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1 Introduction and summary

M-theory is a rather mysterious ultraviolet (UV) completion of eleven-dimensional super-

gravity [1]. It describes the dynamics of massless gravitons and their superpartners, and as

such its main observables are the scattering amplitudes of these massless particles. For gen-

eral momenta, supersymmetry requires that the 4-graviton S-matrix take a factorized form

A(ηi, s, t) = ASG,tree(ηi, s, t)f(s, t).1 The first factor is the tree-level scattering amplitude

computed in 11d supergravity and depends on the polarizations ηi of the four gravitons as

well as the Mandelstam invariants. The second factor is an arbitrary symmetric function

f of the Mandelstam invariants s, t, and u = −s − t. In the small momentum expansion

(or equivalently in the expansion in the 11d Planck length `p), 11d supersymmetry allows

the following terms in f :

f(s, t) = 1 + `6pfR4(s, t) + `9pf1-loop(s, t) + `10
p fD4R4(s, t) + `12

p fD6R4(s, t) + · · · (1.1)

Terms multiplying `np are homogeneous of degree n in s and t, as required on dimensional

grounds. The functions of s and t that constitute the coefficients of `np are given suggestive

names: fD2mR4 are symmetric polynomials in s, t, u that represent the contributions of the

contact Feynman diagrams with D2mR4 as well as tree-level exchange diagrams that have

the same momentum scaling; f1-loop is the one-loop supergravity Feynman diagram, etc.

All the loop corrections to supergravity can be computed in principle from the 11d super-

gravity Lagrangian. On the other hand only the lowest few protected fD2mR4 corrections

to supergravity can be determined by relating them to type II perturbative string theory

computations and non-renormalization theorems.2 These take the form [10–14]

fR4(s, t) =
stu

3 · 27
, fD4R4(s, t) = 0 , fD6R4(s, t) =

(stu)2

15 · 215
, (1.2)

with u = −s − t as above. The D4R4 contribution is absent, but would otherwise be

consistent with 11d supersymmetry. The goal of this paper is to derive the vanishing of

fD4R4 purely from 3d CFT using AdS/CFT.

1Without loss of generality, for a four-point massless scattering process in 11 dimensions, one can take

the momenta to lie within 4 of the 11 dimensions. With this choice, the 11d SUSY Ward identities

reduce to the N = 8 SUSY Ward identities in 4d for the graviton and its superpartners. (The 11d

supergravity multiplet reduces to the 4d N = 8 supergravity multiplet.) In 4d, the N = 8 SUSY Ward

identities imply that the 4-point scattering amplitude must equal the supergravity tree-level amplitude

times some function f(s, t) [2]. Then, we claim that the 11d amplitude is ASG,tree(ηi, s, t)f(s, t). Indeed,

this quantity obeys the 11d SUSY Ward identities because ASG,tree(ηi, s, t) does and because multiplying

a supersymmetric amplitude by a function of s, t still solves the Ward identities, as follows from the fact

that the momentum commutes with the supercharges. The difference A(ηi, s, t) − ASG,tree(ηi, s, t)f(s, t)

reduces to zero in 4d, and since the reduction was made without loss of generality by an appropriate choice

of the coordinate system, this difference must be identically zero for any choice of the 11d momenta. Thus,

A(ηi, s, t) = ASG,tree(ηi, s, t)f(s, t).
2If M-theory is compactified to 4d, one obtains 4d N = 8 SUGRA theory supplemented by higher

derivative corrections [3, 4]. Constraints on higher derivative counterterms in 4d N = 8 SUGRA have been

studied in [5–8] (see also [9]).
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It was proposed in [15] following earlier work [16–18] that an alternative way of deter-

mining the 11d 4-graviton S-matrix is from the flat space limit of stress tensor multiplet

4-point correlation functions in the superconformal field theory (SCFT) on N coincident

M2-branes. This theory is part of a family of U(N)k × U(N)−k gauge theories coupled

to bifundamental matter whose Lagrangian descriptions are due to Aharony, Bergman,

Jafferis, and Maldacena (ABJM) [19]. For general N and k, ABJM theory is dual to the

AdS4 × S7/Zk background of M-theory and is the effective theory on N coincident M2-

branes placed at a C4/Zk singularity in the transverse space. We will only focus on the

cases k = 1 or 2 where supersymmetry is enhanced to N = 8 [19–23] from the N = 6 man-

ifestly preserved at all k [19]. Instead of parameterizing these theories by N , we will find

it convenient to use the quantity cT ∼ N3/2, the coefficient of the canonically-normalized

stress-tensor two point function, which has been calculated to all orders in 1/N through

supersymmetric localization [24] using the results of [25] and [26].

More concretely, one can consider the four-point function 〈SSSS〉 of the scalar bottom

component S of the N = 8 stress tensor multiplet. It was shown in [15] that the N = 8

superconformal Ward identity for the Mellin transform [17, 18] MSSSS
tree of the tree level

〈SSSS〉 correlator has a finite number of solutions at every order in the 1/cT expansion:

MSSSS
tree (s, t) = c−1

T B1
1M

1
S + c

− 5
3

T

[
B4

4M
4
S +B4

1M
1
S
]

+ c
− 19

9
T

[
B6

6M
6
S +B6

4M
4
S +B6

1M
1
S
]

+ c
− 7

3
T

[
B7

7M
7
S +B7

6M
6
S +B7

4M
4
S +B7

1M
1
S
]

+ . . . ,

(1.3)

where s, t are Mellin space variables that are related to the 11d Mandelstam variables in

the flat space limit, Mp
S are functions of s, t that grow as the pth power at large s, t, and the

B’s are numerical coefficients unfixed by 3d supersymmetry. If one can determine these

B’s up to order 1/cnT , then by taking the flat space limit [16] one can reproduce the 4-

graviton scattering amplitude and read off the function f to order `
9(n−1)
p . This procedure

was carried out in [15] to first non-trivial order: by computing two distinct CFT quantities

as a function of N (namely cT as well as a 1/2-BPS OPE coefficient), ref. [15] was able to

fix both B4
i and thereby reproduce exactly the known value of fR4(s, t). (See also [27] for

an analogous computation in 6d.) The goal of the present paper is to use ABJM theory

to find an additional constraint such that all three B6
i can be fixed to zero, which implies

that fD4R4 = 0.

Developing the momentum expansion up to D4R4 order presents new challenges com-

pared to the computation up to R4 order performed in [15]. In [15], the computation of

the additional CFT quantity besides cT that was needed involved a trick based on the

fact that, as any N ≥ 4 3d SCFT, ABJM theory contains a one-dimensional topological

sector [28, 29]. Such a trick does not seem easily generalizable to the computation of other

quantities. Nevertheless, one may hope to to beyond R4 order because in 11d all terms

up to D6R4 (thus including D4R4) preserve some amount of supersymmetry, and thus one

may hope to be able to use supersymmetric localization to compute just enough quantities

in the field theory in order to recover all these terms in 11d.
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In ABJM theory, quite a few BPS quantities can be computed using supersymmetric

localization using [25, 30]. To go to order D4R4, it is enough to consider the free energy

on a round three-sphere in the presence of real mass deformations. When ABJM theory is

viewed as an N = 2 SCFT, it has SU(4) flavor symmetry, and, since the Cartan of SU(4)

is three-dimensional, it also admits a three-parameter family of real mass deformations.

(See for instance [31] where these deformations were studied at leading order 1/N .) The

S3 free energy F in the presence of two such mass parameters m1 and m2 was computed

to all orders in 1/N in [32] using the Fermi gas formalism developed in [33]. To make

connection with the four-point function of the stress tensor multiplet, we consider the

fourth derivatives3 ∂4F
∂m4

1

∣∣
m1=m2=0

and ∂4F
∂m2

1∂m
2
2

∣∣
m1=m2=0

, which, by analogy with the analysis

of [26] for two-point functions, can be related to integrated four-point correlators in the

SCFT. Calculating these integrated correlators using the solution to the Ward identity at

order D4R4 and comparing with the fourth derivatives of F mentioned above, one can fix

all three B6
i = 0 so that fD4R4(s, t) = 0.

It is worth pointing out that part of the difficulty in performing this computation is

that all previous studies [15, 24, 28, 34, 35] in 3d N = 8 SCFTs focused on the four-

point function of the superconformal primary of the stress tensor multiplet, which is the

scalar operator S mentioned above of scaling dimension ∆S = 1 transforming in the 35c
of the SO(8)R R-symmetry. However, the fourth mass derivatives of the F are more

directly related to integrated four-point functions of a linear combination of S and another

operator P that belongs to the same superconformal multiplet as S. The operator P is a

pseudoscalar of scaling dimension ∆P = 2 transforming in the 35s of SO(8)R. As part of

our computation, we will therefore derive expressions for the four-point functions 〈SSPP 〉
and 〈PPPP 〉 in terms of the more easily computable 〈SSSS〉.

Another notable feature of our computation is a concise expression for integrals over

Sd of 4-point functions of scalar operators in CFTs. In particular, we find that the integral

over 4d variables reduces to an integral over the two conformally-invariant cross ratios U

and V of the 4-point function multiplied by a D(U, V ) function, which naturally shows up

in tree level calculations in AdSd+1 [36]. (See eqs. (3.22) and (3.30).) While in this work

we only apply this result to d = 3 and the specific operators we are interested, this formula

applies to any CFT with or without supersymmetry.

The rest of this paper is organized as follows. We start in section 2 with a brief

review of the relevant four-point functions in N = 8 SCFTs and derive the relations

between them that were mentioned in the previous paragraph. In section 3, we discuss the

relation between the fourth mass derivatives of the S3 free energy and integrated correlation

functions in the SCFT. In section 4 we apply these results to ABJM theory, and by taking

the flat space limit of the SCFT correlators show that fD4R4 vanishes, as expected. Lastly,

we end with a brief discussion of our results in section 5. Various technical details are

relegated to the appendices as well as to an auxiliary Mathematica file included with this

arXiv submission, containing the Ward identities and the large cT expressions for the Mellin

amplitudes and position space correlators that we computed.

3All other fourth derivatives vanish or are linearly dependent on the two mentioned in the main text.
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Operator ∆ Spin so(8) charge

S 1 0 35c
χ 3/2 1/2 56v
P 2 0 35s
j 2 1 28

ψ 5/2 3/2 8v
T 3 2 1

Table 1. Operators in the N = 8 stress energy tensor multiplet.

2 Stress tensor multiplet 4-point functions

Let us begin by discussing the structure of the stress energy tensor multiplet in N = 8

SCFTs and then derive the relation between the 4-point function of the 35c scalar S

and the 4-point functions involving the 35s pseudoscalar P that were mentioned in the

Introduction.

2.1 The N = 8 stress tensor multiplet

In addition to the scaling dimension 1 scalar operator S and the dimension 2 pseudoscalar

operator P transforming in the 35c and 35s irreps of the SO(8)R R-symmetry, the N = 8

stress tensor multiplet also contains a fermionic operator χα of dimension 3/2 in the 56v,

the R-symmetry current jµ in the 28, the supercurrent ψµα in the 8v, and the stress tensor

itself, Tµν — see table 1.

In order to write down the supersymmetry variations relating all these operators, we

need an efficient way to keep track of the various SO(8) representations that appear. All

representations of SO(8) can be produced by symmetrizing and antisymmetrizing the 8c,

8s, and 8v representations. We use the indices I, J, . . . for 8c; A,B, . . . for 8s; and a, b, . . .

for 8v.
4 All three representations are real and so indices are raised and lowered using the

Kronecker delta symbol. Equivalently, the Kronecker delta symbol can be used to form a

singlet from 8i ⊗ 8i, an operation we denote by · in index free notation (e.g. v ·w ≡ vAwA

if v and w transform in the 8s). In addition to the Kronecker delta symbol, SO(8) admits

another invariant tensor EaIA (see appendix A for explicit expressions), which can be used

to produce the 8k from 8i ⊗ 8j whenever i, j, and k are distinct. In index free notation,

we can represent this as a wedge product ∧ : 8i ⊗ 8j → 8k (e.g. (v ∧ w)a = EaIAv
IwA if v

and w transform in the 8c and 8s, respectively).5

4These three representations are all equivalent due to SO(8) triality, and so while we can think of the

8v as the vector representation while 8c and 8s are the two (real, inequivalent) spinor representations, this

assignment is arbitrary.
5The EaIA can be thought of as chiral SO(8) gamma matrices. The Clifford algebra implies

(X1 ∧ Y1) · (X2 ∧ Y2) + (X1 ∧ Y2) · (X2 ∧ Y1) = 2(X1 ·X2)(Y1 · Y2) .

By manipulating the Clifford algebra, one can derive other useful relations, for instance

(X ∧ Y1) ∧ Y2 + (X ∧ Y2) ∧ Y1 = 0 .

– 5 –
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Then, we can represent the operators of the stress tensor multiplet as SIJ , PAB, χAIα ,

jIJµ (or jABµ or jabµ ), ψaµα, Tµν . The scalars S and P are rank-two traceless symmetric

tensors of 8c and 8s, respectively, jµ is an anti-symmetric tensor of any eight-dimensional

representation, and χ obeys χAIE
AIa = 0 in order to select the 56v representation from

the product 8s⊗8c = 56v⊕8v. Including all the SO(8)R indices quickly becomes unwieldy,

so instead we will use polarization vectors: we will denote vectors in 8c by Y , those in 8s
by X, and those in 8v by Z. Then we can define the operators

S(~x, Y ) = SIJ(~x)Y IY J , P (~x,X) = PAB(~x)XAXB ,

χα(~x,X, Y ) = χAIα (~x)XAYI , jµ(~x, Y1, Y2) = jIJµ (~x)Y1IY2J ,

ψµα(~x, Z) = ψaµα(~x)Za .

(2.1)

To implement the tracelessness of SIJ and PAB, we demand that Y · Y ≡ Y IYI = 0 in

the definition of S(~x, Y ) and similarly for X in the definition of P (~x,X).6 Likewise, to

implement the condition EaAIχ
AI(~x) = 0, we require X ∧ Y = 0. We can automatically

satisfy this condition by choosing X = Y ∧ Z for some Z ∈ 8v; this is now a redundant

parametrization as there exists a (unique up to normalization) vector ZY for which Y ∧
ZY = 0. Lastly, since the R-symmetry current jµ transforms in the adjoint representation

28 ∈ (8c ⊗ 8c)a we can polarize it with two vectors Y1 and Y2, but all expression must be

antisymmetric in these two vectors. Alternatively we could polarize it with X1 and X2 or

Z1 and Z2, depending on whichever is most convenient.

After this long introduction on notation, we can write down how Poincaré supersym-

metry generated by the supercharges Qαa relate the operators in the stress tensor multiplet:

δα(Z)S(~x, Y ) = χα(~x, Z ∧ Y, Y ) ,

δα(Z)χβ(~x,X, Y ) =
εαβ√

2
P (~x,X, Y ∧ Z) +

1

2
σαβµ jµ(~x,X, Y ∧ Z) + iσαβµ ∂µS(~x,X ∧ Z, Y ) ,

δα(Z)P (~x,X) = i
√

2σαβµ ∂µχβ(~x,X,X ∧ Z) ,

etc. (2.2)

Here, δα(Z) represents the action of QαaZa on the various operators and σµ are the 3d

gamma matrices, which can be taken to be just Pauli matrices. The supersymmetry vari-

ations of jµ, ψmuα, and Tµν that were omitted from (2.2) will not be needed in this work.

2.2 Ward identities

To derive the relations superconformal symmetry imposes between the four-point functions

of the stress tensor multiplet operators, it is enough to first determine the most general

form of these four-point functions that is consistent with conformal symmetry, and then

require that they be invariant under the Poincaré SUSY transformations in (2.2). (One does

6Strictly speaking we should view S and P as functions of two distinct auxiliary fields; for instance,

S(~x, Y1, Y2) = SIJ(~x)Y I1 Y
J
2 , subject to the conditions that S(~x, Y1, Y2) = S(~x, Y2, Y1) and that Y1 · Y2 = 0.

But we can always uniquely reproduce the full SO(8) structures by restricting to Y1 = Y2 and it is usually

convenient to do so.

– 6 –
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not gain any additional information by also imposing invariance under the superconformal

generators Sαa because invariance under Sαa is guaranteed by invariance under Qαa and

under the special conformal generators Kµ.) For example, conformal symmetry implies

that the 〈SSSS〉 and 〈PPPP 〉 correlators take the form

〈S(~x1, Y1) · · ·S(~x4, Y4)〉 =
1

x2
12x

2
34

[
S1(U, V )Y 2

12Y
2

34 + S2(U, V )Y 2
13Y

2
24 + S3(U, V )Y 2

14Y
2

23

+ S4(U, V )Y13Y14Y23Y24 + S5(U, V )Y12Y14Y23Y34 + S6(U, V )Y12Y13Y24Y34

]
,

〈P (~x1, X1) · · ·P (~x4, X4)〉 =
1

x4
12x

4
34

[
P1(U, V )X2

12X
2
34+P2(U, V )X2

13X
2
24+P3(U, V )X2

14X
2
23

+ P4(U, V )X13X14X23X24 + P5(U, V )X12X14X23X34 + P6(U, V )X12X13X24X34

]
,

(2.3)

where the Si and the Pi are functions of the conformal cross-ratios

U ≡ x2
12x

2
34

x2
13x

2
24

, V ≡ x2
14x

2
23

x2
13x

2
24

. (2.4)

Note that not all the functions Si and Pi are independent. Crossing symmetry implies the

relations

S2(U, V ) = US1

(
1

U
,
V

U

)
, S3(U, V ) =

U

V
S1(V,U) ,

S5(U, V ) = US4

(
1

U
,
V

U

)
, S6(U, V ) =

U

V
S4(V,U) ,

P2(U, V ) = U2P1

(
1

U
,
V

U

)
, P3(U, V ) =

U2

V 2
P1(V,U) ,

P5(U, V ) = U2P4

(
1

U
,
V

U

)
, P6(U, V ) =

U2

V 2
P4(V,U) .

(2.5)

Likewise, 〈SSPP 〉 takes the form

〈S(~x1, Y1)S(~x2, Y2)P (~x3, Y3)P (~x4, Y4)〉 =

1

x2
12x

4
34

[
R1Y

2
12X

2
34 +R2 [(Y1 ◦ Y2) · (X3 ◦X4)]2 +R3(Y1 ◦ Y2) · (X3 ◦X4)Y12X34

]
,

(2.6)

where the Ri are also functions of U and V and we used the product ◦ : 8i ⊗ 8i → 28,

normalized such that (Y1 ◦ Y2) · (Y3 ◦ Y4) = 1
4(Y13Y24 − Y14Y23).7 For other correlation

functions (which are not needed in the rest of this paper), see appendix B.

For the application presented in this paper, we only need to express the four-point

functions 〈SSPP 〉 and 〈PPPP 〉 in terms of 〈SSSS〉. These relations can be determined

7Using the identities in Footnote 5, we can derive (Y1 ◦ Y2) · (X3 ◦ X4) =
1
2

[(X3 ∧ Y1) · (X4 ∧ Y2)− (X3 ∧ Y2) · (X4 ∧ Y1)].
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Variation Correlators Used Correlators Obtained

δ〈SSSχ〉 〈SSSS〉 〈SSχχ〉 〈SSSj〉
δ〈SSPχ〉 〈SSχχ〉 〈SPχχ〉 〈SSPP 〉 〈SSPj〉
δ〈SPPχ〉 〈SPχχ〉 〈SSPP 〉 〈PPχχ〉 〈SPPj〉
δ〈PPPχ〉 〈PPχχ〉 〈PPPP 〉 〈PPPj〉

Table 2. Taking supersymmetric variations to compute correlators. By setting the variation in the

first column to zero, we can use the correlators in the second column to compute the correlators in

the third column.

by substituting the general form of the four-point functions into the identities

δ〈SSSχ〉 = 0 ,

δ〈SSPχ〉 = 0 ,

δ〈SPPχ〉 = 0 ,

δ〈PPPχ〉 = 0 .

(2.7)

In particular, from the first equation in (2.7), we determine 〈SSχχ〉 and 〈SSSj〉 in terms of

〈SSSS〉, as well as relations on 〈SSSS〉. Then, from the second line of (2.7), we determine

〈SPχχ〉, 〈SSPP 〉, and 〈SSPj〉. Then, from the third line of (2.7), we determine 〈PPχχ〉
and 〈SPPj〉. Lastly, from the fourth line of (2.7), we determine 〈PPPP 〉 and 〈PPPj〉.
See also table 2.

In practice, plugging (2.3), (2.6), and the analogous equations in appendix B into (2.7)

is an onerous but straightforward task that can be greatly simplified using Mathematica.

Our results are as follows. From the first equation in (2.7), we can show that the Si obey

the Ward identities

∂US4(U, V )=
1

U
S4(U, V ) +

(
1

U
− ∂U−∂V

)
S2(U, V ) +

(
1

U
+ (U−1)∂U + V ∂V

)
S3(U, V ) ,

∂V S4(U, V )= − 1

2V
S4(U, V )− 1

V
(1− U∂U + (1− U)∂V )S2(U, V )− (∂U + ∂V )S3(U, V ) ,

(2.8)

along with other identities which can be derived using the crossing relations (2.5). It can

be checked that these equations are equivalent to the Ward identities obtained in [37].

The expressions for the functions Ri(U, V ), Si(U, V ), and Pi(U, V ) that appear in (2.6)

and (2.3) in the 〈SSPP 〉, 〈SSSS〉, and 〈PPPP 〉 correlators, respectively, are related as

Ri(U, V ) = DRi (U, V, ∂U , ∂V )S1(U, V ) ,

Pi(U, V ) = DPij(U, V, ∂U , ∂V )Si(U, V ) ,
(2.9)

where the differential operators DRi (U, V, ∂U , ∂V ) and DPij(U, V, ∂U , ∂V ) are rational func-

tions U and V and have at most 2 and 4 derivatives, respectively, and are given explicitly

in eqs. (B.7)–(B.9) in appendix B. The other correlators mentioned in table 2 can also be

written as differential operators acting on the Si; their explicit expression can be found in

the attached Mathematica notebook.
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2.3 A check: superconformal blocks

A stringent check on the formulas (2.9) as defined in (B.7)–(B.9) is that they should map

superconformal blocks to superconformal blocks. In particular, if we take the Si to corre-

spond to a superconformal block, then these equations determine the corresponding super-

conformal blocks in the 〈SSPP 〉 and 〈PPPP 〉 correlators. The fact that these equations

produce a finite linear combinations of conformal blocks is nontrivial.

As a simple example, the superconformal block corresponding to the s-channel ex-

change of the stress tensor multiplet in the 〈SSSS〉 correlator is [24]

Si =
(

1
4 (−g1,0 + g3,2) 0 0 0 g1,0 + g2,1 g1,0 − g2,1

)
, (2.10)

where g∆,` are the conformal blocks written in the normalization used in [24]. From (B.7)

we find

Ri =
(

1
2g3,2 0 −4g2,1

)
, (2.11)

and (B.8)–(B.9) along with their crossed versions imply

Pi =
(
g3,2 0 0 0 g2,1 −g3,2

)
. (2.12)

Superconformal blocks for other multiplets can be worked out in a similar way.

3 Integrated correlators on S3

Having described the four-point function of the scalar and pseudo-scalar operators in the

stress tensor multiplet of an N = 8 SCFT, let us now connect these quantities to the fourth

derivatives of the S3 partition function with respect to various mass parameters. Before

delving into the details of these mass deformations, let us note that the formulas (2.3)–(2.6)

also hold on a round S3, with the only modification that the quantity ~xij should undergo

the replacement

~xij →
~xij√

1 +
x2
i

4r2

√
1 +

x2
j

4r2

= Ω(~xi)
1/2Ω(~xj)

1/2~xij (3.1)

everywhere. Here, r is the radius of the three-sphere, and the three-sphere is taken to have

the metric

ds2 = Ω(~x)2d~x2 , Ω(~x) ≡ 1

1 + x2

4r2

. (3.2)

The r.h.s. of (3.1) is just the chordal distance between two points on S3. In particular, the

replacement (3.1) leaves unchanged the conformally-invariant cross-ratios U and V defined

in (2.4).
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3.1 Three-parameter family of real mass deformations

We are interested in mass deformations on S3 which preserve sufficient supersymmetry

to compute the partition function using supersymmetric localization. This requires at

minimum N = 2-preserving mass deformations. Viewed as an N = 2 SCFT, any N = 8

SCFT possesses an su(4) flavor symmetry generated by the subalgebra of so(8)R which

commutes with the N = 2 R-symmetry u(1)R. In N = 2 SCFTs, real mass parameters are

associated with conserved current multiplets, because they can be thought of as arising from

giving supersymmetry-preserving expectation values to the scalars in the background vector

multiplets that couple to the conserved current multiplets. In particular, the operators of

an N = 2 conserved current multiplet generating a symmetry algebra g with hermitian

generators T a are: a ∆ = 1 scalar J = JaT a, a ∆ = 2 pseudo-scalar K = KaT a, and

the conserved current jµ = jaµT
a. If we normalize the flat space two-point functions at

separated points as

〈jaµ(~x)jbν(0)〉 =
τ tr(T aT b)

16π2

(
δµν∂

2 − ∂µ∂ν
) 1

x2
,

〈Ja(~x)Jb(0)〉 =
τ tr(T aT b)

16π2x2
,

〈Ka(~x)Kb(0)〉 =
τ tr(T aT b)

8π2x4
,

(3.3)

for some constant τ , then the real mass deformation on S3 is given by [26]∫
d3~x

√
g(~x) tr

[
m

(
i

r
J(~x) +K(~x)

)]
+O(m2) , (3.4)

where m = maT a is a Lie-algebra valued mass parameter. Here, ‘tr’ denotes a positive-

definite bilinear form on the Lie algebra, which can be thought of as the trace in a

conveniently-chosen representation of g. For us, we have the flavor symmetry algebra

g = su(4), and we consider a basis of this algebra such that tr(T aT b) = δab. For conve-

nience, we will take ‘tr’ to be the trace in the fundamental (4) of su(4). Note that τ is

related to the stress tensor two-point function coefficient cT in the N = 8 theory by

τ =
cT
16
, (3.5)

where our normalization is such that cT = 1 for a free real scalar. For simplicity, let the

radius of S3 be set to r = 1 from now on.

Due to the su(4) symmetry, the S3 free energy can be expanded in terms of su(4)

Casimirs. For instance, the first few terms in the expansion at small mass are

F = F0 + F2 tr(m2) + F3 tr(m3) +

[
F4,1

(
tr(m4)− 1

4

(
tr(m2)

)2)
+ F4,2

(
tr(m2)

)2]
+ · · · .

(3.6)

We can of course obtain the same information without the need to consider a completely

general su(4) mass matrix m, and instead focus on a Cartan subalgebra. Let us order
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the T a such that the first three (a = 1, 2, 3) correspond to a Cartan subalgebra given

explicitly by

T 1 = diag

{
1

2
,

1

2
,−1

2
,−1

2

}
,

T 2 = diag

{
1

2
,−1

2
,

1

2
,−1

2

}
,

T 3 = diag

{
1

2
,−1

2
,−1

2
,

1

2

}
.

(3.7)

With tr(T aT b) = δab, the expression (3.6) becomes a sum of polynomials in ma, a = 1, 2, 3

that are invariant under the action of the Weyl group:

F = F0 + F2(m2
1 +m2

2 +m2
3) + 3F3m1m2m3

+
[
F4,1(m2

1m
2
2 +m2

1m
2
3 +m2

2m
2
3) + F4,2(m2

1 +m2
2 +m2

3)2
]

+ · · · .
(3.8)

From (3.4), we see that n derivatives of F (ma) computes integrated n-point functions of

J(~x) and K(~x) on S3, possibly supplemented by integrated lower-point functions coming

from the O(m2) terms in (3.4). For n = 2, the second derivative of F gives only the

integrated two-point function of iJ + K because in this case the O(m2) terms omitted

from (3.4) could only contribute an integrated one-point function, which vanishes in any

CFT. From (3.3), transformed to S3, the two-derivative of F is evaluated to8 [26]

∂2F

∂m2
a

=
π2

2
τ =

π2

32
cT , (3.9)

for any a = 1, 2, 3. We would like to perform a similar calculation in the n = 4 case,

first ignoring the O(m2) contributions in (3.4). (We will return to these contributions in

section 3.3.) Because our final goal is to determine the integrated four-point functions

of the N = 8 operators SIJ and PAB, we must first relate SIJ and PAB to the N = 2

operators Ja and Ka.

The operators Ja, Ka, jaµ all arise from the stress tensor multiplet of the N = 8 SCFT,

in particular from certain components of the 35c scalars, 35s pseudo-scalars, and of the

so(8) R-symmetry current, respectively. Indeed, under the subalgebra su(4) ⊕ u(1)R ⊂
so(8)R defined by the decompositions of the fundamental representations9

8v → 60 ⊕ 11 ⊕ 1−1 ,

8c → 4 1
2
⊕ 4− 1

2
,

8s → 4− 1
2
⊕ 4 1

2
,

(3.10)

8We have ∂2F
∂m2

a
=
∫
d3~x d3~y

√
g(x)

√
g(y) [〈Ja(~x)Ja(~y)〉 − 〈Ka(~x)Ka(~y)〉]. We can plug in (3.3) converted

to S3 and use
∫
d3~x d3~y

√
g(x)

√
g(y) Ω(~x)−∆Ω(~y)−∆

|~x−~y|2∆ =
42−∆π7/2Γ( 3

2
−∆)

Γ(3−∆)
[38].

9In our convention, the supercharges of the N = 8 theory transform in 8v. This fixes our embedding of

su(4)⊕u(1) ⊂ so(8) if we wish to preserve only N = 2 supersymmetry. The 8c and 8s must then decompose

as indicated, or the decompositions may be flipped. We choose the convention in which the decompositions

are as in (3.10).
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the components of the stress tensor multiplet decompose as:

SIJ : 35c → 101 ⊕ 10−1 ⊕ 150 ,

χαAI : 56v → 100 ⊕ 100 ⊕ 151 ⊕ 15−1 ⊕ 60 ,

PAB : 35s → 10−1 ⊕ 101 ⊕ 150 ,

jµab : 28→ 150 ⊕ 61 ⊕ 6−1 ⊕ 10 ,

ψµαa : 8v → 60 ⊕ 11 ⊕ 1−1 ,

Tµν : 1→ 10 ,

(3.11)

with operators in the same su(4) representation belonging to the same N = 2 superconfor-

mal multiplet. Therefore, the N = 2 flavor current multiplet consists of those components

of SIJ , χαAI , PAB, and jµab that transform in the 15 of su(4) in the decomposition (3.11).

We can be more concrete. Given a generator T of su(4) presented as a 4× 4 hermitian

traceless matrix as, for instance, the generators in (3.7), we can ask which linear combi-

nation of the SIJ and which linear combination of the PAB correspond to it. Let us first

focus on SIJ . First, notice that the decomposition 8c → 4 1
2
⊕ 4− 1

2
implies that if in the

fundamental representation of su(4),

T = i(A+ iB) (3.12)

then the same generator acting in the 8c irrep of so(8) can be taken to be equal to

T̃ = i (A⊗ 1 +B ⊗ ε) , (3.13)

where ε ≡ iσ2.10 Using the same ingredients, one can also construct a symmetric traceless

matrix T35c representing the generator T inside the 35c:

T35c = A⊗ ε−B ⊗ 1 , (3.16)

which satisfies [T̃ a, T b35c ] = ifabcT c35c , so that T35c indeed corresponds to states in the 15

of su(4). For the Cartan elements in (3.7), we have

T 1
35c =

1

2
diag {1, 1, 1, 1,−1,−1,−1,−1} ,

T 2
35c =

1

2
diag {1, 1,−1,−1, 1, 1,−1,−1} ,

T 3
35c =

1

2
diag {1, 1,−1,−1,−1,−1, 1, 1} .

(3.17)

10We can check this claim as follows. Since T is hermitian, then A is an anti-symmetric real matrix and B

is a symmetric real matrix, which implies that the generator T̃ is also hermitian. Then, if [T a, T b] = ifabcT c,

we can immediately infer that

[Aa, Ab]− [Ba, Bb] = fabcAc , [Aa, Bb] + [Ba, Ab] = fabcBc , (3.14)

which can be used to check that the T̃ obey the right commutation relations:

[T̃ a, T̃ b] = −
(

[Aa, Ab]− [Ba, Bb]
)
⊗ 1−

(
[Aa, Bb] + [Ba, Ab]

)
⊗ ε = ifabcT̃ c . (3.15)
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This implies that Ja ∝ (T a35c)
IJSIJ are given by

J1 = NJ [S11 + S22 + S33 + S44 − S55 − S66 − S77 − S88] ,

J2 = NJ [S11 + S22 − S33 − S44 + S55 + S66 − S77 − S88] ,

J3 = NJ [S11 + S22 − S33 − S44 − S55 − S66 + S77 + S88] ,

(3.18)

where the normalization constant NJ is determined to be

NJ =

√
τ

128π2
=

√
cT

211π2
(3.19)

such that the normalization (3.3) is obeyed.

A similar procedure can be repeated to give Ka, but we have to be careful that the su(4)

generators written as 8 × 8 matrices in the 8s irrep are consistent with the symbols EaIA
defined in the previous section. One can check that this is indeed the case for our choice

of EaIA, and that the su(4) generators T in (3.12) are also represented by the T̃ in (3.13)

in the 8s representation.11 Then, by analogy with (3.18), the three Ka corresponding

to (3.7) are

K1 =
√

2NJ [P11 + P22 + P33 + P44 − P55 − P66 − P77 − P88] ,

K2 =
√

2NJ [P11 + P22 − P33 − P44 + P55 + P66 − P77 − P88] ,

K3 =
√

2NJ [P11 + P22 − P33 − P44 − P55 − P66 + P77 + P88] ,

(3.20)

where the normalization was chosen such that (3.3) is obeyed.

Having determined the relations between (Ja,Ka) and (SIJ , PAB) in eqs. (3.18)

and (3.20), as well as the way (Ja,Ka) appear in the mass deformed theory (eq. (3.4)),

we can then relate the various mass derivatives of the S3 free energy to integrated 4-point

correlators of SIJ and PAB. The non-zero derivatives are of the form

∂4F

∂m2
a∂m

2
b

= −N4
J

(
skabI

3
1,1 [Sconn

k (U, V )] + pkabI
3
2,2 [Pconn

k (U, V )] + rkabI
3
1,2 [Rconn

k (U, V )]
)

(3.21)

where a, b = 1, 2, 3, for now on we set r = 1, and we define the integrated quantity

Id∆A,∆B
[G] =

∫ ( 4∏
i=1

dd~xi

)
[Ω(~x1)Ω(~x2)]d−∆A [Ω(~x3)Ω(~x4)]d−∆B

x2∆A
12 x2∆B

34

G(U, V ) , (3.22)

which computes a four point function 〈AABB〉 integrated over Sd for any dimension d. If

a = b, then the coefficients skab, p
k
ab, r

k
ab are

skaa =
pkaa
4

=
(

64 64 64 8 8 8
)
, rkaa =

(
−768 −84 0

)
, (3.23)

while if a 6= b, then

skab =
pkab
4

=
(

64 0 0 8 8 8
)
, rkab =

(
−256 4 0

)
. (3.24)

11What needs to be checked is that T̃ IJ = 4EaIAEa
J
BT̃

AB , where T̃ IJ and T̃AB are components of the

matrices (3.13).
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3.2 Integrated four point function

Let us now evaluate more explicitly the quantity Id∆A,∆B
defined in (3.22). While we are

mainly interested in the case d = 3 and ∆A,B = 1 or 2, we nevertheless keep d, ∆A, and

∆B completely general in this section. Eq. (3.22) contains 4d integrals as written, but

using conformal symmetry one can perform 4d − 2 of them,12 as follows. The first step

is to notice that the integral (3.22) is rotationally-invariant on Sd, so one can rotate the

point ~x4 to any fixed point of our choosing ~x4 = ~x4∗, using∫
dd~x4 Ω(~x4)d f

(
[Ω(~x4)Ω(~xi)]

1
2 (~x4 − ~xi)

)
= Vol(Sd)f

(
[Ω(~x4∗)Ω(~xi)]

1
2 (~x4∗ − ~xi)

)
,

(3.25)

where Vol(Sd) = 2π
d+1

2

Γ[ d+1
2 ]

. A convenient choice is |~x4∗| =∞, which gives

Id∆A,∆B
[G] =

Vol(Sd)

4∆B

∫ ( 3∏
i=1

dd~xi

)
[Ω(~x1)Ω(~x2)]d−∆A [Ω(~x3)]d−∆B

x2∆A
12

G
(
x2

12

x2
13

,
x2

23

x2
13

)
. (3.26)

We can then translate ~x1 → ~x1 + ~x3 and ~x2 → ~x2 + ~x3, and write (3.26) as

Id∆A,∆B
[G] =

Vol(Sd)

4∆B

∫ ( 3∏
i=1

dd~xi

)
[Ω(~x1 + ~x3)Ω(~x2 + ~x3)]d−∆A [Ω(~x3)]d−∆B

x2∆A
12

G
(
x2

12

x2
1

,
x2

2

x2
1

)
.

(3.27)

Note that the ~x3 dependence is only in the prefactor now. We can then use the

remaining rotational symmetry to set ~x1 and ~x2 to ~x1∗ = (r1, 0, . . . , 0) and ~x2∗ =

(r2 cos θ, r2 sin θ, 0, . . . , 0), respectively:

Id∆A,∆B
[G] =

Vol(Sd) Vol(Sd−1) Vol(Sd−2)

4∆B

∫
dd~x3 dr1dr2 dθ r

d−1
1 rd−1

2 sind−2 θ

× [Ω(~x1∗ + ~x3)Ω(~x2∗ + ~x3)]d−∆A [Ω(~x3)]d−∆B

|~x1∗ − ~x2∗|2∆A
G
(
r2

1 + r2
2 − 2r1r2 cos θ

r2
1

,
r2

2

r2
1

)
.

(3.28)

Then we can change variables from (r1, r2, ~x3) to (z0, r, ~z) defined through r1 = 2/z0,

r2 = 2r/z0, ~x3 = 2~z/z0, after which the integral takes the form

Id∆A,∆B
[G] =

Vol(Sd) Vol(Sd−1) Vol(Sd−2)

22∆A+2∆B−3d

∫
dr dθ rd−1 sind−2 θ

G
(
1 + r2 − 2r cos θ, r2

)
(1 + r2 − 2r cos θ)∆A

× lim
~x′4→∞

[∣∣~x′4∣∣2(d−∆B)
∫
dd~zdz0

zd+1
0

Gd−∆A
B∂ (z, ~x′1)Gd−∆A

B∂ (z, ~x′2)Gd−∆B
B∂ (z, ~x′3)Gd−∆B

B∂ (z, ~x′4)

]
,

~x′1 = (1, 0, . . . , 0) , ~x′2 = (r cos θ, r sin θ, 0, . . . , 0) , ~x′3 = (0, . . . , 0) ,

(3.29)

12For d = 2, 3 these correspond to the (d+1)(d+2)
2

generators of the conformal group SO(d, 2), while

for d ≥ 4, after we have used conformal transformation to set one point to the origin and the other to

infinity, there is a nontrivial stability group SO(d − 2) so that the number of integrals we can perform is
(d+1)(d+2)

2
− (d−3)(d−2)

2
= 4d− 2.
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where z = (z0, ~z) and GrB∂(z, ~x) is the AdS bulk-to-boundary propagator defined in (C.1).

The quantity in square brackets in (3.29) can be written in terms of the D̄ function described

in appendix C, so that we get

Id∆A,∆B
[G] =

Vol(Sd) Vol(Sd−1) Vol(Sd−2)π
d
2 Γ(3d

2 −∆A −∆B)

22∆A+2∆B−3d+1Γ(d−∆A)2Γ(d−∆B)2

×
∫
dr dθ rd−1 sind−2 θ

[
D̄d−∆A,d−∆A,d−∆B ,d−∆B

(U, V )
G(U, V )

U∆A

]
U=1+r2−2r cos θ

V=r2

.

(3.30)

Note that this formula is symmetric under interchanging ∆A ↔ ∆B, because the D̄ func-

tions obey the relation D̄aabb(U, V ) = U b−aD̄bbaa(U, V ) [39]. Combined with (3.21), the

formula (3.30) allows for an explicit evaluation of the integrated four-point functions pro-

vided that we know the functions of U and V appearing in (2.3) and (2.6). We will

determine these functions in the 1/cT expansion in the next section.

3.3 Order m2 terms

We derived the formula (3.21) under the assumption that there are no O(m2) terms in (3.4).

However, if there are ∆ = 1 scalar operators O present, then an m2O term is possible

in (3.4) (and generally present). Such a term would contribute additively to (3.21).

3.3.1 Order m2 terms in the free theory

The first example where there are O(m2) terms accompanying the mass deformation (3.4)

is a free N = 8 theory. Such a theory has a presentation in terms in terms of eight real

scalars fields XI and eight Majorana fermions ψA. Equivalently, we can group the eight

real scalars into four complex combinations Zi = X2i−1+iX2i√
2

and similarly for the fermions,

so that the free theory action is

Sfree =

∫
d3x ∂µZi∂

µZ̄i + (fermions) . (3.31)

In this case we have

J1 =
1

2

(
|Z1|2 + |Z2|2 − |Z3|2 − |Z4|2

)
,

J2 =
1

2

(
|Z1|2 − |Z2|2 + |Z3|2 − |Z4|2

)
,

J3 =
1

2

(
|Z1|2 − |Z2|2 − |Z3|2 + |Z4|2

)
,

(3.32)

and indeed from 〈Zi(~x)Z̄j(0)〉 =
δji

4π|~x| we derive 〈Ja(~x)Jb(0)〉 = δab

16π2x2 , in agreement

with (3.3), (3.5), and cT = 16. The mass deformation (3.4) implies that the scalars Zi have

masses Mi given by

Mi =

(
m1 +m2 +m3

2
,
m1 −m2 −m3

2
,
−m1 +m2 −m3

2
,
−m1 −m2 +m3

2

)
. (3.33)
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The real mass deformation on S3 has both a linear and a quadratic term in Mi, namely

Smass =

∫
d3x
√
g

4∑
i=1

(
iMi |Zi|2 +M2

i |Zi|
2
)

+ (fermions) , (3.34)

and so we have13 [31]

Smass =

∫
d3x
√
g
[

(im1 +m2m3) J1 + (im2 +m1m3) J2 + (im3 +m1m2) J3

+ (m2
1 +m2

2 +m2
3)OS

]
+ (fermions) ,

(3.35)

where

OS ≡
1

4

(
|Z1|2 + |Z2|2 + |Z3|2 + |Z4|2

)
(3.36)

is an su(4) singlet. Thus

∂4F

∂m2
a∂m

2
b

= (3.21) −

{
12
∫

(〈OSOS〉+ 〈OSJaJa〉) if a = b ,

4
∫ (
〈OSOS〉+ 〈OSJaJa〉+ 1

2〈J
cJc〉+ 〈JaJbJc〉

)
if a 6= b ,

(3.37)

where c 6= a and c 6= b. We can then use [38]∫
d3~x d3~y

√
g(~x)

√
g(~y)

Ω−1(~x)Ω−1(~y)

|~x− ~y|2
= 4π4 ,∫

d3~x d3~y d3~z
√
g(~x)

√
g(~y)

√
g(~z)

Ω−1(~x)Ω−1(~y)Ω−1(~z)

|~x− ~y| |~x− ~z| |~y − ~z|
= 16π5 ,

(3.38)

as well as the correlators

〈Jc(~x)Jc(~y)〉 = 4〈OS(~x)OS(~y)〉 =
1

(4π)2

Ω−1(~x)Ω−1(~y)

|~x− ~y|2
,

〈Ja(~x)Jb(~y)Jc(~z)〉 = 2〈OS(~x)Ja(~y)Ja(~z)〉 =
1

(4π)3

Ω−1(~x)Ω−1(~y)Ω−1(~z)

|~x− ~y| |~x− ~z| |~y − ~z|

(3.39)

that hold whenever a, b, c are all distinct, to find

∂4F

∂m2
a∂m

2
b

= (3.21) − 9π2

4
(3.40)

regardless of whether a = b or a 6= b. The O(m2) terms in (3.4) thus contribute −9π2

4 to

the fourth mass derivatives (3.40).

13This expression can also be written as

Smass =

∫
d3x
√
g tr

[
imJ +m2J +m2OS

]
+ (fermions)

in a manifestly su(4)-invariant form.
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For completeness, let us note that in the free theory, we have Rconn
k = 0 and

Sconn
k =

(
0 0 0 4U√

V
4
√

U
V 4
√
U
)
,

Pconn
k =

(
0 0 0 U2

V 3/2 (U − V − 1) −
√
U

V 3/2 (U + V − 1)
√
U(V − U − 1)

)
.

(3.41)

The integrals in (3.21) can be performed analytically with the result

(3.21) = −π
4

4
+

9π2

4
. (3.42)

Combining this expression with (3.40), we find that

∂4F

∂m2
a∂m

2
b

= −π
4

4
. (3.43)

This result is indeed correct and serves as a check of our formalism. Indeed, in a free theory,

the mass-deformed S3 free energy can be computed by directly evaluating the required

Gaussian integrals. As an alternative, one can use the supersymmetric localization result

of [25] that gives

F = −
4∑
i=1

`

(
1

2
+Mi

)
, (3.44)

with the function `(z) defined in (1.3) of [25]. It is straightforward to see that (3.44)

implies (3.43) for any a, b = 1, 2, 3.

3.3.2 Order m2 terms at strong coupling

In a strongly coupled CFT with a holographic dual, as will be the case we study in the next

section, one also expects a term of order m2 similar to (3.35) to supplement (3.4). One

difference is that in a generic strongly coupled CFT there is no operator OS of dimension 1

so we can drop the contributions involving OS from (3.37). In addition, the correlators

〈Jc(~x)Jc(~y)〉 and 〈Ja(~x)Jb(~y)Jc(~z)〉 are cT /16 times larger than in the free theory, so (3.40)

becomes

∂4F

∂m2
a∂m

2
b

= (3.21) −

{
0 if a = b ,
3π2

64 cT if a 6= b .
(3.45)

One notable feature of this result is that while both ∂4F
∂m2

a∂m
2
b

and (3.21) have non-trivial

expansions in 1/cT , the last term of (3.45) is simply proportional to cT . For this reason,

it will not play any role in the next section.
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4 From ABJM to the 11d S-matrix

We will now apply the machinery of the previous section to fix the coefficients B4
i

and B6
i of the c

− 5
3

T and c
− 19

9
T terms in the large cT expansion of the Mellin amplitude

MSSSS (1.3) (Mellin amplitudes are reviewed in appendix D), which in the flat space

limit yield the R4 and D4R4 terms, respectively, in the 11d S-matrix. Given a correlator

〈O1(~x1)O2(~x2)O3(~x3)O4(~x4)〉 of operators in the stress tensor multiplet of ABJM theory

with the corresponding Mellin amplitude MO1O2O3O4(s, t), then using [40] we can deduce

that the flat space four supergraviton scattering amplitude with momenta restricted to 4

dimensions is (up to an overall ∆i-independent numerical factor) [15]:

A(ηi, s, t) = Γ

(
1

2

∑
i

∆i −
3

2

)[∫
S7

d7x
√
g

4∏
i=1

ΨOiηi (~n)

]

× lim
L→∞

(2L)7

∫ c+i∞

c−i∞
dα eαα

3
2
− 1

2

∑
i ∆iMO1O2O3O4

(
L2

2α
s,
L2

2α
t

)
.

(4.1)

Here ηi are the polarizations of the supergravitons, and the factor in the square brackets

is a form factor involving the wavefunctions ΨOiηi (~n) of the modes dual to the operators Oi
in the internal unit S7. The integration contour in (4.1) must have c > 0. From (4.1) as

well as the leading order AdS/CFT relation

cT =
64

3π

√
2kN3/2 + · · · = 211

3πk

L9

`9p
+ · · · , (4.2)

it can be seen that at order 1/cnT it is only the terms that at large s and t scale as satb with

a+b = (9n− 7)/2 that contribute to (4.1). (The AdS radius L drops out for terms with this

growth; terms with slower growth come suppressed in L and drop out after taking L→∞.)

They contribute a homogeneous term of order (9n − 7)/2 in the Mandelstam invariants

multiplied by `9n−7
p . Because the leading supergravity term is proportional to c−1

T (and it

thus gives a linear scattering amplitude), the R4 contribution to M will scale as c
− 5

3
T (and

it gives a quartic scattering amplitude), while the potential D4R4 contribution that we

want to show is absent scales as c
− 19

9
T (and would give a sextic scattering amplitude).

We will now derive the c−1
T , c

− 5
3

T , and c
− 19

9
T Mellin amplitudes for MPPPP and MSSPP

from MSSSS . For c
− 5

3
T , and c

− 19
9

T , we then convert these expressions to position space

and integrate them. Finally, we can compare these integrated 4-point functions to the

appropriate derivatives of F (m1,m2) in ABJM theory, which can been computed to all

order in cT , to recover the known values of B4
i and show the new result B6

i = 0.

4.1 Mellin amplitudes for 〈SSSS〉, 〈PPPP 〉, and 〈SSPP 〉

As reviewed in the Introduction, superconformal symmetry fixes the c−1
T , c

− 5
3

T , and c
− 19

9
T

terms MSSSS
(1) , MSSSS

(4) , and MSSSS
(6) , respectively, in MSSSS to take the following form:

MSSSS
(1) (s, t) = B1

1M
1
S , MSSSS

(4) (s, t) = B4
4M

4
S +B4

1M
1
S ,

MSSSS
(6) (s, t) = B6

6M
6
S +B6

4M
4
S +B6

1M
1
S ,

(4.3)
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where Mp
S are asymptotically degree p polynomials in s, t that we can write in the ba-

sis (2.3) as

Mp
S(s, t) = Y 2

12Y
2

34S̃
p
1 + Y 2

13Y
2

24S̃
p
2 + Y 2

14Y
2

23S̃
p
3

+ Y13Y14Y23Y24S̃p4 + Y12Y14Y23Y34S̃p5 + Y12Y13Y24Y34S̃p6 ,
(4.4)

where S̃pi are related under crossing as

S̃p2 (s, t) = Sp1 (4− s− t, t) , S̃p3 (s, t) = Sp1 (t, s) ,

S̃p5 (s, t) = Sp4 (4− s− t, t) , S̃p6 (s, t) = Sp4 (t, s) .
(4.5)

For p = 1, [41] computed M1
S as an infinite sum of poles, whose explicit formula we

relegate to appendix E. In the large s, t limit this amplitude is normalized as

M1
S,asymp ≡M1

S −→
s,t→∞

1

stu
(tuY12Y34 + stY13Y24 + suY14Y23)2 , (4.6)

where recall that u = −s− t in the large s, t limit. The asymptotic form M1
S,asymp of this

AdS4 Mellin amplitude was derived in [15] from the tree amplitude in 4D ungauged N = 8

supergravity [3, 4, 42]. M1
S includes the contribution of the Mellin space conformal blocks

for the stress tensor multiplet, which must be proportional to the OPE coefficient λ2
Stress.

On general grounds λ2
Stress ∝ c

−1
T , so in our normalization we have [15, 41]

B1
1 =

32

π2cT
, Bp

1 = 0 for p > 1 . (4.7)

For p > 1, Mp
S are maximum degree p polynomials in s, t, u. These terms were com-

puted explicitly in [15] for p ≤ 10. For instance, for p = 4 we have

S̃4
1 = s2t2 − 34s2t

7
+

40s2

7
+ 2st3− 90st2

7
+

932st

35
− 624s

35
+ t4−8t3 +

116t2

5
− 144t

5
+

64

5
,

S̃4
4 = −2s3t− 36s3

7
− 2s2t2 +

124s2t

7
+

1152s2

35
+

68st2

7
− 352st

7
− 464s

7
− 80t2

7
+

320t

7

+
1472

35
, (4.8)

where the other S̃4
i are given by crossing (4.5). For M6

S , we relegate the explicit terms to

appendix E. In the large s, t limit these amplitudes are normalized as

M4
S −→
s,t→∞

stuM1
S,asymp , M6

S −→
s,t→∞

stu(s2 + t2 + u2)M1
S,asymp , (4.9)

where M1
S,asymp was given in (4.6). Note that stu and stu(s2 +t2 +u2) are the only crossing

symmetric polynomials in s, t, u of their respective degree.

We can also write the Mellin amplitudes for 〈PPPP 〉 and 〈SSPP 〉 in the large cT
expansion as (4.3), where the corresponding polynomial amplitudes Mp

P and Mp
R can be

written in the same basis as (2.3) and (2.6):

Mp
P(s, t) =X2

12X
2
34P̃

p
1 +X2

13X
2
24P̃

p
2 +X2

14X
2
23P̃

p
3

+X13X14Y23Y24P̃p4 +X12X14X23X34P̃p5 +X12X13Y24Y34P̃p6 ,
Mp
R(s, t) =Y 2

12X
2
34R̃

p
1 + [(Y1 ◦ Y2) · (X3 ◦X4)]2 R̃p2 + (Y1 ◦ Y2) · (X3 ◦X4)Y12X34R̃p3 ,

(4.10)
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where P̃pi are related under crossing as

P̃p2 (s, t) = Pp1 (8− s− t, t) , P̃p3 (s, t) = Pp1 (t, s) ,

P̃p5 (s, t) = Pp4 (8− s− t, t) , P̃p6 (s, t) = Pp4 (t, s) .
(4.11)

In section 2, we showed in position space that the components Pi and Ri of 〈PPPP 〉
and 〈SSPP 〉 are related to Si according to the differential operators DRi (U, V, ∂U , ∂V ) and

DPij(U, V, ∂U , ∂V ) (2.9), which are rational functions of U, V and degree 2 and 4 in ∂U , ∂V ,

respectively. From the definition (D.4) we can relate their Mellin amplitudes as

R̃i(s, t) =
Γ
[
1− s

2

]2
Γ
[
1− t

2

]2
Γ
[
s+t
2 − 1

]2
Γ
[
1− s

2

]
Γ
[
2− s

2

]
Γ
[

3
2 −

t
2

]2
Γ
[
s+t
2 −

3
2

]2 V̂ 1
2DRi (U, V, ∂U , ∂V )S̃1(s, t) ,

P̃i(s, t) =
Γ
[
1− s

2

]2
Γ
[
1− t

2

]2
Γ
[
s+t
2 − 1

]2
Γ
[
2− s

2

]2
Γ
[
2− t

2

]2
Γ
[
s+t
2 − 2

]2 V̂DPij(U, V, ∂U , ∂V )S̃j(s, t) ,

(4.12)

where the hatted operators act on S̃i(s, t) as

∂̂mU S̃i(s, t) =
Γ
[
s
2 + 1

]
Γ
[
s
2 −m+ 1

] Û−mS̃i(s, t) ,
∂̂mV S̃i(s, t) =

Γ
[
t
2

]
Γ
[
t
2 −m

] V̂ −mS̃i(s, t) ,
ÛmV nS̃i(s, t) = S̃i(s− 2m, t− 2n)

(
1− s

2

)2

m

(
1− t

2

)2

n

(
s+ t

2
− 1

)2

−m−n
.

(4.13)

Using these formulae and the explicit expressions for Spi for p = 1, 4, 6 in (E.1), (4.8),

and (E.4), respectively, we can now derive Ppi and Rpi . For instance, for p = 4 we find

P̃4
1 = 99s2t2 − 594s2t+ 904s2 + 198st3 − 2178st2 + 7812st− 64720s

7
+ 99t4

− 1584t3 + 9396t2 − 24480t+
829632

35
,

P̃4
4 =− 198s3t− 108s3 − 198s2t2 + 2772s2t+ 536s2 + 1188st2 − 11312st− 7968s

7

− 1808t2 + 14464t+
56576

35
,

(4.14)

where the other P̃4
i are given by crossing (4.11), while for R̃4

i we find

R̃4
1 =

9s3t

4
− 19s3

4
+

45s2t2

4
− 41s2t+

1041s2

28
+ 18st3 − 271st2

2
+

2215st

7

− 16673s

70
+ 9t4 − 108t3 +

3328t2

7
− 6360t

7
+

22569

35
,

R̃4
2 = 144s3t− 304s3 + 144s2t2 − 1600s2t+ 2736s2 − 736st2 + 5312st− 277792s

35

+ 896t2 − 5376t+
257664

35
,

R̃4
3 =− 36s3t+ 76s3 − 108s2t2 + 528s2t− 4476s2

7
− 72st3 + 480st2 − 6936st

7

+
21136s

35
− 112t3 + 1008t2 − 105328t

35
+

104304

35
.

(4.15)
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The expressions for P̃pi and R̃pi for p = 1, 6 are more complicated and are relegated to

appendix E. The large s, t limit of the p = 1 supergravity term is

M1
P,asymp ≡M1

P(s, t) −→
s,t→∞

15
1

stu
(tuX12X34 + stX13X24 + suX14X23)2 ,

M1
R,asymp ≡M1

R(s, t) −→
s,t→∞

12(t− u)(Y1 ◦ Y2) · (X3 ◦X4)Y12X34

− 3

4

(t− u)2

s
Y 2

12X
2
34 − 48s [(Y1 ◦ Y2) · (X3 ◦X4)]2 .

(4.16)

For p = 4, 6, the large s, t Mellin amplitudes can then be written in terms of the asymptotic

p = 1 terms as

M4
P(s, t) −→

s,t→∞

99

15
stuM1

P,asymp , M6
P(s, t) −→

s,t→∞

195

15
stu(s2 + t2 + u2)M1

P,asymp ,

M4
R(s, t) −→

s,t→∞
3stuM1

R,asymp , M6
R(s, t) −→

s,t→∞

13

3
stu(s2 + t2 + u2)M1

R,asymp .

(4.17)

Just as we saw with the asymptotic Mp
S in (4.9), the asymptotic Mp

S and Mp
R take the

form of a universal polarization factor, which can be read off from the supergravity term,

multiplied by the unique crossing symmetric polynomial in s, t of the required degree. This

is consistent with the flat space interpretation as an M-theory S-matrix with a universal po-

larization term multiplied by polynomials in s, t for each order, as shown in (1.1) and (1.2).

Note that both Mp
P and Mp

R can be use in the flat space formula (4.1), as was originally

discussed for Mp
S in [15]. The numerical factors in (4.17) relative to (4.9) are compensated

by the α integral in (4.1) that depends on the dimensions of the external operators.

4.2 From Mellin to position space

To compute the integrated correlators, we need the position space expressions Spi (U, V ),

Ppi (U, V ), and RpI(U, V ) of S̃pi (s, t), P̃pi (s, t), and R̃pI(s, t) for p = 4, 6. Since the latter

expressions are polynomials in s, t, we can rewrite them as finite sums of the function

D̄r1,r2,r3,r4(U, V ) described in appendix C using its Mellin transform D̄SSSS
r1,r2,r3,r4(s, t) (D.6),

which is a polynomial in s, t after being multiplied by an appropriate power of U . For

instance, for p = 4 we find

S4
1 = U

[
−1536

35
D̄2,1,1,2 +

1728

35
D̄2,1,2,3 −

64

7
D̄2,1,3,4 +

7488

35
D̄3,1,1,3

−960

7
D̄3,1,2,4 + 16D̄3,1,3,5 − 128D̄4,1,1,4 + 32D̄4,1,2,5 + 16D̄5,1,1,5

]
,

S4
4 = U

[
1536

35
D̄1,1,2,2 −

6912

35
D̄1,1,3,3 +

512

7
D̄1,1,4,4 −

384

7
D̄2,1,2,3 +

1024

7
D̄2,1,3,4

−32D̄2,1,4,5 +
128

7
D̄3,1,2,4 − 32UD̄3,1,3,5

]
,

(4.18)
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and

P4
1 = U2

[
41472

35
D̄2,2,2,2 −

13248

7
D̄2,2,3,3 + 448D̄2,2,4,4 − 22464D̄3,2,2,3

+ 20160D̄3,2,3,4 − 3168D̄3,2,4,5 + 39168D̄4,2,2,4 − 19008D̄4,2,3,5

+1584D̄4,2,4,6 − 15840D̄5,2,2,5 + 3168D̄5,2,3,6 + 1584D̄6,2,2,6

]
,

P4
4 = U2

[
−44544

35
D̄2,2,2,2 +

157056

7
D̄2,2,3,3 − 30976D̄2,2,4,4 + 7200D̄2,2,5,5

+ 2688D̄3,2,2,3 − 26240D̄3,2,3,4 + 22176D̄3,2,4,5 − 3168D̄3,2,5,6

−896D̄4,2,2,4 + 6336D̄4,2,3,5 − 3168D̄4,2,4,6

]
,

(4.19)

and

R4
1 = U2

[
1536

35
D̄2,2,1,1 −

8832

35
D̄2,2,2,2 +

1104

7
D̄2,2,3,3 − 16D̄2,2,4,4 −

6912

7
D̄3,2,1,2

+
13200

7
D̄3,2,2,3 − 608D̄3,2,3,4 + 36D̄3,2,4,5 +

15552

7
D̄4,2,1,3 − 1616D̄4,2,2,4

+180U2D̄4,2,3,5 − 1152D̄5,2,1,4 + 288D̄5,2,2,5 + 144D̄6,2,1,5

]
,

R4
2 = U2

[
−24576

35
D̄2,2,2,2 + 3072U2D̄2,2,3,3 − 1024D̄2,2,4,4 + 3072D̄3,2,2,3

−10240D̄3,2,3,4 + 2304U2D̄3,2,4,5 − 1024D̄4,2,2,4 + 2304D̄4,2,3,5

]
,

R4
3 = U2

[
−12288

35
D̄2,2,1,1 +

73728

35
D̄2,2,2,2 −

11520

7
D̄2,2,3,3 + 256D̄2,2,4,4

+
239616

35
D̄3,2,1,2 −

103680

7
D̄3,2,2,3 + 6144D̄3,2,3,4 − 576D̄3,2,4,5

−9216D̄4,2,1,3 + 9984D̄4,2,2,4 − 1728D̄4,2,3,5 + 2048D̄5,2,1,4 − 1152D̄5,2,2,5

]
,

(4.20)

where the other S4
i and P4

i are related by crossing (2.5) using (C.7). The analogous

expressions for p = 6 are given in appendix E. Note that the p = 1 Mellin amplitude is

an infinite sum of poles in s, t and so would correspond to an infinite sum of D̄’s, which is

why we do not consider this term in the rest of the paper.

4.3 Integrals of 〈SSSS〉, 〈PPPP 〉, and 〈SSPP 〉

We now compute the S3 integrals of the c
− 5

3
T and c

− 19
9

T terms in 〈SSSS〉, 〈PPPP 〉, and

〈SSPP 〉 in position space, using the expressions derived in the previous section. Recall

that in section 3.2 we reduced the 12-dimensional integral over each 3-component ~xi to

a 2-dimensional integral over r and θ, where U = 1 + r2 − 2r cos θ and V = r2, and the

measure was proportional to U−1D̄1,1,1,1(U, V ), U−2D̄2,2,2,2(U, V ), and U−2D̄1,1,2,2(U, V )

for 〈SSSS〉, 〈PPPP 〉, and 〈SSPP 〉. The powers of U in the former expressions exactly

cancel those in the latter, as given in section 4.2, so that our integral is over a sum of

pairs of D̄ functions. We can then plug in the explicit expressions for the D̄ functions

using the algorithm in appendix C, perform the integral numerically to high precision for

each component Spi , Ppi , and RpI , and assemble these ingredients into the formula (3.21)
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for derivatives of the free energy. We find that our numerical results are consistent with

the analytic expressions

− 1

c2
T

∂4F

∂m4
a

=
1

c
5
3
T

B4
4

3π4

560
+

1

c
19
9
T

[
B4

6

3π4

560
−B6

6

27π4

616

]
,

− 1

c2
T

∂4F

∂m2
1∂m

2
2

=
1

c
5
3
T

B4
4

π4

1120
+

1

c
19
9
T

[
B4

6

π4

1120
−B6

6

13π4

1848

]
.

(4.21)

4.4 Localization for F (m1,m2) in ABJM

So far the discussion has applied to any N = 8 SCFT with a large cT expansion. We will

now restrict to ABJMN,k for k = 1, 2 using the all orders in 1/cT results for F (m1,m2) for

this theory.

For ABJMN,k, the mass deformed partition function has been computed from local-

ization [30], and takes the form

ZABJMN,k
=

1

N !2

∫
dNλ dNµ eiπk[

∑
i λ

2
i−

∑
j µ

2
j ]

×
∏
i<j

(
4 sinh2 [π(λi − λj)]

)∏
i<j

(
4 sinh2 [π(µi − µj)]

)∏
i,j (4 cosh [π(λi − µj +m1/2 +m2/2)] cosh [π(µi−λj +m1/2−m2/2)])

.

(4.22)

Using the Fermi gas technique [32, 33], this quantity was computed to all orders in 1/N :

ZABJMN,k
≈ eAC−

1
3 Ai

[
C−

1
3 (N −B)

]
,

C =
2

π2k(1 +m2
+)(1 +m2

−)
, B =

π2C

3
− 1

6k

[
1

1 +m2
+

+
1

1 +m2
−

]
+

k

24
,

A =
A[k(1 + im+)] +A[k(1− im+)] +A[k(1 + im−)] +A[k(1− im−)]

4
,

(4.23)

where m± ≡ m1 ±m2, and the function A is given by

A(k) =
2ζ(3)

π2k

(
1− k3

16

)
+
k2

π2

∫ ∞
0

dx
x

ekx − 1
log
(
1− e−2x

)
, (4.24)

with derivatives

A′′(1) =
1

6
+
π2

32
, A′′(2) =

1

24
,

A′′′′(1) = 1 +
4π2

5
− π4

32
, A′′′′(2) =

1

16
+
π2

80
.

(4.25)

Using (4.22), (3.9), and (3.21) we can expand both cT and ∂4F (m)
∂m2

a∂m
2
b

to all orders in 1/N in

ABJMN,k for k = 1, 2, and then write ∂4F (m)
∂m2

a∂m
2
b

for a, b = 1, 2 as an all orders expansion in
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1/cT . For k = 2 we find

− 1

c2
T

∂4FABJMN,2

∂m4
a

=
(
12π4

) 1
3

1

c
5
3
T

+

(
π2

5
− 5

)
1

c2
T

− 28

(
π2

12

) 1
3 1

c
7
3
T

+O

(
c
− 8

3
T

)
,

− 1

c2
T

∂4FABJMN,2

∂m2
1∂m

2
2

=
π2

8

1

cT
+

(
π4

18

) 1
3 1

c
5
3
T

+

(
π2

5
− 5

3

)
1

c2
T

− 20

3

(
π2

12

) 1
3 1

c
7
3
T

+O

(
c
− 8

3
T

)
.

(4.26)

For k = 1, recall that that ABJMN,1 is a product between the free theory ABJM1,1 and an

interacting theory ABJMint
N,1. Recall from section 3.3 that cfree

T = 16 and − ∂4F free

∂m2
a∂m

2
b

= π4

4 .

For ABJMint
N,1, we should then expand derivatives of FABJMint

N,1 ≡ FABJMN,1−F free in terms

of c
ABJMint

N,1

T ≡ cABJMN,1

T − cfree
T , for which we find

− 1

c2
T

∂4FABJMint
N,1

∂m4
a

=
(
48π4

) 1
3

1

c
5
3
T

+

(
−π

4

32
+

4π2

5
− 5

)
1

c2
T

− 28

(
4π2

3

) 1
3 1

c
7
3
T

+O

(
c
− 8

3
T

)
,

− 1

c2
T

∂4FABJMint
N,1

∂m2
1∂m

2
2

=
π2

8

1

cT
+

(
2π4

9

) 1
3 1

c
5
3
T

+

(
−π

4

32
+

107π2

40
− 5

3

)
1

c2
T

− 20

3

(
4π2

3

) 1
3 1

c
7
3
T

+O

(
c
− 8

3
T

)
. (4.27)

Comparing (4.26) to (4.27), we find that the tree level terms of order c−nT (namely c−1
T ,

c
− 5

3
T , and c

− 7
3

T in these expressions) come with k-dependence of the form k1−nc−nT . This

can be argued as follows. When we compactify 11d M-theory on AdS4×S7/Zk, each term

in the AdS4 effective action is proportional to Vol(S7/Zk) ∝ 1/k times an appropriate

power of `p/L determined by dimensional analysis. Since `p/L ∝ (kcT )−1/9 (see (4.2)),

it follows that the terms in the free energy indeed scale as k−1(kcT )−n. If we multiply

the free energy by 1/c2
T = k2/(kcT )2, as in (4.26) and (4.27), then each tree level term

will be proportional to k times a power of kcT , as observed from (4.26) and (4.27). No

similar pattern exists for the 1-loop term c−2
T , which comes from 1-loop in 11d that has a

complicated dependence on k.

4.5 Deriving B4
4 , B

6
6 , B

6
4

We can now plug these localization values into the two constraints (3.21) and compare

to (4.21) to extract the coefficient B4
4 and B6

6 , B
6
4 , for the order c

− 5
3

T and c
− 19

9
T Mellin ampli-

tudes, respectively. For c
− 5

3
T , we find that both constraints are satisfied by the same value

B4
4 = (6π)

1
3

1120

3π3k
2
3

. (4.28)

This matches the value previously derived in [15] using the 1d sector of ABJMN,k, which

was shown to recover the known coefficient of the R4 term in 11d M-theory. This precise

match is a very nontrivial check on our formalism.
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For c
− 19

9
T , we note that such a coefficient does not appear in the localization re-

sults (4.26), so that from (4.21) we find

0 = B4
6

3π4

560
−B6

6

27π4

616
, 0 = B4

6

π4

1120
−B6

6

13π4

1848
. (4.29)

The matrix formed by these constraints has determinant π8/689920 6= 0, so these con-

straints are linearly independent, which implies that

B6
6 = B6

4 = 0 . (4.30)

In the flat space limit, this implies that the D4R4 interaction in 11d M-theory is absent,

as was previously argued using purely string theory reasoning.

5 Discussion

The main result of this work is the derivation of the absence of the protected D4R4 term

in the 11d M-theory S-matrix, which had previously been derived using duality arguments

between M-theory and string theory, by showing that the corresponding c
− 19

9
T term is absent

in the large cT expansion of the dual 4-point function in the 3d CFT called ABJM. This is

the first check of AdS/CFT to this order. The dual 4-point function was fixed to this order

by supersymmetry as well as two constraints coming from the two linearly independent

quartic mass terms in the mass deformed S3 free energy F (ma), which can be computed to

all orders in 1/cT using localization [30] and the Fermi gas formalism [32, 33]. A nontrivial

check on these constraints was the recovery of the R4 term, which had previously been

computed in [15] and matched to M-theory using F (ma) and the 4-point function in the

1d topological sector. As part of the derivation, our main technical innovations are explicit

relations between 4-point functions of many of the operators in the stress tensor multiplet,

as well as a compact formula for the integral of any CFT 4-point function over Sd in general

dimension d.

There is one more protected term in the M-theory S-matrix: D6R4. This term was

also computed using duality arguments and string theory, and corresponds to the c
− 7

3
T

coefficient in the dual CFT 4-point function. To fix this term on the CFT side we need a new

constraint on the 4-point function in addition to the two from F (ma). This constraint could

come from considering the free energy on the squashed sphere F (b), where n derivatives

of the squashing parameter b give integrated n-point functions of operators in the stress

tensor multiplet. For ABJM, F (b) has been computed as an N -dimensional integral using

localization [43, 44]. Unlike F (ma), however, no all orders in 1/N (and thus 1/cT ) result

is known yet for F (b).14 It would be interesting to derive such a formula using the Fermi

gas formalism, which would then allow us to derive D6R4 from ABJM using the methods

in this paper.

The idea in this paper of deriving constraints on 4-point functions from the mass

deformed sphere free energy has applications to theories in other dimensions and/or with

14Except for specific values of b [45].
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less supersymmetry. In d = 3, the all orders in 1/cT formula for the ABJM S3 free

energy deformed by two masses can also be applied to N = 6 ABJM with gauge group

U(N)k × U(N)−k for k > 2, which in the large N, k limit is dual to a Type IIA string

theory background. In d = 4, the S4 free energy deformed by one mass was computed

by localization [46] for N = 4 super-Yang-Mills (SYM), whose large N and large ’t Hooft

coupling limit has a dual in Type IIB string theory. In d = 5, the S5 free energy deformed

by one mass has also been computed [47–49] for various 5d SCFTs with holographic duals.

In all these cases, we can use the mass deformed free energy to fix a CFT 4-point function

to some order in the large N expansion, which could be used to derive the dual quantum

gravity S-matrix to the same order.

Ultimately, since the mass deformed free energy is a protected quantity, we can expect

that it can be used to derive only the protected terms in the corresponding S-matrix.

To explore the unprotected terms, we will need to derive unprotected CFT data in these

holographic theories. The only known method of this sort is the numerical conformal

bootstrap, which has been applied to the d = 3, 4, 5 holographic theories mentioned above

in [24, 34, 49–51]. We hope that as the precision of the numerical bootstrap studies

increases, it will eventually become feasible to derive the full quantum gravity S-matrix

from CFT.
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A The E invariants

We use the following EaIA symbols, written as 8× 8 matrices for given a:

E1 =


I 0 0 0

0 I 0 0

0 0 I 0

0 0 0 I

 , E2 =


−iσ2 0 0 0

0 −iσ2 0 0

0 0 −iσ2 0

0 0 0 iσ2

 , E3 =


0 −σ3 0 0

σ3 0 0 0

0 0 0 −I
0 0 I 0

 ,

E4 =


0 −σ1 0 0

σ1 0 0 0

0 0 0 −iσ2

0 0 −iσ2 0

 , E5 =


0 0 −σ3 0

0 0 0 I

σ3 0 0 0

0 −I 0 0

 , E6 =


0 0 −σ1 0

0 0 0 iσ2

σ1 0 0 0

0 iσ2 0 0

 ,

E7 =


0 0 0 −I
0 0 −σ3 0

0 σ3 0 0

I 0 0 0

 , E8 =


0 0 0 −iσ2

0 0 −σ1 0

0 σ1 0 0

−iσ2 0 0 0

 , (A.1)
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where I is the 2× 2 identity matrix and 0 is interpreted as a 2 × 2 matrix with vanishing

entries. From these matrices, one can construct the so(8) gamma matrices as

Γa =

(
0 Ea
ETa 0

)
. (A.2)

The Clifford algebra {Γa,Γb} = 2δab is equivalent to EaE
T
b + EbE

T
a = 2δab.

B Ward identities

B.1 Structures for χ and jµ

We will first expand correlators containing χ in the allowed SO(8)R and conformally in-

variant structures, which are derived in [52]. Using the notation ~xij = ~xi − ~xj , xij = |~xij |
and /xij = (xµi − x

µ
j )σαβµ , we normalize χ so that the two point function is given by:

〈χα(~x1, X1, Y1)χβ(~x2, X2, Y2)〉 =
i/x12

x4
12

. (B.1)

We expand the four point function as:

〈S(~x1, Y1)S(~x2, Y2)χα(~x3, X3, Y3)χβ(~x4, X4, Y4)〉

=
i/x
αβ
34

x2
12x

4
34

[
Y12X34(A11Y12Y34 +A12Y13Y24 +A13Y14Y23)

+ (Y1 ◦ Y2) · (X3 ◦X4)(A14Y12Y34 +A15Y13Y24 +A16Y14Y23)
]

+
i(/x13/x24/x12)αβ

2x4
12x

4
34

[
Y12X34(A21Y12Y34 +A22Y13Y24 +A23Y14Y23)

+ (Y1 ◦ Y2) · (X3 ◦X4)(A24Y12Y34 +A25Y13Y24 +A26Y14Y23)
]
,

(B.2)

〈P (~x1, X1)P (~x2, X2)χα(~x3, X3, Y3)χβ(~x4, X4, Y4)〉

=
i/x
αβ
34

x4
12x

4
34

[
X12Y34(C11X12X34 + C12X13X24 + C13X14X24)

+ (X1 ◦X2) · (Y3 ◦ Y4)(C14X12X34 + C15X13X24 + C16X14X24)
]

+
i(/x13/x24/x12)αβ

2x6
12x

4
34

[
X12Y34(C21X12X34 + C22X13X24 + C23X14X24)

+ (X1 ◦X2) · (Y3 ◦ Y4)(C24X12X34 + C25X13X24 + C26X14X24)
]
,

(B.3)
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along with:

〈S(~x1, Y1)P (~x2, Y2)χα(~x3, X3, Y3)χβ(~x4, X4, Y4)〉

= −
/x13/x14

2x4
12x

4
34

[
Y13X24(Y14X23B11 + (Y1 ◦ Y4) · (X2 ◦X3)B12)

+ (Y1 ◦ Y3) · (X2 ◦X4)(Y14X23B13 + (Y1 ◦ Y4) · (X2 ◦X3)B14)
]

−
(/x23/x24)x2

14

2x4
12x

4
34x

2
24

[
Y13X24(Y14X23B21 + (Y1 ◦ Y4) · (X2 ◦X3)B22)

+ (Y1 ◦ Y3) · (X2 ◦X4)(Y14X23B23 + (Y1 ◦ Y4) · (X2 ◦X3)B24)
]
.

(B.4)

For correlators involving the R-symmetry current jµ, spacetime structures were com-

puted using the embedding space formalism. Since jµ is a conserved current there is

actually only one allowed conformal structure; we however did not impose this condition.

We could then test whether our final answers satisfied ∂µjµ = 0, serving as a non-trivial

check on the Ward identities.

Our normalization of jµ is such that:

〈jµ(~x1, Y1, Y
′

1)jν(~x2, Y2, Y
′

2)〉 =
4[(Y1 · Y2)(Y ′1 · Y ′2)− (Y1 · Y ′2)(Y ′1 · Y2)]

x4
12

(
gµν − 2

xµ12x
ν
12

x2
12

)
.

(B.5)

We then expand the four point functions of scalars and currents as:

〈S(~x1, Y1)S(~x2, Y2)S(~x3, Y3)jµ(~x4, Y4, Y5)〉

=
1

x2
12x

2
34

(
xµ24

x2
24

− xµ34

x2
34

)[
(Y4 ◦ Y5) · (Y1 ◦ Y2)Y13Y23W11

+ (Y4 ◦ Y5) · (Y2 ◦ Y3)Y13Y12W12 + (Y4 ◦ Y5) · (Y3 ◦ Y1)Y12Y23W13

]
+

1

x2
12x

2
34

(
xµ24

x2
24

− xµ14

x2
14

)[
(Y4 ◦ Y5) · (Y1 ◦ Y2)Y13Y23W21

+ (Y4 ◦ Y5) · (Y2 ◦ Y3)Y13Y12W22 + (Y4 ◦ Y5) · (Y3 ◦ Y1)Y12Y23W23

]
,

〈P (~x1, X1)P (~x2, X2)S(~x3, Y3)jµ(~x4, Y4, Y5)〉
= (X1 ◦X2) · [(Y3 ◦ Y4)Y35 − (Y3 ◦ Y5)Y34]X12(

1

x4
12x

2
34

(
xµ24

x2
24

− xµ34

x2
34

)
Y1 +

1

x4
12x

2
34

(
xµ24

x2
24

− xµ14

x2
14

)
Y2

)
,

〈S(~x1, Y1)S(~x2, Y2)P (~x3, X3)jµ(~x4, Y4, Y5)〉

=
x2

14(~x24 × ~x34) + x2
24(~x34 × ~x14) + x2

34(~x14 × ~x24))

x4
12x

6
34

× (Y1 ◦ Y2) · [(X3 ◦X4)X35 − (X3 ◦X5)X34]Y12X1 .

(B.6)
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B.2 Ward identities for scalar correlators

We will now give explicit expressions for the differential operators in (2.9). For the corre-

lator 〈SSPP 〉, the three equations are

R1(U, V ) =
1

4

[
4 +

(
U2 − 4U

)
∂U +

(
4 + U − 2U2 + 7UV − 4V 2

)
∂V

+ 2U(2V − U + 2)(U∂2
U + (U + V − 1)∂U∂V + V ∂2

V )
]
S1(U, V ) ,

R2(U, V ) = 16U2

[
∂U +

1 + 2U − V
U

∂V + 2U∂2
U + (2U + 2V − 2)∂U∂V + 2U∂2

V

]
S1(U, V ) ,

R3(U, V ) = 4
[
U2∂U − (2 + U − 4V − 3UV + 2V 2)∂V

+ 2U(V − 1)(U∂2
U + (U + V − 1)∂U∂V + U∂2

V )
]
S1(U, V ) . (B.7)

For 〈PPPP 〉 we will give expressions for P1 and P4. The other expressions can be derived

from this by applying the crossing relations (2.5).

P1(U, V ) =
[
1 + (U + 4U2 + 4(V − 1)2 − 7UV )∂V + (U − 1)U∂U + U2(9U + 8V − 3)∂2U

+ (28U2 + 9U − 15UV + 4(V − 1)2)V ∂2V + 2U(6U2 − 4U − 2(V − 1)2 + 13UV )∂U∂V

+ 4U(6U − V + 1)V 2∂3V + 4U3(U + 4V − 1)∂3U + 4U(7U2 − 6U + 9UV + (V − 1)2)V ∂U∂
2
V

+ 4U2(1 + U2 − 2U − 4V + 3V 2 + 11UV ))∂2U∂V + 4U2V 3∂4V + 8U2V 2(U + V − 1)∂U∂
3
V

+ 4U2V (U2 − 2U + 4UV + (V − 1)2)∂2U∂
2
V + 8U3V (U + V − 1)∂3U∂V + 4U4V ∂4U

]
S1(U, V ).

(B.8)

P4(U, V ) =
U

4V
(U − V − 1)S4(U, V )

+
U

2V 2

[
(−1 + U + 3U2 − 5U3 + 2U4 + 2V − UV + 14U2V − 15U3V + 11UV 2 + 31U2V 2

− 2V 3 − 19UV 3 + V 4)∂V + U(−1 + 3U − 3U2 + U3 − V + 8UV − 7U2V + V 2 + 17UV 2

− 11V 3)∂U + 2UV (−1 + 3U − 3U2 + U3 + 3V − 20UV + 17U2V + 5V 2 − 7UV 2 − 11V 3)∂2V

+ 2U(1− 4U + 6U2 − 4U3 + U4 − V − 8UV + 19U2V − 10U3V + 3V 2 − 40UV 2 + 67U2V 2

+ 7V 3 − 48UV 3 − 10V 4)∂U∂V + 2U2(−1 + 3U − 3U2 + U3 − 4V + 14UV − 10U2V − 11V 2

+ 47UV 2 − 38V 3)∂2U + 4UV 3(1 + 12U2 − V 2 − 13U + 11UV )∂3V + 4UV 2(−1 + 13U − 23U2

+ 11U3 + V − 11UV + 16U2V + V 2 − 26UV 2 − V 3)∂U∂
2
V − 4U2V (−1 + 3U − 3U2 + U3

− 9V + 35UV − 26U2V − 5V 2 + 10UV 2 + 15V 3)∂2U∂V − 4U3V (1 + U2 + 9V + 14V 2 − 2U

− 15UV )∂3U + 8U2(−1 + U − V )V 4∂4V + 16U2V 3(1− 2U + U2 − V 2)∂U∂
3
V + 8U2V 2(−1 + 3U

− 3U2 + U3 + V − 4UV + 3U2V + V 2 − 3UV 2 − V 3)∂2U∂
2
V + 16U3V 2(1− 2U + U2 − V 2)∂3U∂V

+ 8U4(−1 + U − V )V 2∂4U

]
S1(U, V )

− 1

4V

[
2U − 2U2 − 2V + 2V 2 + (2U − 4U2 + 2U3 + 4V + 4UV + 4U2V − 8V 2 − 10UV 2

+ 4V 3)∂V + (−2U2 + 2U3 + 2UV − 2UV 2)∂U + (−4UV + 8U2V − 4U3V + 8UV 2 + 8U2V 2

− 4UV 3)(∂2V + ∂U∂V )
]
S2(U, V )
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+
1

2V 2

[
1− 3U + 3U2 − U3 − 3V + 3U2V + 2V 2 − 2UV 2 + (2V − 3UV − 3U2V + 7U3V

− 3U4V − 4V 2 − UV 2 − 8U2V 2 + 13U3V 2 + 2V 3 − 5UV 3 − 17U2V 3 + 7UV 4)∂V + (−U + 4U2

− 6U3 + 4U4 − U5 + 3UV + U2V − 11U3V + 7U4V − 2UV 2 + U2V 2 − 11U3V 2 + 5U2V 3)∂U

+ (2UV 2 − 6U2V 2 + 6U3V 2 − 2U4V 2 − 2UV 3 − 4U2V 3 + 6U3V 3 − 2UV 4 − 6U2V 4 + 2UV 5)∂2V

+ (−2UV + 8U2V − 12U3V + 8U4V − 2U5V + 4UV 2 − 2U2V 2 − 8U3V 2 + 6U4V 2 − 2UV 3

− 6U3V 3 + 2U2V 4)∂U∂V

]
S3(U, V ) .

(B.9)

The expressions (B.7)–(B.9) assume that the operators S(~x, Y ) and P (~x,X) are nor-

malized such that their two-point functions are

〈S(~x1, Y1)S(~x2, Y2)〉 =
Y 2

12

x2
12

, 〈P (~x1, X1)P (~x2, X2)〉 =
X2

12

x4
12

. (B.10)

This means that in the small U limit, the functions S1, P1, R1 approach 1 as U → 0.

B.3 Ward identities from 〈SSSχ〉

By considering the supersymmetric variation δ〈SSSχ〉, we can compute 〈SSχχ〉 and

〈SSSj〉 in terms of 〈SSSS〉. These expressions are first order differential operators and

are relatively simple, so we will give them explicitly here as an examples. Other correlators

can be found in the attached Mathematica file.

First we will give the 〈SSχχ〉 expressions:

A11 = [2− 2U∂U − U∂V ]S1 ,

A12 =

[
−2 + U − 2V

U
+ (2 + U − 2V )∂U + (U − 2V )∂V

]
S2 + S6 ,

A13 =

[
(2 + U − 2V )

U
+
V (−2 + U + 2V )

U
∂U + 2V ∂V

]
S3 + S5 ,

A14 = 8U∂V S1 ,

A15 = 8[1− U∂U − U∂V ]S2 ,

A16 = 8[V ∂U − 1]S3,

A21 = [U2∂U + U(1 + V )∂V ]S1 ,

A22 = [2− 2U∂U − U∂V ]S2 ,

A23 = − [2(U − 2)V ∂U + UV ∂V ]S3 ,

A24 = [8U2∂U + 8U(V − 1)∂V ]S1 ,

A25 = 8U∂V S2,

A26 = −8UV [∂U + ∂V ]S3 .

(B.11)
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For 〈SSSj〉 we find that

W11 = 2[−1 + U(∂U + ∂V )]S2 + 2[1 + U(U − 1)∂U + V ∂V ]S3 ,

W12 = 2U [U∂U + V ∂V ]S1 + 2

[
2(1− V )

U
+ (V − 1)∂U + UV ∂V

]
S2 − S6 ,

W13 = 2V ∂US1 + 2

[
2(1− V )

U
+ (U + V − 1)∂U + V ∂V

]
S3 + S5 ,

W21 = 2[1 + U∂U + (U − 1)∂V ]S2 + 2V [U∂U + V ∂V ]S3 + S4 ,

W22 = 2UV [∂U + (V − 1)∂V ]S1 + 2V

[
1

u
+ U2∂U + U∂V

]
S2 ,

W23 = −2[U∂U + (U + V − 1)∂V ]S1 + V

[
2

U
− ∂U

]
S3 − S5 .

(B.12)

C D̄ functions

The quartic Witten contact diagram is given by

Dr1,r2,r3,r4(xi) =

∫
AdSd+1

dz
4∏
i=1

GriB∂(z, xi) , GriB∂(z, xi) =

(
z0

z2
0 + (~z − xi)2

)ri
, (C.1)

where z are the d + 1 bulk spacetime variables and GriB∂ is the bulk-to-boundary propa-

gator [53] for an operator of dimension ri. We can then define the conformally invariant

function:

D̄r1,r2,r3,r4(U, V ) =
x

1
2

∑4
i=1 ri−r4

13 xr224

x
1
2

∑4
i=1 ri−r1−r4

14 x
1
2

∑4
i=1 ri−r3−r4

34

2
∏4
i=1 Γ(ri)

π
d
2 Γ
(
−d+

∑4
i=1 ri

2

)Dr1,r2,r3,r4(xi) ,

(C.2)

which is in fact independent of d.

The simplest D̄r1,r2,r3,r4(U, V ) is Φ = D̄1,1,1,1(U, V ), which is just a scalar one-loop box

integral in d = 4 and can be written as

Φ(z, z̄) =
1

z − z̄

(
log(zz̄) log

1− z
1− z̄

+ 2Li(z)− 2Li(z̄)

)
, (C.3)

where we define as usual

U = zz̄ , V = (1− z)(1− z̄) , (C.4)

and Φ has a recursion relation [54]

∂zΦ =− Φ

z − z̄
− log ((z − 1)(z̄ − 1))

z(z − z̄)
+

log(zz̄)

(z − 1)(z − z̄)
,

∂z̄Φ =
Φ

z − z̄
+

log ((z − 1)(z̄ − 1))

z̄(z − z̄)
− log(zz̄)

(z̄ − 1)(z − z̄)
.

(C.5)
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We can now define the general D̄r1,r2,r3,r4(U, V ) recursively using the relations [39]

D̄r1+1,r2+1,r3,r4 = −∂U D̄r1,r2,r3,r4 ,

D̄r1,r2,r3+1,r4+1 =

(
r3 + r4 − r1 − r2

2
− U∂U

)
D̄r1,r2,r3,r4 ,

D̄r1,r2+1,r3+1,r4 = −∂V D̄r1,r2,r3,r4 ,

D̄r1+1,r2,r3,r4+1 =

(
r1 + r4 − r2 − r3

2
− V ∂V

)
D̄r1,r2,r3,r4 ,

D̄r1,r2+1,r3,r4+1 = (r2 + U∂U + V ∂V ) D̄r1,r2,r3,r4 ,

D̄r1+1,r2,r3+1,r4 =

(
r1 + r2 + r3 − r4

2
+ V ∂V + U∂U

)
D̄r1,r2,r3,r4 .

(C.6)

Under crossing, the D̄r1,r2,r3,r4 transform as

D̄r1,r2,r3,r4(V,U) = D̄r3,r2,r1,r4(U, V ) , D̄r1,r2,r3,r4(U−1, U/V ) = U−r2D̄r3,r2,r4,r1(V,U) .

(C.7)

D Mellin amplitudes

Holographic correlators take a simpler form in Mellin space. To find the Mellin transform

of any 4-point function of the form 〈A1A2B1B2〉 of scalar operators with scaling dimensions

∆A1 = ∆A2 = ∆A and ∆B1 = ∆B2 = ∆B, we first define the conformally invariant function

GA1A2B1B2(U, V ) as

GA1A2B1B2(U, V ) ≡ x2∆A
12 x2∆B

34 〈A1(~x1)A2(~x2)B1(~x3)B2(~x4)〉 . (D.1)

We then separate out the disconnected parts of each correlator, which for the correlators

we consider take the form

GSSSSdisc (U, V ) = Y 2
12Y

2
34 + Y 2

13Y
2

24U + Y 2
14Y

2
23

U

V
,

GPPPPdisc (U, V ) = X2
12X

2
34 +X2

13X
2
24U

2 +X2
14X

2
23

U2

V 2
,

GSSPPdisc (U, V ) = Y 2
12X

2
34 .

(D.2)

The Mellin transform MA1A2B1B2(s, t) of the connected part GA1A2B1B2
conn ≡ GA1A2B1B2 −

GA1A2B1B2
disc is then

MA1A2B1B2(s, t) =

∫ ∞
−∞

dUdV V −
t
2

+
∆A+∆B

2
−1U−

s
2
−1GA1A2B1B2

conn (U, V ) , (D.3)

which has the inverse transformation

GA1A2B1B2
conn (U, V ) =

∫ i∞

−i∞

ds dt

(4πi)2
U

s
2V

t
2
−∆A+∆B

2 MA1A2B1B2(s, t) . (D.4)
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For a 4-point function in a large N expansion, it is convenient to consider the auxiliary

Mellin amplitude

MA1A2B1B2(s, t) =
MA1A2B1B2(s, t)

Γ
[
∆A − s

2

]
Γ
[
∆B − s

2

]
Γ2
[

∆A+∆B
2 − t

2

]
Γ2
[

∆A+∆B
2 − u

2

] , (D.5)

where s + t + u = 2∆A + 2∆B, and the Gamma functions automatically encode the pole

contribution of all double-trace operators [55]. The two integration contours in (D.4) then

include all poles of the Gamma functions on one side or the other of the contour.

As an example of the simplicity of holographic correlators in Mellin space, recall that

tree level correlators are written in term of D̄r1,r2,r3,r4 functions, which in position space are

given by a complicated recursive algorithm in terms of Dilogarithm functions as described

in appendix C. In Mellin space, however, these D̄r1,r2,r3,r4 contribute to MA1A2B1B2(s, t)

as [36]:

D̄A1A2B1B2
r1,r2,r3,r4 (s, t) =

(
∆A −

s

2

)
−∆A

(
∆B −

s

2

)
r3+r4−r1−r2−2∆B

2

(
∆A + ∆B

2
− t

2

)
r1+r4−r2−r3

2(
∆A + ∆B

2
− u

2

)
r2

(
∆A + ∆B

2
− u

2

)
r1+r2+r3−r4

2

, (D.6)

which for integer ∆A,∆B, ri is a rational function of s, t, u. We can get polynomials

in s, t, u by shifting s → s − 2 max{∆A,∆B}, which in position space corresponds to

Umax{∆A,∆B}D̄r1,r2,r3,r4 .

E Supergravity and D4R4 terms

The degree 1 Mellin amplitudes for 〈SSSS〉, 〈PPPP 〉, and 〈SSPP 〉 in the bases (4.4)

and (4.10) have the following crossing-independent coefficients

S̃1
1 =−

(t− 2)(s+ t− 2)
(√
π(s+ 4)Γ

(
1− s

2

)
− 4Γ

(
1−s

2

))
√
πs(s+ 2)Γ

(
1− s

2

) ,

S̃1
4 =

2(s− 2)

√π(s(t+2)+t2−4t−8)+
2tΓ( 1

2 (s+t−3))
Γ( 1

2 (s+t−2))
s+t−4 − 2Γ( 1−t

2 )
Γ(1− t

2)


√
πt

,

(E.1)

and

P̃1
1 =

8
(
s2 + s(8t− 30) + 8(t− 4)2

)
Γ
(

1
2 −

s
2

)
√
π(s− 2)2s(s+ 2)Γ

(
1− s

2

)
+
s3(42− 15t) + s2(3(34− 5t)t− 176)− 2s(t(9t− 88) + 180) + 32(t− 4)2

s (s2 − 4)
,
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P̃1
4 =

(s+ t− 4)
(
(124s− 185)t3 + (s(48s− 997) + 2474)t2 − 40t4

)
Γ
(

1
2(s+ t− 1)

)
4
√
π(t− 2)2t(s+ t− 8)(s+ t− 7)(s+ t− 6)(s+ t− 5)(s+ t− 3)Γ

(
1
2(s+ t− 2)

)
+

(
(1465− 284s)t3 − 2(s(282s− 3187) + 8663)t2 − 40t4

)
Γ
(

1
2 −

t
2

)
8
√
π(t− 2)2t(s+ t− 8)(s+ t− 6)2Γ

(
1− t

2

)
+

4(s− 4)

t
− 4(s− 4)

s+ t− 8
+

8(s− 3)

t− 2
− 8(s− 3)

s+ t− 6
+ 30s− 84

+
(s+t−4)((s(3s(4s−109) + 2896)− 6552)t− 27(s−8)(s−6)(s−4))Γ

(
1
2(s+ t− 1)

)
4
√
π(t− 2)2t(s+ t− 8)(s+ t− 7)(s+ t− 6)(s+ t− 5)(s+ t− 3)Γ

(
1
2(s+ t− 2)

)
+

(
4(s(2(989− 56s)s− 11351) + 21102)t− 128(s− 8)(s− 6)2(s− 4)

)
Γ
(

1
2 −

t
2

)
8
√
π(t− 2)2t(s+ t− 8)(s+ t− 6)2Γ

(
1− t

2

) ,

(E.2)

and

R̃1
1 =

(
12s2(24(t− 4)t+ 73) + 16s(4t(t(8t− 63) + 146)− 367)

)
Γ
(

1
2 −

s
2

)
32
√
πs(s+ 2)(t− 1)(s+ t− 5)Γ

(
2− s

2

)
+

(
−3s4 + 4s3(8t− 5) + 256(t− 5)(t− 3)2(t− 1)

)
Γ
(

1
2 −

s
2

)
32
√
πs(s+ 2)(t− 1)(s+ t− 5)Γ

(
2− s

2

)
− 3s3 + 4s2(3t− 5) + 4s(t− 2)(3t− 4) + 32(t− 3)2

4s(s+ 2)
,

R̃1
2 =− 48(−2 + s) ,

R̃1
3 =

(
3s2 + s(26− 32t)− 32(t− 5)(t− 1)

)
(s+ 2t− 6)Γ

(
1
2 −

s
2

)
4
√
πs(t− 1)(s+ t− 5)Γ

(
2− s

2

)
+

1

4

(
32

s
+ 48

)
(s+ 2t− 6) .

(E.3)

The degree 6 Mellin amplitudes coefficients are

S̃6
1 =2s4t2 − 108s4t

11
+

128s4

11
+ 6s3t3 − 40s3t2 +

952s3t

11
− 672s3

11
+ 8s2t4 − 752s2t3

11

+
2280s2t2

11
− 1808s2t

7
+

8192s2

77
+ 6st5 − 684st4

11
+

2624st3

11
− 31760st2

77

+
23328st

77
− 4736s

77
+ 2t6 − 24t5 +

1216t4

11
− 2688t3

11
+

2848t2

11
− 1152t

11
,

S̃6
4 =− 4s5t− 200s5

11
− 8s4t2 +

408s4t

11
+

2576s4

11
− 8s3t3 +

800s3t2

11
− 1296s3t

11

− 90208s3

77
− 4s2t4 +

784s2t3

11
− 3056s2t2

11
+

12448s2t

77
+

219200s2

77
+

216st4

11

− 2240st3

11
+

40672st2

77
− 10624st

77
− 258816s

77
− 256t4

11
+

2048t3

11
− 30720t2

77

+
8192t

77
+

118784

77
,

(E.4)
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and

P̃6
1 =390s4t2 − 2236s4t+ 3232s4 + 1170s3t3 − 12896s3t2 + 45384s3t− 571424s3

11

+ 1560s2t4 − 24440s2t3 + 142464s2t2 − 3994272s2t

11
+

3756736s2

11
+ 1170st5

− 23140st4 + 184176st3 − 8080992st2

11
+ 1461440st− 89056256s

77
+ 390t6

− 9360t5 + 94168t4 − 508288t3 +
17057600t2

11
− 27830784t

11
+

132527104

77
,

P̃6
4 =− 780s5t− 1976s5 − 1560s4t2 + 15912s4t+ 39872s4 − 1560s3t3 + 26624s3t2

− 133904s3t− 3575648s3

11
− 780s2t4 + 21424s2t3 − 184464s2t2 +

6690208s2t

11

+
14432256s2

11
+ 4472st4 − 84480st3 +

6001696st2

11
− 15458816st

11
− 18638336s

7

− 6464t4 + 103424t3 − 6283520t2

11
+

13862912t

11
+

170545152

77
,

(E.5)

and

R̃6
1 =

13s5t

2
− 27s5

2
+ 39s4t2 − 123s4t+

978s4

11
+ 91s3t3 − 597s3t2 +

11177s3t

11

− 3975s3

11
+

221s2t4

2
− 1104s2t3 +

43117s2t2

11
− 58716s2t

11
+

316905s2

154
+ 78st5

− 1059st4 +
63880st3

11
− 174162st2

11
+

1604754st

77
− 73041s

7
+ 26t6 − 468t5

+
39266t4

11
− 162312t3

11
+

2669454t2

77
− 3349188t

77
+

1745202

77
,

R̃6
2 =416s5t− 864s5 + 832s4t2 − 8384s4t+ 13824s4 + 832s3t3 − 12992s3t2

+
726208s3t

11
− 973120s3

11
+ 416s2t4 − 9216s2t3 +

809280s2t2

11
− 2780928s2t

11

+
3103200s2

11
− 2112st4 + 30464st3 − 1929600st2

11
+

5137152st

11
− 34335296s

77

+ 2560t4 − 30720t3 +
1618944t2

11
− 3631104t

11
+

1943040

7
,

R̃6
3 =− 104s5t+ 216s5 − 416s4t2 + 2032s4t− 26832s4

11
− 624s3t3 + 4432s3t2

− 113360s3t

11
+

86000s3

11
− 520s2t4 + 4224s2t3 − 122064s2t2

11
+

92736s2t

11

+
200280s2

77
− 208st5 + 1280st4 +

28448st3

11
− 36672st2 +

7400112st

77

− 6253760s

77
− 736t5 + 11040t4 − 731840t3

11
+

2214720t2

11
− 23554912t

77

+
14369952

77
.

(E.6)
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In position space, these degree 6 expressions take the form

S6
1 =U

[
−49152

77
D̄2,1,1,2 +

24576

7
D̄2,1,2,3 −

261120

77
D̄2,1,3,4 +

10240

11
D̄2,1,4,5

− 768

11
D̄2,1,5,6 +

884736

77
D̄3,1,1,3 −

1730560

77
D̄3,1,2,4 +

135680

11
D̄3,1,3,5

− 2304D̄3,1,4,6 + 128D̄3,1,5,7 −
250880

11
D̄4,1,1,4 +

224000

11
D̄4,1,2,5

− 57600

11
D̄4,1,3,6 + 384D̄4,1,4,7 +

136960

11
D̄5,1,1,5 −

58368

11
D̄5,1,2,6 + 512D̄5,1,3,7

−2304D̄6,1,1,6 + 384D̄6,1,2,7 + 128D̄7,1,1,7

]
,

S6
4 =U

[
49152

77
D̄1,1,2,2 −

866304

77
D̄1,1,3,3 +

1515520

77
D̄1,1,4,4 −

89600

11
D̄1,1,5,5

+
9216

11
D̄1,1,6,6 −

276480

77
D̄2,1,2,3 +

1740800

77
D̄2,1,3,4 −

204800

11
D̄2,1,4,5

+
46080

11
D̄2,1,5,6 − 256D̄2,1,6,7 +

307200

77
D̄3,1,2,4 −

158720

11
D̄3,1,3,5 +

64512

11
D̄3,1,4,6

− 512D̄3,1,5,7 −
15360

11
D̄4,1,2,5 +

36864

11
D̄4,1,3,6 − 512D̄4,1,4,7 +

1536

11
D̄5,1,2,6

−256D̄5,1,3,7

]
,

(E.7)

and

P6
1 =U2

[
4767744

77
D̄2,2,2,2 −

25559040

77
D̄2,2,3,3 +

3793920

11
D̄2,2,4,4 −

1136640

11
D̄2,2,5,5

+ 8448D̄2,2,6,6 −
25190400

11
D̄3,2,2,3 +

63969280

11
D̄3,2,3,4 −

42024960

11
D̄3,2,4,5

+ 830976D̄3,2,5,6 − 53248D̄3,2,6,7 +
96424960

11
D̄4,2,2,4 −

126547200

11
D̄4,2,3,5

+ 4455936D̄4,2,4,6 − 610688D̄4,2,5,7 + 24960D̄4,2,6,8 − 9242880D̄5,2,2,5

+ 6441216D̄5,2,3,6 − 1289600D̄5,2,4,7 + 74880D̄5,2,5,8 + 3545088D̄6,2,2,6

− 1256320D̄6,2,3,7 + 99840D̄6,2,4,8 − 524160D̄7,2,2,7 + 74880D̄7,2,3,8

+24960D̄8,2,2,8

]
,

P6
4 =U2

[
−442368

7
D̄2,2,2,2 +

176302080

77
D̄2,2,3,3 −

87664640

11
D̄2,2,4,4

+
77690880

11
D̄2,2,5,5 − 2004480D̄2,2,6,6 + 163072D̄2,2,7,7 +

4147200

11
D̄3,2,2,3

− 70686720

11
D̄3,2,3,4 +

129853440

11
D̄3,2,4,5 − 5879808D̄3,2,5,6 + 988416D̄3,2,6,7

− 49920D̄3,2,7,8 −
5099520

11
D̄4,2,2,4 +

54328320

11
D̄4,2,3,5 − 5437440D̄4,2,4,6

+ 1444352D̄4,2,5,7 − 99840D̄4,2,6,8 + 168960D̄5,2,2,5 − 1311744D̄5,2,3,6

+ 911872D̄5,2,4,7 − 99840D̄5,2,5,8 − 16896D̄6,2,2,6 + 106496D̄6,2,3,7

−49920D̄6,2,4,8

]
,

(E.8)
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and

R6
1 =U2

[
49152

77
D̄2,2,1,1 −

1142784

77
D̄2,2,2,2 +

2810880

77
D̄2,2,3,3 −

241920

11
D̄2,2,4,4

+
44160

11
D̄2,2,5,5 − 192D̄2,2,6,6 −

3686400

77
D̄3,2,1,2 +

18616320

77
D̄3,2,2,3

− 2987520

11
D̄3,2,3,4 +

1085760

11
D̄3,2,4,5 − 12288D̄3,2,5,6 + 416D̄3,2,6,7

+
20229120

77
D̄4,2,1,3 −

5802240

11
D̄4,2,2,4 +

3078720

11
D̄4,2,3,5 − 49536D̄4,2,4,6

+ 2496D̄4,2,5,7 −
3947520

11
D̄5,2,1,4 +

3711360

11
D̄5,2,2,5 − 84480D̄5,2,3,6

+ 5824D̄5,2,4,7 +
1866240

11
D̄6,2,1,5 − 74688D̄6,2,2,6 + 7072D̄6,2,3,7 − 29952D̄7,2,1,6

+4992D̄7,2,2,7 + 1664D̄8,2,1,7

]
,

R6
2 =U2

[
−786432

77
D̄2,2,2,2 +

1966080

11
D̄2,2,3,3 −

3358720

11
D̄2,2,4,4 + 122880D̄2,2,5,5

− 12288D̄2,2,6,6 +
1966080

11
D̄3,2,2,3 −

13926400

11
D̄3,2,3,4 +

13455360

11
D̄3,2,4,5

− 344064D̄3,2,5,6 + 26624D̄3,2,6,7 −
3358720

11
D̄4,2,2,4 +

13455360

11
D̄4,2,3,5

− 516096D̄4,2,4,6 + 53248D̄4,2,5,7 + 122880D̄5,2,2,5 − 344064D̄5,2,3,6

+53248D̄5,2,4,7 − 12288D̄6,2,2,6 + 26624D̄6,2,3,7

]
,

R6
3 =U2

[
−393216

77
D̄2,2,1,1 +

9240576

77
D̄2,2,2,2 −

24207360

77
D̄2,2,3,3 +

2355200

11
D̄2,2,4,4

− 522240

11
D̄2,2,5,5 + 3072D̄2,2,6,6 +

28311552

77
D̄3,2,1,2 −

144752640

77
D̄3,2,2,3

+
25026560

11
D̄3,2,3,4 −

10275840

11
D̄3,2,4,5 + 141312D̄3,2,5,6 − 6656D̄3,2,6,7

− 18063360

11
D̄4,2,1,3 +

38400000

11
D̄4,2,2,4 −

22625280

11
D̄4,2,3,5 + 423936D̄4,2,4,6

− 26624D̄4,2,5,7 +
17530880

11
D̄5,2,1,4 −

19476480

11
D̄5,2,2,5 + 503808D̄5,2,3,6

− 39936D̄5,2,4,7 − 460800D̄6,2,1,5 + 291840D̄6,2,2,6 − 33280D̄6,2,3,7

+36864D̄7,2,1,6 − 13312D̄7,2,2,7

]
.

(E.9)
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