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Abstract

Loeys-Dietz syndrome (LDS) is an autosomal dominant arterial aneurysm disease belonging to the spectrum of transforming
growth factor b (TGFb)-associated vasculopathies. In its most typical form it is characterized by the presence of
hypertelorism, bifid uvula/cleft palate and aortic aneurysm and/or arterial tortuosity. LDS is caused by heterozygous loss of
function mutations in the genes encoding TGFb receptor 1 and 2 (TGFBR1 and 22), which lead to a paradoxical increase in
TGFb signaling. To address this apparent paradox and to gain more insight into the pathophysiology of aneurysmal disease,
we characterized a new Tgfbr1 mouse model carrying a p.Y378* nonsense mutation. Study of the natural history in this
model showed that homozygous mutant mice die during embryonic development due to defective vascularization.
Heterozygous mutant mice aged 6 and 12 months were morphologically and (immuno)histochemically indistinguishable
from wild-type mice. We show that the mutant allele is degraded by nonsense mediated mRNA decay, expected to result in
haploinsufficiency of the mutant allele. Since this haploinsufficiency model does not result in cardiovascular malformations,
it does not allow further study of the process of aneurysm formation. In addition to providing a comprehensive method for
cardiovascular phenotyping in mice, the results of this study confirm that haploinsuffciency is not the underlying genetic
mechanism in human LDS.
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Introduction

Although monogenetic disorders are rare, they offer a valuable

perspective for the study of common disease processes. The

Marfan syndrome (MFS), caused by mutations in the fibrillin-1

(FBN1) gene [1], has for example been successfully used as a model

to study the complex pathophysiology of aneurysm formation in

the thoracic aorta. Since FBN1 encodes the fibrillin-1 protein,

which is a major component of extracellular matrix microfibrils

[2], conventional knowledge held that most manifestations in

MFS, including aortic aneurysm formation, result from an

inherent structural weakness of connective tissues containing

abnormal microfibrils [3,4]. The study of the pathophysiology of

MFS in genetically modified mouse models recapitulating human

disease, has extended this knowledge by demonstrating that

fibrillin-1 also plays an important functional role in matrix

sequestration of transforming growth factor beta (TGFb), which

is crucial for regulating TGFb activation and signaling [5]. Studies

in different mouse models have shown that perturbation of TGFb

sequestration contributes to the pathogenesis of the disease [5–8].

Subsequent studies in various tissues from patients with MFS have

confirmed altered TGFb signaling in humans [9,10].

Based on these observations, inhibition of the TGFb signaling

pathway in mouse models by means of TGFb inhibiting agents,

such as the angiotensin II type I receptor blocker losartan, has

resulted in a significant reduction in aortic root growth and rescue

of aortic wall architecture [7]. Additional and very convincing

evidence for involvement of the TGFb pathway in aneurysmal

disease was provided by the identification of TGFBR1 and 22
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mutations in patients presenting a phenotype characterized by

aortic root aneurysm, arterial tortuosity and craniofacial malfor-

mations (including hypertelorism and bifid uvula/cleft palate),

called the Loeys-Dietz syndrome (LDS) [11]. Aortic aneurysms in

LDS tend to evolve more aggressively than in the MFS with rapid

growth and early dissection in most (but not all) cases [12].

Mutations in LDS most commonly reside within the intracellular

serine/threonine kinase domain of either the TGFBR1 (1/3 of

patients) or TGFBR2 (2/3 of patients) gene, encoding the TGFb

receptors [13]. The vast majority of all mutations identified in

TGFBR1 and TGFBR2 are missense mutations, however, other

mutation types, including nonsense (TGFBR1 and TGFBR2),

frameshift (TGFBR2) and splice site (TGFBR1 and TGFBR2)

mutations have also been identified [12,14] (Table S1). So far, no

significant genotype-phenotype correlations have been delineated

when comparing both genes or different types of mutations.

Previous co-transfection experiments suggested a mild dominant-

negative effect for TGFBR1 and 22 missense mutations resulting

in loss of signaling potential of the receptors [15,16]. No detailed

studies have been performed to investigate the effect of other

TGFb receptor gene mutation types. In aortic tissue from patients

with either TGFBR1 or 22 mutations, unexpected upregulation of

TGFb signaling was demonstrated by an increased expression of

the downstream effector, i.e. connective tissue growth factor

(CTGF), and accumulation of nuclear pSmad2 [11]. This

phenomenon has been referred to as the TGFb paradox. In

order to study this apparent paradox, we generated a new Tgfbr1

mouse model aiming to mimic human LDS.

Several Tgfbr1 and Tgfbr2 mouse models have already been

developed and studied. These models showed that both receptors

are required for correct TGFb signaling since homozygous Tgfbr1

and 22 knock-out mice and conditional Tgfbr1 and 22 knock-out

models for vascular smooth muscle cells and endothelial cells die

prematurely due to abnormal vasculo- and angiogenesis [17–20].

Interestingly, conditional deletion of Tgfbr1 or 22 in neural crest

cells results in immediate postnatal lethality due to either

cardiovascular or pharyngeal defects, including persistent truncus

arteriosus, interrupted aortic arch and inappropriate remodeling

of pharyngeal arch arteries [21,22]. Although these early models

for either of the TGFb receptors clearly indicate that TGFb is

involved in various steps of cardiovascular development, they were

not suitable for the study of the molecular and pathogenetic

mechanism of LDS. First, all homozygous mutant mice presenting

cardiovascular features die prematurely, either during embryonic

development or in the early postnatal period. Second, heterozy-

gous knock-out mice do not develop any phenotypic abnormality.

These previous reports, however, all focused on the embryonic

and early postnatal phase and no in depth analysis of the

cardiovascular system was performed in adult heterozygous mice.

This leaves the possibility that these heterozygous knock-out mice

develop a cardiovascular phenotype later in life. For example, it

was reported previously that heterozygous Tgfb2 knock-out mice

do not show a phenotype in contrast to the homozygous mutant

mice that show late embryonic lethality secondary to congenital

heart disease [23]. Following the identification of loss of function

mutations in the Tgfb2 gene in humans with thoracic aortic

aneurysm, however, the mouse model was revisited and Lindsay

and colleagues showed that the haploinsufficient Tgfb2 mice

(Tgfb2+/2) showed significant dilatation of the aortic annulus and

root at the age of 8 months [24]. This observation further warrants

a more in depth cardiovascular evaluation of Tgfbr mouse models.

Theoretically, mice are good models for the study of the TGFb

receptor type 1, since the sequence homology between humans

and mice is very high (91.12% genomic level, 97.19% protein

level).

In a collaborative research effort between our group and the

group of H. Dietz (Baltimore) several Tgfbr1 and22mouse models

with either a missense or nonsense mutation in one of the receptor

genes were investigated. In addition to the search for a suitable

model for the study of aneurysm formation in LDS and the TGFb

paradox, this study was also set up to optimize cardiovascular

phenotyping in mouse models.

Methods

Ethics statement
For all procedures the Principles of Laboratory Animal Care

(NIH publication 86–23, revised 1985) were followed. All

procedures were approved by the Ghent University Hospital

ethical committee for laboratory animal testing (Permit Number:

ECD07/20). All in vivo non-invasive imaging was performed

under anesthesia, and all efforts were made to minimize

suffering.

Mice
Mice were generated by Ingenium according to the procedure

described by Augustin et al [25]. Upon screening of a library

containing mutant mouse sperm that were generated by N-ethyl-

N-nitrosurea (ENU) mutagenesis in healthy C3HeB/FeJ males, a

nonsense mutation was identified in exon 7 of the Tgfbr1 gene

(p.Y378*). Subsequently, these mice were backcrossed to a

C57BL/6 background.

Genotyping mice
Mice were toe-clipped and tail-clipped between postnatal day 8

and 10. The DNA fragment containing the p.Y378* mutation was

amplified from crude tail lysate using the KAPA 2GTM Robust

Hotstart kit (Kapabiosystems). Subsequently, PCR products were

sequenced using the Sanger sequencing technique on an ABI

3730XL Sequencer (Life Sciences).

Determination of the lethal phase of homozygous
mutant embryos
Pregnant female mice were euthanized by means of cervical

dislocation at day 8.5–12.5 post coitus (dpc). The uteruses of the

mice were dissected and embryos were collected. Embryos were

either snap-frozen in liquid nitrogen for RNA isolation or fixated

in Bouin solution (Sigma-Aldrich) for 2 hours and then incubated

in 70% ethanol and embedded in paraffin for histological

examination.

In vivo imaging
Echocardiography. Prior to the imaging studies, mice were

anesthetized (1.0% to 1.5% isoflurane mixed with 0.5 L/min

100% O2) and coat hairs were removed with hair removal cream.

Anesthetized mice were placed in dorsal recumbency on a warmed

pad, keeping the body temperature around 37uC. Throughout the

examination the heart rate, respiration rate and body temperature

were monitored. Ultrasound data of the thoracic aorta and left

ventricle were obtained in 4 wild-type and 4 heterozygous mutant

mice at 6 months and 9 wild-type and 9 heterozygous mice at

12 months of age with an ultrasound apparatus (Vevo 2100,

VisualSonics) equipped with a high-frequency linear array

transducer (MS 550D, frequency 22–55 MHz). The diameter of

the aorta was measured from the parasternal, and suprasternal

windows at the level of the annulus, sinus of Valsalva, ascending

Tgfbr1 Mouse Model
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aorta, aortic arch, and descending thoracic aorta (Figure S1).

Diameters were measured in diastole from inner to inner edge.

Left ventricular dimensions were obtained in M-mode from

parasternal short axis view, according to standard methods.

Fractional shortening was used as parameter for left ventricular

function (FS = (LVEDD-LVESD/LVEDD)*100; with LVEDD

= left ventricular end diastolic diameter, LVESD = left

ventricular end systolic diameter). Standard LV diastolic function

parameters were obtained with the combination of transmitral

pulsed Doppler and mitral annular TDI. Transmitral Doppler

signals were obtained by placing the sample volume of the pulsed

Doppler between the tips of the mitral leaflets in the apical four-

chamber (4C) view. Early (E) and late (A) transmitral flow

velocities, the ratio of early to late peak velocities (E/A) and

deceleration time of E velocity (DT) were obtained. TDI derived

indices, early (Em) and late (Am) mitral annulus velocities were

recorded using pulsed wave TDI mode by positioning the Doppler

cursor at the septal atrioventricular margins of the LV in the apical

four-chamber images.

Micro-CT. Four animals of each genotype group and each

time point were anesthetized with 1.5% isoflurane mixed with

0.5 L/min 100% O2 and, once anesthetized, Aurovist (Nanop-

robes) at a dose of 150 microliter/25 gram body weight was

injected intravenously in the lateral tail vein. Immediately after

injection, when the contrast was maximal, the animals were

scanned in supine position in a FLEX Triumph-II CT scanner

(Gamma Medica-Ideas). The acquisition parameters were the

following: 50 mm focal spot, 262 detector binning, 1024

projections over 360u, 3 times magnification, and 70 kVp tube

voltage. The data was reconstructed with proprietary software

(Cobra EXXIM) using a Feldkamp-type algorithm with Parker’s

weighing function in a 51265126512 matrix with a 75 mm voxel

size. Reconstructed images were converted into DICOM standard

format, and imported into the 3D segmentation software package

Mimics (Materialise). The aorta was semi-automatically segmented

to select the (contrast-enhanced) lumen, requiring manual

intervention to separate aortic and venous segments. The resulting

mask was then wrapped and smoothed while care was being taken

not to cause any shrinkage. This resulted in a 3-D reconstruction

of the thoracic aorta, including the aortic arch and its three major

branches (brachiocephalic artery, left common carotid artery, and

left subclavian artery). Due to movement artifacts caused by the

proximity of the heart, no reliable reconstruction could be made of

the aortic annulus and sinus. A centerline was calculated in

Mimics, and at the ascending aorta, aortic arch and descending

aorta the local cross-sectional area was measured orthogonal to the

centerline.

PET. PET imaging was conducted using the same FLEX

Triumph-II (Gamma Medica-Ideas) system as used with micro-

CT imaging. This system consists of a micro-PET module

(LabPET8) with 262610 mm3 LYSO/LGSO scintillators in an

8-pixel, quad-APD detector module arrangement. This allows for

a 1.5 mm spatial resolution in rodents at a sensitivity of 4%,

thereby covering a field-of-view of 10 cm transaxially and 8 cm

axially. Both the CT and PET modules are attached to the same

system, leading to perfect co-registration of both modalities.

Six mice (4 heterozygous, 2 wild-type) were fasted overnight,

after which they received an intravenous injection of 19.8961.44

MBq of [18F]-fluorodeoxyglucose (FDG). After 40 minutes of

uptake without anaesthesia, the animals were anesthetized with

1.5% isoflurane mixed with 0.5 L/min 100% O2 and scanned for

30 minutes in two bed positions. The PET data were iteratively

reconstructed by 60 iterations of the 2D MLEM algorithm with a

span of 31 to obtain a 92692695 matrix of 0.560.561.175 mm

voxels. The PET data was evaluated in VIVID (GMI) by

calculating the percentage of injected dose (%ID) inside the aorta.

The relevant aorta volume was determined from the aorta

segmentation obtained from the contrast-enhanced micro-CT

scan.

Ex vivo fluorescence reflectance imaging
Increased activity of MMPs (matrix metalloproteinases) can be

assessed using long-circulating protease-activatable near infrared

fluorescent probes. These autoquenched fluorescence probes

convert from a non-fluorescent to a fluorescent state by

proteolytic activation and can be used as a sensitive readout

that reflects subtle changes in protease activity in the extracel-

lular matrix in pre-aneurysmal lesions [26]. The proteolytic

activity comes from MMPs that can cleave an MMP-specific

recognition sequence between the carrier and the fluorochromes

of these probes [27]. Four mice (2 heterozygous Tgfbr1 mice, 2

wild-type mice) were injected via tail vein injection with 5nmol

MMPsense 680 (Perkin Elmer). Twenty-four hours after injection

the animals were sacrificed and aortas were harvested for ex vivo

examination using the Odyssey imaging system. Near infrared

images were obtained at the 700 nm channels and analysed on

relative fluorescence.

Vascular corrosion casting
The vascular corrosion casting procedure was performed as

previously described [28]. In short, mice (8 wild-type and 8

heterozygous mutant mice of both 6 and 12 months old) were

starved 24 hours before sacrificing them by means of CO2

asphyxiation. The abdominal aorta was dissected and 3 ml of

Batson polymer (Polysciences) was injected through a 26 gauche

catheter. After polymerization, mouse bodies were macerated

overnight in 25% potassium hydroxide and rinsed. The casts of the

arterial blood vessels were evaluated using a dissecting microscope

with 5-megapixel camera (Leica).

Statistical analyses
Results are presented as mean (standard deviation (SD) in

parentheses). Data were analyzed with the unpaired sample t-test

for normal-distributed continuous variables; non-normal distrib-

uted values were compared using the Mann-Whitney-U test. x2

test was used to compare categorical variables. If not all cells had

an expected count of 5 or more, Fisher’s Exact test was applied. A

p-value of ,0.05 was used to define statistical significance (two-

sided). SPSS version 20.0 was used for the statistical analysis (SPSS

Inc, Chicago, IL, USA).

Cell cultures
In order to obtain aortic smooth muscle cells, 6 wild-type and 6

heterozygous mutant mice of both 6 and 12 months old, were

euthanized with CO2 and the thoracic aorta was dissected. The

following steps were previously described by Ray and colleagues

[29].

Aortic smooth muscle cells were grown in SmBM smooth

muscle cell basal medium supplemented with 5% fetal bovine

serum, antibiotics and antimycotics, and growth supplements

(0,1% hEGF, 0,1% insulin, 0,2% hFGF-B and 0,1% GA-1000)

(Lonza) at 37uC and 5% CO2. Cells were harvested when a

monolayer was formed and RNA was isolated.

cDNA analysis
RNA was isolated from cultured aortic smooth muscle cells

from adult mice on the one hand and whole snap-frozen embryos

Tgfbr1 Mouse Model
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on the other hand using the RNeasy Mini kit (Qiagen).

Subsequently, cDNA was synthesized using the Superscript II

reverse transcriptase kit with random hexamer primers (Invitro-

gen). cDNA was amplified using primers spanning the entire exon

7 of the Tgfbr1 gene. The PCR product was analyzed on a Labchip

analyzer (Calliper) and subsequently Sanger sequenced on an

3730XL Sequencer (Life Sciences).

Quantitative real-time PCR
RT-qPCR was carried out on cDNA samples using the Roche

56mastermix and resolight dye (Roche) on the LC480 machine

(Roche). All reactions were carried out in duplicate and

normalized to the geometric mean of two reference mouse specific

repeat sequences.

Western blot analysis
Proteins were isolated from snap-frozen thoracic aortic tissue

of 2 heterozygous and 2 wild-type mice for each time point. The

lysis buffer (RIPA, Sigma-Aldrich) was complemented with

protease (Roche) and phosphatase inhibitors (Sigma-Aldrich).

Protein samples were reduced by boiling and adding dithiothre-

itol (DTT) and loaded on a NuPage 4–12% Bis-Tris gel

(Invitrogen) together with a 56 non reducing lane marker

sample buffer (Thermo Scientific). Following SDS-PAGE, the

proteins were transferred onto a nitrocellulose membrane using

the iBlot dry blotting system (Invitrogen). The membranes were

blocked in 2% ECL advantage blocking buffer (GE Healthcare)

and incubated overnight at 4uC with primary antibody directed

against phosphorylated p44/42 MAPK (ERK1/2 XPTM rabbit

mAb (Cell Signaling Technologies) (1/1000)). Subsequently, the

membranes were incubated with secondary anti-rabbit IgG

HRP-linked antibody (Cell Signaling Technologies) (1/5000).

Membranes were developed with the SuperSignal West Dura

chemiluminescent substrate (Pierce). Membranes were then

stripped and re-blocked, in order to incubate with a primary

antibody directed against the non-phosphorylated form of p44/

42 MAPK (ERK1/2) (Cell Signaling Technologies). Next, the

membranes were again incubated with the secondary antibody

and developed. Quantification of the signal was performed using

Image J software (NIH).

Histological, immunohistochemical and
immunofluorescent analyses
Paraffin-embedded thoracic aortic tissue samples from 4

heterozygous mutant and 4 wild-type mice from each time point

were made. From these formalin (for embryos Bouin)-fixed,

paraffin-embedded specimens, 5 mm-thick sections were made.

Hematoxylin-eosin and Verhoeff-Von Giesson stainings were

performed according to standard protocols. For immunohisto-

chemistry, epitopes were unmasked using 1mM EDTA pH 8

buffer (not for actin) and auto-peroxidase activity was inhibited

by incubation in 3% H2O2. Sections were blocked with 5%

bovine serum albumin (Sigma-Aldrich). Antibodies directed

against CTGF (Abcam), pSmad2 (Ser465/467) (Cell Signaling

Technologies) and smooth muscle a-actin (Sigma-Aldrich) were

used. Subsequently, sections were incubated with a secondary

antibody, either biotinylated goat anti-rabbit IgG (pSmad2 and

CTGF) (Vectastain) or Cy3-labeled donkey anti-goat (smooth

muscle a-actin) (GE Healthcare). When the biotinylated second-

ary antibody was used, sections were incubated subsequently with

ABC (Avidin: Biotinylated enzyme Complex) reagent (Vectastain)

and DAB (3,39-Diaminobenzidine) peroxidase (Vectastain). Sec-

tions were dehydrated in xylene and mounted with Entellan

(Sigma Aldrich). When the Cy3-labeled antibody was used,

sections were immediately mounted with aqueous mounting

medium (Vectastain).

Results

Development of the Tgfbr1 mouse model
A chemical ENU mutagenesis process was used to develop

Tgfbr1 mutant mouse sperm (Ingenium). Four out of six induced

mutations included an intronic mutation, two silent mutations

and one missense mutation predicted to have a low pathological

risk according to the small physicochemical difference between

the substituted and substituting residues. One nonsense mutation

and one missense mutation were of potential pathogenic interest.

In this study, the mouse sperm with nonsense mutation in exon 7

of the Tgfbr1 gene (p.Y378*) was used for in vitro fertilization,

creating a mouse line with a germ line mutation in the Tgfbr1

gene.

Natural history of the Tgfbr1 mouse model
Upon genotyping of the offspring of two heterozygous p.Y378*

mice 8 days after birth, no homozygous p.Y378* mice were

identified, which suggested that these mice die during embryonic

development. In contrast, heterozygous mutant mice developed

normally, were fertile and had a normal lifespan, similar to their

wild-type littermates.

To determine the lethal phase of the homozygous mutant mice,

pregnant females were sacrificed at 8.5 through 12.5 days post

coitus (dpc). This time frame was selected based on the lethal

phase of homozygous Tgfbr1 and 22 knock-out mice [19,20]. At

8.5 dpc the homozygous mutant mice were indistinguishable from

their heterozygous mutant and wild-type littermates. By day 9.5,

homozygous mutant mice showed developmental delay, enlarged

pericardium, and defective vascularization of the yolk sac. By

day 11.5 all homozygous mutant embryos died. Complete

resorption occurred by embryonic day 12.5 (Figure 1).

The cardiovascular system
We studied the cardiovascular system of heterozygous p.Y378*

mice and their sex-matched wild-type littermates at 1, 3, 6 and

12 months of age. Experiments were initiated in the groups aged 6

and 12 months. Several invasive and non-invasive imaging

techniques were applied for detailed investigation of the cardio-

vascular system with special attention paid to the aorta. Initial

studies with echocardiography of the 6-month-old mice showed no

significant differences in aortic diameter, valvular function or left

ventricular dimension and function between heterozygous mutant

and wild-type mice, as was also the case at 12 months of age

(Table S2). Micro-CT was performed at both time points and

images were reconstructed and segmented to create a 3

dimensional (3-D) model of the aorta. No differences in aortic

diameter were noted between heterozygous p.Y378* and wild-type

mice, neither at 6 nor at 12 months of age (Figure 2). Further-

more, no tortuosity of the aorta or branching vessels was observed

in the mutant mice. Perturbation of normal elastin laminar

structure may arise from induction of TGFb regulated matrix

metalloproteinases (MMP), a family of endopeptidases responsible

for the degradation of the extracellular matrix in aortic aneurysms

[30]. This increased activity of MMPs can be assessed using ex vivo

fluorescence reflectance imaging. We compared aortas from Tgfbr1

mutant mice to wild-type littermate controls and observed no

difference in the intensity of the fluorescent signal, excluding

minor molecular changes at the level of MMPs in the aortas of

Tgfbr1 muatnt mice (Figure S2). PET-CT was performed to

Tgfbr1 Mouse Model
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investigate the presence of an inflammatory reaction that may

precede aneurysm formation. On the PET images no inflamma-

tory activity was seen that co-localized with the aorta (Figure 3).

Also vascular corrosion casting, a technique allowing us to

construct a plastic replica of the arterial system of the mice, did

not demonstrate any aortic aneurysms or tortuosity of the aorta

and/or its major branches, including the carotid arteries, both at 6

and 12 months of age (Figure 2, Table S3). Due to the complete

absence of a cardiovascular phenotype in these older mice, it is

unlikely that younger mice present any features. Therefore,

imaging and further functional analyses of the 1- and 3-month-

old mice were no longer scheduled.

Nonsense mediated mRNA decay
In a next step, the reason for the absence of a disease

phenotype in the Tgfbr1 mouse model was investigated. The

nonsense mutation p.Y378* is located at the beginning (second

amino acid residue) of exon 7, the last but two coding exon of

the Tgfbr1 gene. Hence, according to the rules of nonsense

mediated mRNA decay (NMD), the mutant mRNA is expected

Figure 1. Morphology of wild-type, heterozygous and homozygous mutant mouse embryos at different time points. At 8.5 dpc
mutant embryos are indistinguishable from their wild-type littermates. From 9.5 dpc onwards homozygous mutants show an abnormal development
characterized by growth retardation and enlarged pericard (white arrow, right panel). By embryonic day 11.5 most of the embryos died and complete
resorption is a fact by day 12.5. Heterozygous mutant Tgfbr1 embryos and wild-type embryos develop normally.
doi:10.1371/journal.pone.0089749.g001

Tgfbr1 Mouse Model
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to be degraded in this mouse model. In order to detect NMD we

first attempted to amplify cDNA from homozygous mutant

embryos. When NMD takes place, no mutant cDNA is expected

to be present in the homozygous mice, which could be confirmed

here (data not shown). Subsequent sequencing of the PCR

products revealed the (near) absence of the mutant allele carrying

the C to A substitution in the heterozygous mice (Figure 4A). In

a second step, the sequencing results were validated using qPCR.

These experiments confirmed the 650% reduction in expression

of Tgfbr1 mRNA in heterozygous embryos and the almost

complete absence of Tgfbr1 mRNA in homozygous mutant

embryos (p,0.05) (Figure 4B).

Aortic wall and TGFb signaling
The architecture of the aortic wall in heterozygous p.Y378*

mice was similar to that of their wild-type littermates. Fragmen-

tation of elastic fibers, one of the main characteristics of aortic

media degeneration, could not be detected upon Verhoeff-Von

Giesson elastin staining (Figure 5 a–d). Also, smooth muscle a-

actin staining showed no smooth muscle cell loss in heterozygous

Tgfbr1 mutant mice (Figure 5 m–p).

In order to investigate upregulation of the canonical TGFb

signaling pathway as observed in human LDS, we performed

immunohistochemical staining of pSmad2 and CTGF on aortic

tissue of 6- and 12-month-old mice (Figure 5 e–l). No significant

differences in pSmad2 and CTGF staining were observed between

heterozygous mutant mice and wild-type mice at both time points.

Despite several attempts, our immunohistochemical data could not

be verified by western blot. Following recent findings of increased

non-canonical TGFb signaling in an MFS mouse model, we

investigated pERK1/2 levels by western blot (Figure 6). No major

differences in the amount of active ERK1/2 (pERK1/2) were

observed between wild-type and heterozygous mutant mice at

both time points (p.0,05).

Discussion

The principal aim of this study was to develop a mouse model

for LDS allowing investigation of the role of TGFb signaling in

aortic aneurysm formation. We also aimed to develop a robust

protocol for cardiovascular phenotyping in mice, combining

functional, anatomical and molecular imaging with in depth

histological characterization of the aortic wall. The Tgfbr1

nonsense mouse model was selected based on the available data

at that time, including observations that nonsense mutations in the

TGFBR2 gene result in LDS in humans, and conditional (neural

crest) Tgfbr1 and 22 knock-out mice display important cardio-

vascular abnormalities [21,22]. During the course of this study,

Figure 2. 3-D reconstruction micro-CT images and vascular
corrosion casts of wild-type and heterozygous Tgfbr1 mice. No
aortic aneurysm nor aortic/arterial tortuosity was observed by micro-CT
(upper panel) or vascular corrosion casting (VCC – lower panel) in
heterozygous mice (right) compared to wild-type controls (left)
(6 months old).
doi:10.1371/journal.pone.0089749.g002

Figure 3. PET imaging of wild-type and heterozygous Tgfbr1 mice (6 months old). No FDG-PET activity (green-yellow) is seen in
heterozygous mice that co-localizes with the thoracic aorta. Top row: Micro-CT reconstruction with thoracic aorta segmentation in red. Middle row:
PET. Bottom row: PET/CT.
doi:10.1371/journal.pone.0089749.g003
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TGFBR1 nonsense mutations have also been identified in human

LDS, further reinforcing the choice for this model.

In our new Tgfbr1 mouse model, the phenotype was limited to

early embryonic lethality of homozygous mutant mice. Heterozy-

gous mice did not display a cardiovascular disease phenotype,

which is in line with previous findings in both Tgfbr1 and Tgfbr2

knock-out mouse models [19,20]. The lack of vascular, anatomical

or immunohistological anomalies in the heterozygous mutant mice

is in contrast with the manifestations encountered in humans

harbouring mutations in the TGFb receptor genes. Both missense

and premature termination codon mutations in these genes give

rise to LDS in humans ([14,31], personal communication C.

Boileau and E. Arbustini). The effect of the TGFBR1 and 22

nonsense mutations has not been described yet. However, based

on the theoretical rules of the nonsense mediated mRNA decay

(NMD) process one could expect the reported TGFBR2 nonsense

mutations to escape this process, because these mutations are all

located in the final coding exon or within less than 50–55

nucleotides before the final exon-exon junction and as such the

exon junction complexes will be displaced after initial translation

and these complexes will not serve as assembly platforms for NMD

factors. Possibly, these truncating mutations act in a moderate

dominant-negative manner similar to what was observed for

missense mutations [16]. In contrast, the nonsense mutations

identified in TGFBR1 are both located before this theoretical

‘boundary’ and as such are predicted to result in NMD. Whether

this is indeed the case for both the TGFBR1 and 22 nonsense

mutations is not known so far. The 2 TGFBR1 splice site mutations

identified by the group of C. Boileau affect 39 and 59 splicing of

intron 4 (personal communication C. Boileau). Unfortunately, no

biological material is available to assess whether these mutations

lead to NMD. Although knowledge of the mutation spectrum in

LDS increased over the years, the exact underlying disease

mechanism remains elusive. However, the existence of a

haploinsufficient disease mechanism seems unlikely, since hetero-

zygous Tgfbr1 and 22 knock-out mice develop normally, and have

a normal life span [19,20]. Human data in support for the absence

of a haploinsufficiency model include a study published by Redon

and colleagues, who identified a heterozygous de novo microdele-

tion (9q22.32-q22.33), encompassing the TGFBR1 gene, in two

unrelated patients who present overgrowth and psychomotor delay

but do not show any of the typical LDS features [32]. Another

argument against a haploinsufficiency disease mechanism is the

demonstration of a mild dominant-negative effect of TGFBR1 and

TGFBR2 missense mutations in human HEK293 cell cultures

[15,16]. For instance, co-transfection of mutant TGFBR1 reporter

constructs with an eGFP (enhanced green fluorescent protein)-

tagged Smad2 construct showed that missense mutations in the

serine/threonine kinase domain of the type I receptor either

affected the activation of TGFb receptor type I by the type II

Figure 4. Nonsense mediated mRNA decay of the mutant Tgfbr1 allele. (A) Sequencing of the amplified cDNA confirms the absence of the
mutant allele in heterozygous (ht) and homozygous mutant mice (hm) compared to wild-type mice (wt). (B) qPCR indicates (near) absence of Tgfbr1
mRNA in homozygous mutant mice (black bar), and an average of 50% reduction in heterozygous mutant mice (light grey bar) compared to wild-
type mice (dark grey bar) (** indicates that p,0.05). Some natural biological variation is seen within the groups (data not shown). Y-axis indicates
relative expression of Tgfbr1 mRNA. gDNA: genomic DNA; cDNA: complementary DNA.
doi:10.1371/journal.pone.0089749.g004

Tgfbr1 Mouse Model

PLOS ONE | www.plosone.org 7 February 2014 | Volume 9 | Issue 2 | e89749



receptor, or inhibited the phosphorylation of receptor-Smads [15].

Co-transfection of equal amounts of wild-type and mutant

TGFBR1 revealed a modest downregulation of TGFb signaling,

providing evidence for, at least a moderate, dominant-negative

effect of the mutant receptor [15]. Here, we show that our model

does not recapitulate the LDS phenotype and therefore our study

Figure 5. (Immuno)histological and immunofluorescent staining of murine aortic tissue. Upper panel: Verhoeff-Von Gieson (VVG) staining
shows intact elastic fibers in both wild-type (wt) (a,c) and heterozygous (ht) Tgfbr1 mice (b,d) of 6 and 12 months of age. Middle panels: no
upregulation of the TGFb signaling pathway, characterized by increased cytoplasmatic CTGF staining (i–l) and accumulation of nuclear pSmad2
staining (e–h), is seen in heterozygous 6 months (f and j) and 12 months (h and l) old mice compared to wild-type mice (e, i, g and k). Lower panel:
aortic tissue of heterozygous Tgfbr1 mice (n and p) is not characterized by smooth muscle cell loss or focal hyperproliferation of smooth muscle cells
compared to wild-type mice (m and o) (red staining). SM-actin: smooth muscle a-actin.
doi:10.1371/journal.pone.0089749.g005

Figure 6. Western blot of non-canonical TGFb signaling pathway. (A) Western blot analysis of pERK1/2 (44 kDa band pERK1 and 42 kDa band
pERK2) in wild-type (wt) and heterozygous mutant (ht) mice of 6 and 12 months old shows no major increase or decrease of the active
(phosphorylated) form of ERK1/2 in these groups compared to total ERK1/2 and b-tubulin. (B) The graphs show normalization of pERK1/2 to total
ERK1/2 and b-tubulin protein expression. Y-axis indicates relative protein expression. NS: not significant.
doi:10.1371/journal.pone.0089749.g006
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further confirms that a TGFBR1 haploinsufficient disease mech-

anism is very unlikely in LDS, as the development of the

cardiovascular system remains unaffected notwithstanding the

50% reduction in Tgfbr1 mRNA in heterozygous animals.

Nonetheless, haploinsufficiency of other TGFb signaling compo-

nents, such as the SMAD3 effector and the TGFb2 ligand, which

also leads to pathologically increased TGFb signaling has

previously been suggested as the disease mechanism causing

thoracic aortic aneurysms and various associated features

[24,33,34].

Recently, TGFBR1 nonsense mutations have been identified in

patients with multiple self-healing squamous epithelioma (MSSE,

MIM 132800) [37]. As opposed to LDS, in which predominantly

missense mutations in the kinase domain of the receptor lead to a

cardiovascular, neurocognitive and craniofacial-skeletal pheno-

type, only truncating mutations are identified in the kinase domain

of the receptor in MSSE patients, together with truncating and

missense mutations in the ligand-binding extracellular domain of

the type I receptor. As such, the differences in the spectrum and

location of mutation types determine the phenotype. A macro-

scopic evaluation of the skin of fifteen 12-month-old heterozygous

Tgfbr1 mice did not reveal any scars as observed in human MSSE

patients after spontaneous regression of the skin tumors. More

thorough assessment of the skin of this model, for example by

challenging it with known cancerogens, is needed to evaluate the

skin phenotype.

Other possible explanations for the absence of a disease

phenotype in these mice should also be considered. First, the

decrease in Tgfbr1 signaling that ought to be caused by

haploinsufficiency could be compensated for by other receptors

of the TGFb superfamily. For instance, it was shown by Carvalho

and co-workers that the ALK4 receptor is able to phosphorylate

SMAD2 in a conditional Tgfbr12/2 (also known as Alk5) knock-out

mouse model, compensating for the reduction in Tgfbr1 signaling

[17]. Second, reduced penetrance of the phenotype might relate to

the genetic background (black 6) of the mouse strain used in this

study. This hypothesis is supported by the study of Tang and

colleagues, who identified three unlinked genetic modifiers which

may regulate TGFb activation as shown by the survival-to-birth

rate in different strains in which Tgfb1 was deleted [35,36].

Since the TGFb signaling pathway is thought to play a crucial

role in the pathophysiology of thoracic aortic aneurysms and the

therapeutic implications hereof, it is of utmost importance to

unravel the precise role of the TGFb signaling pathway in aortic

disease and understand the seemingly paradoxical upregulation of

this pathway in LDS patients. Mouse models bearing missense

mutations previously identified in human LDS patients could

possibly model the disease and be instrumental in identifying it’s

pathogenetic mechanism.

In conclusion, the haploinsufficient Tgfbr1 mouse model created

in this study does not recapitulate the human LDS phenotype.

Consequently, we were not able to elucidate the TGFb paradox

that has been previously proposed to occur in LDS. In view of the

similarity to mutations identified in MSSE, this model might be

valuable for further studies of the pathogenesis of this phenotype.

Furthermore, with the combination of detailed phenotyping

techniques, we provide a useful protocol for the characterization

of cardiovascular features in mice. Our protocol may be of

practical use for other researchers in the field.

Supporting Information

Figure S1 Sites of measurement of the thoracic aorta

diameters on echocardiographic evaluation. (1) aortic

annulus, (2) sinus aortae, (3) sinotubular junction, (4) ascending

aorta, (5) aortic arch, and (6) descending aorta.

(TIF)

Figure S2 Fluorescence imaging of MMP activity in

aortas from wild-type and heterozygous Tgfbr1 mice.

Near infrared fluorescence images showing the fluorescence of

MMPsense 680 ex vivo in the thoracic aorta at 24 hours post-

injection. Shown are an uninjected control aorta, 2 wild-type and

2 heterozygous Tgfbr1 aortas.

(TIF)

Table S1 Overview of reported and unpublished

TGFBR1 and TGFBR2 premature termination codon

mutations identified in LDS patients. CMGG: Center for

Medical Genetics Ghent.

(XLSX)

Table S2 Echocardiographic data of wild-type and

mutant Tgfbr1 mice at 6 and 12 months of age. WT:

wild-type; Stdev: standard deviation; LVEDD: left ventricular end

diastolic diameter; LVESD: left ventricular end systolic diameter.

FS: fractional shortening; E: early transmitral flow velocity; A: late

transmitral flow velocity; DT: deceleration time of E velocity, E/

A: ratio of early (E) to late (A) peak velocities; Em: early mitral

annulus velocity; E/E’: relationship between maximal values of

passive mitral inflow.

(XLSX)

Table S3 Aortic diameters measured from vascular

corrosion casts of wild-type and mutant Tgfbr1 mice at 6

and 12 months of age. WT: wild-type; Stdev: standard

deviation.

(XLSX)
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