 (P = 0.05) in 
KS4202.

*

0

0.2

0.4

0.6

0.8

1

1.2

K03-4686 Wyandot
R

el
at

iv
e 

ex
p
re

ss
io

n

NAC19a

*

0

0.2

0.4

0.6

0.8

1

1.2

K03-4686 Wyandot

R
el

at
iv

e 
ex

p
re

ss
io

n

SCOF-1b

*

0

0.4

0.8

1.2

1.6

K03-4686 Wyandot

R
el

at
iv

e 
ex

p
re

ss
io

n

LOX2

P=0.0002

c

0

0.4

0.8

1.2

1.6

2

K03-4686 Wyandot

R
el

at
iv

e 
ex

p
re

ss
io

n

LOX10
d

0

0.2

0.4

0.6

0.8

1

1.2

K03-4686 Wyandot

R
el

at
v
ie

 e
x
p
re

ss
io

n

OPR3e

*

*

0

4

8

12

16

K03-4686 Wyandot

R
el

at
iv

e 
ex

p
re

ss
io

n

PR1

P=0.0004

f

Figure 3. Constitutive (i.e., aphid uninfested plants) expression of JA-, SA-, and ABA-related transcripts in 
aphid-susceptible soybeans relative to aphid-tolerant KS4202 (N = 5). Baseline expression in KS4202 is 1 for 
each genotype. (*) indicates a signi�cant di�erence (P < 0.05) between susceptible and KS4202. Error bars 
represent mean ± SE.
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Two lipoxygenases, LOX10 previously found to be differentially expressed in KS420247 and LOX2, 
a chloroplastic-like linoleate 13S-lipoxygenase 2 in the JA-biosynthesis pathway of soybean, and 
OPDA-REDUCTASE 3 (OPR3) were used as markers for JA-related transcript expression. The constitutive 
expression of all three transcripts showed varying changes in both early and late response studies. �e expression 
of LOX2 was higher in KS4202 relative to the susceptible Wyandot (Fig. 3c; P = 0.0006). Similarly, constitutive 
expression of LOX10 in KS4202 was higher than the susceptible soybeans, although not statistically signi�cant 
(Fig. 3d; P = 0.40). While both transcripts were upregulated in compared to Wyandot, no notable di�erences 
occurred between KS4202 and K03-4686 (Fig. 3c, LOX2: P = 0.61; Fig. 3d, LOX10: P = 0.65). Additionally, no 
trends in aphid-induced changes were seen for these transcripts at early and late infestation time points (Tables 1 
and 2) other than an initial suppression of LOX2 in KS4202 (P = 0.003) and LOX10 in Wyandot at 6 hpi (P = 0.03; 
Table 1). In KS4202, constitutive expression of OPR3 was higher relative to both susceptible soybeans (Fig. 3e; 
K03-486: P = 0.07; Wyandot: P = 0.14). Aphid-induced changes in OPR3 expression were not evaluated in the 
early response study, however, the late response study indicated that this transcript was only induced in KS4202 
at 7 dpi (Table 2; P = 0.047).

Soybean aphid feeding triggers SA in soybeans. Although no constitutive di�erences of SA between 
tolerant and susceptible soybeans were observed (Fig. 2e; P = 0.21), all soybeans responded to aphid feeding with 
higher SA levels at 6 hpi (P < 0.0001). Interestingly, in our study, constitutive expression of PR1 was higher in 
both susceptible soybeans relative to KS4202 (Fig. 3f; K03-4686: P = 0.0013; Wyandot: P < 0.0001). Upon aphid 
introduction, PR1 was suppressed even more in KS4202 at 6 hpi (Table 1; P = 0.02), before returning to uninfested 
expression levels at 24 hpi (Table 1; P = 0.34). Aphids elicited no notable early-response changes in Wyandot 
(Table 1). In the late response study, expression of PR1 behaved similarly in the susceptible K03-4686 and toler-
ant KS4202, with aphid-feeding slightly down-regulating expression at 3 dpi (Table 2; P = 0.41) and increasing 
expression at 7 dpi (Table 2; P = 0.008).

Soybean tolerance to aphids is independent of PHYTOALEXIN DEFICIENT4. Previously, it was 
shown that Glycine max PHYTOALEXIN DEFICIENT4 (GmPAD4) is required for providing resistance to path-
ogens and aphids51,52. Our results indicate that the expression of GmPAD4 was constitutively higher in the sus-
ceptible soybeans (Supplemental Fig. 1a; P = 0.0005). Conversely, in KS4202, aphids induced a 2x fold-change in 
GmPAD4 expression at 6 hpi (P = 0.0008) before returning to uninfested levels at 24 hpi (Supplemental Fig. 1b). 
Suppression of GmPAD4 in infested K03-4686 occurred at 24 hpi (P = 0.04), although not signi�cant at 1 dpi in 
the late response study (P = 0.24). At 3 dpi, aphids also induced GmPAD4 in K03-4686 (Supplemental Fig. 1c).

Peroxidase activity is upregulated in KS4202 after several days of aphid infestation. Using 
next generation sequencing, the transcript Peroxidase 52 (PRX52), had a 2.6 log2 fold change in KS4202 at 15 
dpi47. While no di�erences in the constitutive expression of PRX52 among the soybeans were observed (Fig. 4a), 
aphid infestation suppressed PRX52 in KS4202 at 6 hpi (Fig. 4b, P = 0.003). �e results for early and late response 
at 24 hpi, and 1 and 3 dpi, respectively, indicate no di�erences in the expression of this transcript upon aphid 

KS4202 (tolerant) K03-4686 (susceptible) Wyandot (susceptible)

6 hpi 24 hpi 6 hpi 24 hpi 6 hpi 24 hpi

JA
LOX2 0.42 ± 0.06* 0.79 ± 0.10 1.09 ± 0.13 1.13 ± 0.15 0.59 ± 0.13 0.62 ± 0.11

LOX10 2.13 ± 0.28 1.46 ± 0.15 3.87 ± 0.68 1.74 ± 0.23 0.15 ± 0.04* 1.43 ± 0.28

SA PR1 0.46 ± 0.07* 1.39 ± 0.16 1.02 ± 0.12 0.95 ± 0.11 0.94 ± 0.17 1.37 ± 0.23

ABA
NAC19 28.55 ± 3.40* 0.05 ± 0.01* 0.23 ± 0.02* 0.10 ± 0.01* 1.21 ± 0.10 0.79 ± 0.10

SCOF-1 1.61 ± 0.14 0.75 ± 0.14 1.69 ± 0.25 0.17 ± 0.02* 0.40 ± 0.03 1.55 ± 0.21

Table 1. Early response study: Aphid-induced expression of JA-, SA- and ABA-related transcripts at 6 and 
24 hpi (N = 5). Baseline expression in uninfested soybean is 1 for each genotype. (*) indicates a signi�cant 
di�erence (P < 0.05) between the infested and uninfested control soybean. Error bars represent mean ± SE.

KS4202 (tolerant) K03-4686 (susceptible)

1 dpi 3 dpi 7 dpi 1 dpi 3 dpi 7 dpi

JA

LOX2 0.80 ± 0.05 1.13 ± 0.12 1.32 ± 0.10 1.52 ± 0.27 2.71 ± 0.29 2.40 ± 0.13

LOX10 0.43 ± 0.08 1.11 ± 0.39 1.18 ± 0.10 1.78 ± 0.21 1.77 ± 0.31 1.98 ± 0.29

OPR3 1.67 ± 0.16 0.59 ± 0.09 2.21 ± 0.15* 1.06 ± 0.08 0.58 ± 0.04 1.92 ± 0.16

SA PR1 1.13 ± 0.05 0.60 ± 0.02 6.02 ± 0.73* 2.96 ± 0.15 0.23 ± 0.02 4.42 ± 0.21

ABA
NAC19 — — 2.53 ± 0.19* — — 0.78 ± 0.10

SCOF-1 — — 0.43 ± 0.04 — — 1.38 ± 0.21

Table 2. Late response study: Aphid-induced expression of JA-, SA- and ABA-related transcripts at 1, 3 and 
7 dpi (N = 5). Baseline expression in uninfested soybean is 1 for each genotype. (*) indicates a signi�cant 
di�erence (P < 0.05) between the infested and uninfested control soybean. Error bars represent mean ± SE.
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introduction in either soybean (Fig. 4b,c; P > 0.05). However, at 7 dpi, PRX52 was signi�cantly upregulated in 
infested KS4202 when no changes were observed in the susceptible soybean (Fig. 4c; P = 0.049). To expand on 
these �ndings, an enzyme assay for peroxidase activity within plant tissues before and a�er aphid infestation at 
earlier time points (i.e., 6 and 24 hpi) was performed. Similar to the aforementioned results, no di�erences in 
constitutive activity or aphid-induced changes were observed (P > 0.05; Table 3).

Discussion
To date, multiple studies have investigated changes in JA, SA, and ABA in susceptible and Rag-mediated resistant 
soybean challenged by soybean aphids30,31,53,54, however, none documented these parameters in aphid tolerant 
soybean. Because host resistance to insects is a relative measure55 and KS4202 is so far, the sole genotype cate-
gorized as tolerant to the soybean aphid, the phytohormone levels and related gene expression were relative to 
two aphid-susceptible soybeans (K03-4686 and Wyandot). Combined with former studies on the role of induced 
response of peroxidases16,17, here we highlight the importance of constitutive levels of ABA, JA and JA-Ile phyto-
hormones as mechanism for aphid-tolerance in soybean.
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Figure 4. Constitutive and aphid-induced expression of PRX52. (a) Constitutive expression of PRX52 in 
aphid-susceptible soybean genotypes relative to aphid-tolerant KS4202 with a baseline expression of 1. (b) Early 
response study – Relative expression of PRX52 in aphid-infested plants at 6 and 24 hpi (c) Late response study 
– Relative expression of PRX52 in aphid-infested plants at 1, 3, and 7 dpi. Baseline expression in uninfested 
soybean is 1 for each genotype. Five biological replicates per treatment combination were used. (*) indicates a 
signi�cant di�erence between treatments and control. Error bars represent mean ± SE.

Genotype

0 h 6 hpi 24 hpi

Control Control Infested Control Infested

KS4202 20.02 ± 2.90 24.50 ± 5.75 24.16 ± 4.61 22.69 ± 5.01 24.93 ± 8.32

K03-4686 24.11 ± 7.41 21.50 ± 4.40 23.48 ± 6.22 31.12 ± 7.98 24.44 ± 4.16

Wyandot 29.00 ± 11.55 21.57 ± 6.82 22.88 ± 5.99 23.13 ± 4.17 22.25 ± 11.87

Table 3. Total peroxidase activity (µmol/min/mg protein) for soybeans at pre-aphid infestation (0 h) and post-
aphid infestation (6 and 24 hpi). Five biological replicates per genotype were used. (*) indicates a signi�cant 
di�erence between treatments. Error bars represent mean ± SE.
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While the role of ABA in plant abiotic stress responses and pathogen resistance is well documented56,57, its 
speci�c role in plant-insect interactions is less understood. Studham and MacIntosh (2013) previously reported 
that soybean aphid infestation induces ABA responses in susceptible soybean31. Further studies of this sus-
ceptible system have supported the hypothesis that soybean aphids induce ABA-related transcript expression 
when SA-mediated defenses accumulate54. Here, we report higher constitutive levels of endogenous ABA and 
expression of the ABA-related transcripts NAC19 and SCOF-1 in aphid-tolerant soybean. Based on these evi-
dences, we hypothesize that the upregulation of ABA in KS4202 is required for the genotype’s susceptibility to 
aphid colonization, and that other evaluated factors such as JA and peroxidase activity contribute to tolerance of 
aphid-induced damage.

Plant perception of herbivores generates diverse defense responses that include interactions among several 
phytohormone pathways. Early models have suggested the important role of ABA as a synergist required for 
the induction of JA in response to herbivore wounding58; however, the exact relationship between ABA and JA 
appears to be dependent upon the speci�c plant-insect system. �aler and Bostock (2004) reported no changes 
in JA expression between wild-type and ABA-de�cient tomato plants, though ABA appeared to be a key player 
in reducing Spodoptera exigua caterpillar growth56. While high constitutive levels of JA and JA-Ile in KS4202 
mirrored ABA, up-regulation of JA-related transcripts in response to aphid feeding were observed in susceptible 
soybean plants. �e greater induction of these transcripts in the susceptible genotypes appears to be related to 
their overall lower constitutive expression relative to KS4202, which displayed minimal aphid-induced changes in 
LOX expression. Previous research has shown that the induction of LOX transcripts in response to aphids occurs 
rapidly (12–36 hours) in plants that exhibit anitbiosis59. Additionally, Marimuthu and Smith (2012) observed 
that JA-related genes were more highly induced in susceptible barley than in barley tolerant to Russian wheat 
aphid (Diuraphis noxia), when majority of the same transcripts were constitutively higher in tolerant plants60. 
Phytohormone analysis of susceptible and Rag-mediated resistant soybean also reported an induction of JA in 
susceptible genotypes a�er 1 and 7 days of soybean aphid feeding, suggesting that the lack of response in resist-
ant soybeans may be due to suppression by aphids53. In combination, these studies support the hypothesis that 
induction of JA-related transcripts upon aphid feeding are not conditional of tolerance. Instead, the constitutive 
expression of JA-transcripts such as lipoxygenases is a more important component of plant tolerance to aphids.

While constitutive levels of ABA, JA, and JA-Ile were signi�cantly higher in tolerant soybean, no di�erences 
in SA and OPDA were observed between genotypes pre- and post-aphid infestation. �e slight down-regulation 
of constitutive SA in KS4202 may be due to the high expression of ABA and JA through known mechanisms of 
JA/SA antagonism61,62 and ABA suppression of SA-mediated responses in soybean63. In addition, the expression 
of PATHOGENESIS-RELATED1 (PR1), an SA-responsive transcript, was down-regulated in KS4202 relative to 
K03-468647, which is consistent with our �ndings on PR1 constitutive expression. �e early induction of SA a�er 
6 hpi in both tolerant and susceptible genotypes suggest its accumulation is a generalized plant response to aphids. 
Selig et al. reported similar �ndings with the expression of genes downstream of SA biosynthesis (PR1 and PR2) 
being cyclical in susceptible soybean including induction occurring a�er 6 h of soybean aphid feeding followed 
by a sudden decline54. Interestingly, soybean aphid feeding on soybean induced the production of methyl SA 
(MeSA) that attracts predatory beetles to the host plants, thereby limiting aphid proliferation64. However, our 
results con�rm that, although MeSA contributes to indirect defenses in soybean64, SA is not a major contributor 
to soybean aphid tolerance in soybean.

In addition to JA and SA, ET is also a common hormonal response involved in plant-insect interactions. 
Marimuthu and Smith (2012) have proposed that constitutive expression of ET-responsive transcripts, in addition 
to the role of JA, is also important for aphid tolerance in barley60. Further, resistance to green peach aphids (Myzus 
persicae) in Arabidopsis also relies on the constitutive expression of JA or ET65. JA and ET have a synergistic rela-
tionship, and inhibition of ET biosynthesis can lead to a reduced accumulation of JA66,67. Although not quanti�ed 
in this study, future research on the constitutive levels of ET and expression of ET-related transcripts in KS4202 
will further contribute to a working model of tolerance to the soybean aphid.

Another possibility worth exploring is the prospect of WRKY transcription factors mediating pathway sign-
aling in aphid tolerant soybean. Approximately 174 WRKY transcription factors have been identi�ed to date in 
soybean, in which numerous subfamilies exhibit increased constitutive expression throughout di�erent tissues68. 
WRKYs can interact as both negative and positive regulators of SA69–71. In soybean, several of these transcription 
factors provide increased resistance to the soybean cyst nematode (Heterodera glycines) and suggest SA-induced 
WRKYs may play a role in abiotic and biotic stress responses68. Many WRKY proteins, including AtWRKY53, 
act upstream of NPR1 (Non-expressor of PR genes 1) and positively regulate its transcription69,72. NPR1 proteins 
are required for the activation of SA-responsive PR genes71 that encode small proteins that have antimicrobial or 
antifungal properties68,73. Overexpression of WRKY53 induced PR proteins in wheat and reduced symptoms of 
pathogen infection in rice (Oryza sativa)74. �e PR2 (β-1,3-glucanase) and PR3 (chitinase) transcripts and per-
oxidases have been associated with wheat antibiotic resistance to Russian wheat aphid75. Our data show higher 
constitutive expression of PR1 in susceptible soybean, with only slight induction a�er 7 dpi. In tolerant soybean, 
however, changes in expression of PR1 in response to aphid feeding are dependent upon the length of aphid infes-
tation with rapid suppression at 6 hpi and 6x fold change induction at 7 dpi. Interestingly, changes in transcript 
expression of PR1 mirrored aphid-induced changes in PRX52 in tolerant soybean, suggesting that PR1 and PRX52 
may be regulated by a common factor. Additionally, the soybean WRKY transcription factor WRKY60 has been 
reported to be up-regulated in KS4202 a�er late aphid infestation, suggesting WRKY transcription factors may be 
responsible for mediating pathways involved in soybean aphid tolerance exhibited by KS420245,76.

In Arabidopsis thaliana, AtPAD4 encodes a nucleocytoplasmic protein required for defense against both path-
ogens and the green peach aphid77,78. AtPAD4-mediated resistance to the green peach aphid is independent of 
both ENHANCED DISEASE SUSCEPTIBILITY1 (EDS1) and SA accumulation, which are required for pathogen 
resistance79. In soybeans, GmPAD4 is also induced by soybean aphids, and may contribute to antibiosis in Rag1 
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in the cultivar Dowling51. In our studies, aphid induction of GmPAD4 was inconsistent where as its constitutive 
expression was lower in tolerant soybean. Taken together, these indicate that GmPAD4 is not a key player in pro-
viding soybean tolerance to aphids, but instead may act as a key component in Rag-mediated antibiosis.

In some cases, the plant resistance to aphids is a quantitatively inherited trait22. Due to the complex nature of 
this category of resistance, it is highly likely that the tolerance may be controlled by quantitative trait loci (QTL) in 
plants. However, lack of genetically-closely related aphid tolerant lines pose a serious bottleneck in understanding 
the genetic basis of tolerance to aphids. A possible strategy to overcome this problem is to develop recombinant 
inbred lines (RILs), which can be potentially used as a permanent resource for mapping the tolerance traits80. 
Further, one of the biggest challenges in screening tolerant plants is to design a feasible method for evaluating 
tolerance phenotype. With the recent advancements in the area of high-throughput phenotyping15,81, we can now 
expedite screening for plants that are tolerant to aphids.

Overall, this research shows that constitutive elevated levels of JA and ABA is an important factor in soybean 
tolerance to soybean aphids (Fig. 5). Di�erently than the usual rapid transcriptional response observed in Rag 
soybeans30,31, induced transcriptional responses in tolerant soybean were slow and only detected later (>7 dpi). 
Nevertheless, primed induction of PRX52, WRKY60, and PR1 transcripts are likely contributing to tolerance. 
�e deployment of plant tolerance is an underexplored and valuable strategy that can mitigate the injury caused 
by soybean aphids. Our work provides important insights into the genotype of aphid-tolerant soybeans, as well 
as how these plants respond to aphid feeding. �e recent development of EILs for KS420214 in combination 
with the understanding of the tolerance mechanism provides a foundation for incorporating these plants in the 
IPM for soybean aphids. Besides the bene�ts of higher EILs, tolerance could also be used in association with 
Rag-soybeans. �is would provide a more stable approach to manage soybean aphid population below economic 
damaging levels, and perhaps avoid substantial yield losses in the event of virulent aphid populations due to the 
tolerance background.

Materials and Methods
Plant and insect source. Aphid-tolerant soybean KS4202 (an F4 plant selection from KS4694 x C1842) 
and two aphid-susceptible genotypes (K03-4686 and Wyandot) were chosen to gain a better understanding of the 
di�erences in tolerance and susceptibility to aphid feeding. �e genotype K03-4686 was previously used as the 
reference susceptible source in aphid tolerance studies17,44,45,47 and Wyandot (an F4 selection from the three-par-
ent cross (Northrup King S29-18 × PI 274.421) × Ohio FG1) was included as a second susceptible source82.

All plants were grown in a growth chamber at 23 ± 2 °C under 15 L: 9D (light:dark) night and 75% humidity. 
Seeds were pre-germinated on wet paper towels enclosed in plastic bags and maintained at room temperature 
(24 ± 2 °C) for approximately 3 days. Seedlings were then planted in cone-tainers containing growing media and 
grown until V3 stage (fully developed leaf at third node)83, when the studies were initiated.

A soybean aphid colony was reared on KS4202 soybean in a growth chamber maintained at 24 ± 2 °C under a 
16: 8 h (light: dark) photoperiod. Aphids were progeny of a Nebraska isolate, collected in �elds at the University 
of Nebraska Haskell Agricultural Laboratory, Concord, NE (42°23′3″N, 96°29′21″W) in �eld season of 2011. As 
a colony maintenance procedure, soybean aphids were tested for virulence on soybeans expressing Rag1 and 
Rag2 traits; our tests indicated that the insects were susceptible to both of these resistance traits (i.e. biotype 1). 
Voucher specimens of soybean aphids were deposited in the Systematics Research Collections of the University 
of Nebraska State Museum (UNSM).

Aphid bioassay and tissue collection. As no previous studies have shown early plant responses to soy-
bean aphids in the aphid-tolerant genotype KS4202, a study was conducted to evaluate changes in transcript 
expression, hormone quanti�cation, and peroxidase activity a�er 6 and 24 hours (early response study). In the 
early response study, V3 soybean plants were organized in a completely randomized factorial design including 
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Figure 5. A working model of mechanisms involved in KS4202’s tolerance to the soybean aphid. Expression of 
tolerance in KS4202 is well de�ned during the V3 stage (fully developed leaf at third node83). High basal levels 
of ABA, JA, JA-Ile and defense-related lipoxygenases (LOX) contribute to susceptibility to aphid colonization 
and tolerance to aphid feeding-induced damage. �e participation of ethylene (ET) warrants further research. 
Early aphid feeding induces SA and suppresses ABA. Over time with increasing aphid pressure, peroxidases 
become induced for the detoxi�cation of accumulating ROS. Concurrently to peroxidases, PR1, and a 
transcription factor (WRKY60), are also induced by aphid feeding. Kait Chapman prepared the soybean 
illustration and we thank Ellis Johnson for the aphid illustration.
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three soybean genotypes (KS4202, K03-4686, and Wyandot), two aphid infestation levels (0 [control] or 10 aphids 
per plant), and three evaluation time points (0, 6, and 24 hpi). Ten adult, apterous female aphids were placed on 
each newly expanded trifoliate. Infested trifoliates were then caged to prevent aphid escape. Cages were con-
structed with plastic petri dishes (8.9 × 2.5 cm) containing two mesh windows (7 cm diameter) and a small hole 
on the side to �t the petiole. A metal clip was placed on each side of the cage to secure the petri dishes. To provide 
cage support and prevent leaves from bending, a bamboo stick was cut to the appropriate height and placed in the 
potting soil. Each newly expanded trifoliate in uninfested (control) plants were also caged.

A second study, the late response study, was conducted to compare the overall changes in expression of defense 
related transcripts between tolerant and susceptible soybeans as a late response to soybean aphid feeding. Plants 
were completely randomized with a factorial treatment design that included two soybean genotypes (KS4202 and 
K03-4686), two soybean aphid infestation levels (0 [control] and 15 aphids per plant) and four plant evaluation/
harvesting times (0, 1, 3, and 7 dpi). Plant trifoliates were then caged as previously described.

At each evaluation/harvesting time point, aphid number was recorded and removed from the plant with a 
so� paintbrush. Trifoliates were then excised and �ash frozen in liquid nitrogen. Frozen tissue was ground with 
mortar and pestle and then separated into aliquots for RNA isolation and protein extraction, and hormone assays. 
Samples were stored at −80 °C until use.

Plant hormone quantification. For the plant hormone measurements, three replications from the early 
response study (0 [control], 6, and 24 hpi) plants were randomly chosen from each genotype. LC-MS assay and 
quanti�cation of plant hormones was performed by the Proteomics and Metabolomics Facility at the Center for 
Biotechnology/University of Nebraska-Lincoln. Hormones were extracted from approximately 100 mg of ground 
leaf tissue using cold methanol: acetonitrile (50:50, v/v). D5-1AA, D5-tZ, D5-tZR, D6-ABA, D2-JA, and D4-SA 
were used as deuterium-labeled internal standards for IAA, IAA-Asp, cZ, tZ, tZR, ABA, JA, JA-Ile, OPDA, and 
SA to account for experimental variation. ZORBAX Eclipse Plus C19 column �owing was used for LC separation 
and interfaced with a Sciex QTRAP 6500+ mass spectrophotometer equipped with a TurbolonSpray electrospray 
ion source. For quanti�cation, an external standard curve was prepared. IAA, IAA-Asp, cZ, tZ, and ZR were not 
detected.

Changes in transcript expression. Total RNA was isolated from approximately 300 mg of ground leaf 
tissue per sample with TRIzol reagent and treated with RNase-Free DNase I (Qiagen) for 10 min and followed 
by RNeasy MinElute Cleanup Kit (Qiagen, Valencia, CA) for puri�cation. Purity and concentration of total RNA 
was determined with a spectrophotometer (NanoDrop 1000). cDNA was synthesized with 2.5 µg of RNA using 
�ermoScript RT-PCR system (Life Technologies) according to manufacturer’s protocol. Quantitative reverse 
transcription (qRT-PCR) reactions were performed on a 7500 Fast Real-time PCR (Applied Biosystems) using 
SsoAdvanced SYBR Green (Bio-Rad Laboratories, California, USA) following manufacturer’s protocol. Primers 
were designed using Primer-BLAST (National Center for Biotechnology Information) and sequences are pro-
vided in Supplemental Table 1. Soybean cyclophilin (CYP) was used as an endogenous control to normalize 
data84. Mean fold change from �ve biological replicates was calculated using the 2−∆∆CT as previously described85.

Enzyme kinetics. Protein was extracted from ~100 mg of ground tissue per sample with Minute Total 
Protein Extraction for Plant Tissues (Invent Biotechnologies, Eden Prairie, MN). A protease inhibitor cocktail 
for plant tissue (Sigma-Aldrich, Saint Louis, MO) was sequentially added to each sample. Crude protein extract 
was added to 95% acetone and incubated for 1 hour at −20 °C. Samples were then centrifuged at 13,000 rpm for 
10 minutes at 4 °C and supernatant was discarded. �e derived pellet was allowed to air dry at room temperature 
and dissolved in 120 µL of 25 mM sodium hydroxide and the resulting solution was diluted in water at a 1:11 ratio. 
Soluble protein was quanti�ed with the BCA protein assay (Pierce, Rockford) with bovine serum albumin as a 
standard. Samples were incubated at 37 °C for 30 min before absorbance was measured at 562 nm.

Peroxidase activity was determined by a modi�ed protocol from Hildebrand et al.86 and Pierson et al.44. Each 
well of a microplate (96 wells) was loaded with 5 µL of plant extract. �e reaction was started by adding 2.5 µL 
of 30% H2O2, 75 µL of 18 mM guaiacol, 25 µL of 200 mM HEPES bu�er (pH 6.0) and 71.3 µL of distilled water 
in the well containing the undiluted plant extract. Enzymatic activity for �ve biological replicates for each treat-
ment combination was measured as the increase in absorbance a�er 2 minutes at 470 nm in a spectrophotometer 
(BioTek PowerWave). �e speci�c activity of total peroxidase was calculated using the molar absorptivity of 
guaiacol at 470 nm (26.6 × 103 M−1 cm−1).

Statistical analysis. To determine the impact of aphid feeding on the selected transcripts (CT values), 
hormonal quanti�cation, peroxidase activity, and aphid bioassay a generalized mixed model analysis (PROC 
GLIMMIX, Cary, NC) was performed. Means were separated using Fisher protected least signi�cant di�erence 
(LSD) procedure when appropriate (P < 0.05).

Data Availability Statement
�e datasets generated during and/or analysed during the current study are available from the corresponding 
author on reasonable request.
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