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Abstract
Stress-induced activation of hypothalamic paraventricular nucleus (PVN) corticotropin-

releasing hormone (CRH) neurons trigger CRH release and synthesis. Recent findings have

suggested that this process depends on the intracellular activation (phosphorylation) of

ERK1/2 within CRH neurons. We have recently shown that the presence of glucocorticoids

constrains stress-stimulated phosphorylation of PVN ERK1/2. In some peripheral cell types,

dephosphorylation of ERK has been shown to be promoted by direct glucocorticoid

upregulation of the MAP kinase phosphatase 1 (Mkp1) gene. In this study, we tested the

hypothesis that glucocorticoids regulate Mkp1 mRNA expression in the neural forebrain

(medial prefrontal cortex, mPFC, and PVN) and endocrine tissue (anterior pituitary) by

subjecting young adult male Sprague–Dawley rats to various glucocorticoid manipulations

with or without acute psychological stress (restraint). Restraint led to a rapid increase in

Mkp1 mRNA within the mPFC, PVN, and anterior pituitary, and this increase did not require

glucocorticoid activity. In contrast to glucocorticoid upregulation of Mkp1 gene expression

in the peripheral tissues, we found that the absence of glucocorticoids (as a result of

adrenalectomy) augmented basal mPFC and stress-induced PVN and anterior pituitaryMkp1

gene expression. Taken together, this study indicates that the presence of glucocorticoids

may constrain Mkp1 gene expression in the neural forebrain and endocrine tissues. This

possible constraint may be an indirect consequence of the inhibitory influence of

glucocorticoids on stress-induced activation of ERK1/2, a known upstream positive regulator

of Mkp1 gene transcription.
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Introduction
Corticotropin-releasing hormone (CRH) neurons of the

hypothalamic–pituitary–adrenal (HPA) axis integrate

stress-dependent changes in neural input and direct

negative feedback effects of glucocorticoids (Dallman

et al. 1987, Sawchenko et al. 1996, Bali et al. 2008).

Excitation of CRH neurons is often coupled to not only
CRH neurohormone secretion but also altered gene

expression and neurohormone synthesis (Kovács &

Sawchenko 1996, Watts 2005, Pace et al. 2009). Recent

evidence indicates that a molecular element of this

coupling process within CRH neurons is phosphorylation/

activation of ERK1/2 (Khan & Watts 2004, Khan et al.
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2007, 2011). ERK1/2 are members of the MAP-kinase

family. MAP-kinases are essential intracellular signaling

proteins for virtually all cell types, including neurons and

endocrine cells (Grewal et al. 1999). We recently have

reported that acute exposure to psychological stress

(restraint) increased the activated (phosphorylated) form

of ERK1/2 in the hypothalamic CRH neurons, and this

ERK1/2 activation was constrained by the tonic activity of

glucocorticoid (Osterlund et al. 2011).

The active phosphorylation state of ERK1/2 is

regulated by both the kinase MEK and by phosphatases,

including MAP kinase phosphatase 1 (MKP1, also known

as DUSP1) (Keyse 2000, Patterson et al. 2009). MKP1 is a

dual specificity phosphatase that inactivates MAP-kinases

by dephosphorylating tyrosine and threonine residues

essential for catalytic activity (Camps et al. 2000, Theodo-

siou & Ashworth 2002). A key feature of MKP1 is that its

encoding gene (Mkp1) is rapidly induced in a wide range

of cell types by a large number of excitatory stimuli (Sun

et al. 1993, Caunt & Keyse 2013). Interestingly, in vitro

studies found that glucocorticoids increase Mkp1 mRNA

levels in a variety of peripheral cell types and cell lines

(Clark 2003, Clark et al. 2008). Glucocorticoid treatment

in mice has also been shown to rapidly increase Mkp1

mRNA in the lung, spleen, and liver (Wang et al. 2008,

Vandevyver et al. 2012). In vitro studies have also shown

that glucocorticoid suppression of some MAP-kinase-

dependent cellular processes depends on glucocorticoid-

mediated upregulation of Mkp1 gene expression (Kassel

et al. 2001, Issa et al. 2007, Zhou et al. 2007, Komatsu et al.

2008, Nicoletti-Carvalho et al. 2010, Burke et al. 2012).

Glucocorticoids provide a protein-synthesis-

dependent negative feedback inhibition of the HPA axis

that is evident within 1–3 h after glucocorticoid treatment

(Dallman et al. 1987, Shipston 1995, Osterlund & Spencer

2011). This short-term glucocorticoid negative feedback

action is probably due to rapid glucocorticoid rapid

induction of one or more genes that encode proteins

important for the coupling of cellular excitation with

(neuro)hormone secretion (Shipston 1995, Osterlund &

Spencer 2011). We considered the possibility that gluco-

corticoid suppression of stress-induced ERK1/2 activation

in hypothalamic paraventricular nucleus (PVN) CRH

neurons depends, at least in part, on rapid glucocorticoid

upregulation of Mkp1 gene expression. To determine

whether induction of the Mkp1 gene could be a

mechanism for short-term glucocorticoid regulation of

the HPA axis, we examined Mkp1 mRNA levels (in situ

hybridization) in the hypothalamic PVN, medial pre-

frontal cortex (mPFC), and anterior pituitary of male rats
http://joe.endocrinology-journals.org � 2014 Society for Endocrinology
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subjected to acute stress and corticosterone (CORT)

manipulations. The PVN contains the HPA axis-related

CRH neuron cell bodies. For comparison purposes, we also

examined Mkp1 mRNA levels in another brain region

important for the modulation of HPA axis activity, the

mPFC (Radley et al. 2006, Weinberg et al. 2010), as well as

in an additional anatomical element of the HPA axis, the

anterior pituitary. For these studies, we challenged rats

with the acute stressor restraint, which is considered a

moderate-intensity psychological stressor (Herman &

Cullinan 1997, Dayas et al. 2001, Pace et al. 2005). We

manipulated CORT levels by either removing endogenous

CORT (adrenalectomy) or by treating rats with an acute

injection of CORT. Although to date there has been very

limited study of Mkp1 gene expression in mammalian

brain, there is evidence for it being regulated in an

activity-dependent manner, contributing to neuronal

axonal plasticity, and being associated with major

depressive disorder (Sgambato et al. 1998, Kodama et al.

2005, Doi et al. 2007, Jeanneteau et al. 2012).
Materials and methods

Animals

Young adult male Sprague–Dawley rats (Harlan Labora-

tories, Indianapolis, IA, USA) weighed between 280 and

305 g at time of experimentation were housed two per-

cage. The colony room lights were maintained on a 12 h

light:12 h darkness cycle and rats were given rat chow

(Purina Rat Chow, Ralston Purina, St Louis, MO, USA) and

tap water and allowed to feed and drink ad libitum. Rats

were given at least a 2-week acclimation period to the

colony room before initiation of experimental procedures.

All experiments were performed during the first half of the

rats’ inactive period, when basal CORT secretion is at its

circadian trough. Handling and testing of all rats were

approved by the University of Colorado Institutional

Animal Care and Use Committee.
Surgery

Rats were adrenalectomized bilaterally (ADX) or were

sham-ADX under halothane anesthesia. Adrenal glands

were excised and removed through bilateral incisions that

were made through the dorsal-lateral skin and peritoneal

wall in close proximity to each kidney. Sham-ADX rats

experienced the same surgical procedure as ADX rats,

except that adrenal glands were left in place after their

localization. All ADX and sham-ADX rats were given
Published by Bioscientifica Ltd.

Downloaded from Bioscientifica.com at 08/23/2022 05:12:28AM
via free access

http://joe.endocrinology-journals.org
http://dx.doi.org/10.1530/JOE-13-0365


Jo
u
rn
a
l
o
f
E
n
d
o
cr
in
o
lo
g
y

Research C D OSTERLUND and others Loss of glucocorticoids
augments Mkp1 mRNA

220 :1 3
4 days to recover from surgery before the experimental

test day. ADX rats were given 0.9% saline drinking water

and allowed to drink ad libitum.
Restraint stress

Acute stress challenge consisted of placing rats in clear

plexiglass tubes (23.5 cm in length and 7 cm in diameter;

with multiple air holes). The size of the tube restricted

lateral, forward, and backward movement but did not

interfere with breathing. Restraint is widely accepted

as a psychological stressor within the stress neurobiology

field, which has not only a conceptual basis, but is

also supported by a study on neurocircuit activity (Dayas

et al. 2001).
Experimental procedures

Experiment 1 Effect of acute stress on PVN Mkp1

mRNA expression. Rats were exposed to 15 or 30 min of

stress or no-stress (nZ3–4). Immediately after restraint, or

at the same time of day (no-stress group), rats were killed

by guillotine decapitation. Brains were flash frozen in

isopentane (chilled between K30 and K40 8C) and then

stored at K80 8C until subsequent analysis.

Experiment 2 Effect of long-term absence of endogen-

ous glucocorticoid (ADX) and acute stress challenge

(restraint) on ACTH secretion and Mkp1 mRNA expression

in the PVN, anterior pituitary, and mPFC. On the test day,

ADX and sham-ADX rats were either subjected to 30 min

of restraint or left in their respective home cages (2!2

between-subjects factorial design; nZ6, NZ24). Immedi-

ately after decapitation, brains were removed, flash frozen

in isopentane (chilled between K30 and K40 8C) and then

stored at K80 8C until subsequent analysis. In addition,

trunk blood was collected for subsequent plasma ACTH

hormone measurement.

Experiment 3 Effect of a phasic 1 or 3 h CORT

pretreatment on mPFC and PVN Mkp1 mRNA expression

of non-stressed adrenal-intact rats. On the test day, rats

were given an injection of CORT (2.5 mg/kg, i.p.) or

vehicle (1 ml/kg, i.p.) 1 or 3 h before decapitation (2!2

between-subjects factorial design; nZ6; NZ24). This

exogenous CORT treatment procedure produces plasma

CORT levels in rats that closely match the endogenous

CORT levels and time course associated with a moderate

intensity stressor, such as restraint (Pace et al. 2001,

Barnum et al. 2008). The period of 1 to 3 h post CORT
http://joe.endocrinology-journals.org � 2014 Society for Endocrinology
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treatment is within the time range that another study

detected a significant increase in mast cell Mkp1 gene

expression after glucocorticoid treatment (Kassel et al.

2001). After each injection, rats were returned to their

home cage and home room. In order to minimize stress-

induced CORT increase in the vehicle-treated rats, we

habituated rats to the injection procedure by poking rats

with the blunt end of a 1 ml syringe (no needle attached)

for 2 min over a 3-day period before testing. CORT was

purchased from Steraloids, Inc. (Newport, RI, USA) and

dissolved in vehicle (10% ethanol, 30% propylene glycol,

and 60% sterile saline).
ACTH RIA

Trunk blood was collected into EDTA-containing vacutai-

ner tubes (Becton-Dickinson, Franklin Lakes, NJ, USA),

placed on wet ice, and then centrifuged for 15 min (4 8C).

Plasma was then aliquoted into microfuge tubes and snap-

frozen on dry ice. The blood-processing procedure was

completed within 45 min after decapitation. ACTH

(pg/ml) was determined in duplicate (100 ml of plasma)

by using a competitive RIA protocol as described pre-

viously (Osterlund & Spencer 2011). Radiolabeled 125-I

ACTH-Tracer was obtained from DiaSorin (Stillwater, MN,

USA) and primary ACTH anti-serum Rb 7 (diluted to a

final concentration of 1:30 000) was provided courtesy

of Dr W Engeland (University of Minnesota, twin cities

campus, Department of Neuroscience). The detection

limit for this assay was 15 pg/ml; the intra-assay coefficient

of variability was 4%.
CORT ELISA

Plasma CORT samples were measured using 20 ml of

plasma with an enzyme immunoassay kit (Assay Design,

Ann Arbor, MI, USA). All samples were diluted in a ratio of

1:50 in assay buffer and incubated in a 70 8C water bath for

1 h to denature corticosteroid-binding globulin. Heat-

inactivated samples were then processed as per the

instructions from the assay kit. Sensitivity of the CORT

assay, as reported by the manufacturer, is 27 pg/ml. The

intra-assay coefficient of variability was 6.3%.
In situ hybridization assay

Coronal brain sections and horizontal pituitary sections

(12 mm thick) were obtained with a cryostat (model 1850;

Leica Microsystems, Nussloch, Germany) and thaw

mounted onto Superfrost Plus slides (Fisher Scientific,
Published by Bioscientifica Ltd.
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Figure 1

Stress rapidly increased Mkp1 mRNA in the PVN. (A) Mkp1 mRNA

(optical density of autoradiographs) was significantly increased after

15 min of restraint and was increased to a greater extent after 30 min of

restraint. *Significant stress effect compared with the no-stress group;
†significant stress effect compared with 15 min stress group, P!0.05, FLSD.

(B) Representative portions of autoradiographs surrounding the PVN taken

from a rat within each treatment group as denoted in the aligned (A) bar

graph. Mkp1 mRNA in the PVN was not detectable on basal condition

autoradiographs.
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Pittsburgh, PA, USA). The 35S-UTP-labeled cRNA probes

for Mkp1 mRNA were generated using a cDNA template

from a portion of the Rattus norvegicus gene Dusp1

(accession number AF357203) corresponding to a 206

nucleotide mRNA sequence (positions 817–1022 from the

origin) that was cloned within the Spencer lab into a

transcription vector (pSCA, Agilent Technologies, Santa

Clara, CA, USA). The Mkp1 cDNA-containing plasmids

were subsequently linearized with the restriction endonu-

clease HinDIII and transcribed using T7 RNA polymerase.

The identity of Mkp1 cloned DNA was verified by DNA

sequencing (University of Colorado Molecular, Cellular

and Developmental Biology sequencing facility). After the

hybridization assay procedure (Girotti et al. 2006), slides

were exposed to X-ray film (Kodak Biomax MR film) for 14

days. Semiquantitative analyses were performed on

digitized images from X-ray films using the linear range

of the gray values obtained from an acquisition system

(Northern Lights lightbox, model B 95, Ontario, Canada;

CCD camera, model XC-77, Sony, Tokyo, Japan; image

capture with National Institutes of Health scion Image

v1.59 software, Frederick, MD, USA), as previously

described (Campeau et al. 2002). Brain regions of interest

(PVN and prelimbic (PrL) and infralimbic (IL) subregions

of mPFC) were identified by matching digitized rat

hypothalamic structures to rat brain atlas diagrams

(Paxinos et al. 1980). Quantification and analysis of images

were performed by individuals that were blind to

treatment condition assignments. For the PVN, bilateral

measurements were taken from four tissue sections (ca.

1.8 mm posterior to bregma) for each rat (4–8 measure-

ments for each rat brain). Measurements were also taken

from 4 to 6 sections of the anterior pituitary. For the PrL

and IL subregions of the mPFC, bilateral measurements

were taken from 2 to 4 tissue sections (ca. 3.2 mm anterior

to bregma) for each rat (4–8 measurements for each rat

brain). Average uncalibrated optical densities for each

region of interest were measured using the program NIH

ImageJ (version 1.42q).

Statistical analysis

One-way (Experiment 1) or two-way (Experiments 2 and 3)

between groups ANOVA was used to analyze the depen-

dent measures (Statistical Package for the Social Sciences,

SPSS, Macintosh computer version). Significant F-test

results were followed with a Fisher’s least significant

difference (FLSD) post-hoc test in order to assess the

statistical significance of differences between pairs of

groups. Additionally, a Pearson’s r correlational analysis
http://joe.endocrinology-journals.org � 2014 Society for Endocrinology
DOI: 10.1530/JOE-13-0365 Printed in Great Britain
was performed (SPSS) for Experiment 2. An alpha-level

of P%0.05 was used to determine statistical significance.

All graphical presentations of data represent group

meansGS.E.M.
Results

Experiment 1: PVN Mkp1 mRNA increased after 15 and

30 min restraint challenge

In this first experiment, we examined whether acute

psychological stress (restraint) would lead to a rapid

increase in Mkp1 mRNA levels within the PVN. Under

no-stress conditions, there was very little Mkp1 mRNA

detected within the PVN. Restraint substantially increased

PVN Mkp1 mRNA; F(3,11)Z4.2, P!0.05. Post-hoc tests

indicate that there was a significant increase in PVN

Mkp1 mRNA within 15 min of restraint and a progressively

greater increase after 30 min of restraint (Fig. 1).
Experiment 2: restraint increasedMkp1mRNA in the PVN,

anterior pituitary, and PFC, and this increase in the PVN

and anterior pituitary was augmented by the long-term

absence of endogenous glucocorticoids (ADX)

In this second experiment, we examined whether acute

stress (30 min restraint) would also lead to a rapid increase
Published by Bioscientifica Ltd.
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Figure 2

Both basal and stress-stimulated ACTH plasma levels were augmented in

ADX rats. Four days after ADX or sham-ADX surgery, rats were challenged

with 30 min restraint. *Significant stress effect compared with the no-stress

group for the same surgical condition; †significant tonic CORT condition

(ADX) effect compared with the sham group for the same stress condition;

P!0.05, FLSD.
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Figure 3

Stress-stimulated Mkp1 mRNA levels were augmented in PVN and anterior

pituitary of ADX rats. (A) PVN and (C) anterior pituitary relative Mkp1

mRNA levels for sham-operated or ADX rats 30 min restraint challenge

4 days after surgery. *Significant stress effect compared with the no-stress

group for the same surgical conditions; †significant tonic CORT condition

(ADX) effect compared with the sham group, for the same stress conditions;

P!0.05, FLSD. Representative autoradiographs forMkp1mRNA expression

in (B) PVN (coronal brain section) and (D) anterior pituitary (horizontal

section); regions of interest are denoted on a representative

autoradiograph taken from a rat from the ADX-Stress group.
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in Mkp1 mRNA in an additional anatomical element

of the HPA axis (the anterior pituitary) as well as in a

separate brain region (mPFC). We also examined whether

a stress-induced increase in Mkp1 mRNA depended

on stress-induced increases in endogenous CORT. As

expected, restraint-challenged rats displayed an increase

in ACTH secretion (stress effect: F(1,19)Z78.3, P!0.05),

and the absence of glucocorticoids resulted in a substantial

increase in basal and stress-stimulated ACTH secretion

(ADX effect: F(1,19)Z33.8, P!0.05; Fig. 2). Plasma CORT

analysis indicated that sham-ADX non-stressed rats

displayed normal low-basal levels of CORT (MZ48.8,

GS.E.M. 16.0 ng/ml) and stressed sham-ADX rats had

a significant increase in plasma CORT levels (MZ464.4,

GS.E.M. 21.8 ng/ml). All ADX rats had CORT levels near

or below the detection threshold of the assay.

Under non-stressed conditions, Mkp1 mRNA levels

were very low in the PVN and anterior pituitary (Fig. 3).

Within the PrL and IL subregions of the mPFC, Mkp1

mRNA levels were also low, but were clearly visible on

autoradiograms (Fig. 4). Sham-operated rats challenged

with 30 min of restraint displayed a significant increase

in Mkp1 mRNA expression within PVN (stress effect:

F(1,19)Z37.4, P!0.05), anterior pituitary (stress effect:

F(1,19)Z29.8, P!0.05), PrL cortex (stress effect: F(1,19)Z

14.7, P!0.05), and IL cortex (stress effect: F(1,19)Z42.8,

P!0.05). Stress-stimulated CORT levels of sham-operated

rats were not significantly correlated with the stress-

induced increase in Mkp1 mRNA levels in the PVN (rZ

0.27; PO0.05), PrL cortex (rZ0.34; PO0.05), or IL cortex

(rZK0.063; PO0.05). Interestingly, there was a trend for a

negative correlation between CORT levels and stress-

induced Mkp1 mRNA levels in the anterior pituitary
http://joe.endocrinology-journals.org � 2014 Society for Endocrinology
DOI: 10.1530/JOE-13-0365 Printed in Great Britain
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Figure 4

Stress increasedMkp1mRNA levels to a similar degree in themPFC of sham-

operated and ADX rats. Four days after ADX or sham-ADX surgery, rats

were challenged with 30 min restraint. Restraint increased Mkp1 mRNA

levels in the prelimbic (PrL, A) and infralimbic (IL, B) subregions of the

mPFC, and ADX increased basal Mkp1 mRNA levels in the IL. *Significant

stress effect compared with the no-stress group for the same surgical

condition; †significant tonic CORT condition (ADX) effect compared with

the sham group for the same stress condition; P!0.05, FLSD. (C)

Representative autoradiographs for Mkp1 mRNA expression in mPFC

(coronal brain section); regions of interest are denoted on a representative

autoradiograph taken from a rat from the ADX-stress group. Note that

there were low but visible Mkp1 mRNA levels in the mPFC visible on

basal-condition autoradiographs.
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(rZK0.64, PZ0.244), suggesting that acute CORT may

have had an inhibitory influence on stress-induced Mkp1

mRNA levels. Rather than attenuating stress-induced

Mkp1 mRNA levels, as predicted, ADX augmented stress-

stimulated Mkp1 mRNA levels within the PVN (stress!

ADX interaction F(1,19)Z11.0, P!0.05) and anterior

pituitary (stress!ADX F(1,19)Z5.1, P!0.05). There was

also a trend towards higher stress-induced Mkp1 mRNA
http://joe.endocrinology-journals.org � 2014 Society for Endocrinology
DOI: 10.1530/JOE-13-0365 Printed in Great Britain
levels in the PrL and IL cortex of ADX rats; however, there

was not a significant stress!ADX interaction in either

brain region. On the other hand, within the IL cortex there

was a significant increase in Mkp1 mRNA levels of non-

stressed ADX rats compared with sham-operated rats

(FLSD, P!0.05).
Experiment 3: acute CORT treatment was not sufficient to

upregulate PVN or mPFC Mkp1 mRNA levels

Although Experiment 2 demonstrated that an increase in

endogenous CORT was not necessary for a stress-induced

increase in Mkp1 mRNA, there is still the possibility that

an acute increase in CORT is sufficient to produce

an increase in Mkp1 mRNA in PVN and mPFC, which

may be masked by the effect of restraint stress.

Thus, this experiment examined the effect of vehicle or

CORT injection in the absence of restraint stress on

subsequent Mkp1 mRNA expression. As expected, plasma

CORT measures indicated that there was a greater level of

plasma CORT present 1 h after CORT injection (MZ149.1,

GS.E.M. 51.3 ng/ml) compared with vehicle injection

(MZ33.4,GS.E.M. 13.0 ng/ml). By 3 h after CORT injection,

the exogenous CORT had cleared such that plasma

CORT levels were low in both CORT-injected rats

(MZ7.5,GS.E.M. 1.5 ng/ml) and vehicle-injected rats

(MZ22.0,GS.E.M. 11.2 ng/ml).

We observed no difference in Mkp1 mRNA levels of

CORT vs vehicle-injected rats in either brain region

(Fig. 5). Similar to non-stressed conditions in Experiments

1 and 2, we observed almost undetectable levels of Mkp1

mRNA within the PVN. Within the PrL, there was a

moderate level of Mkp1 mRNA expression present 1 h after

injection, but it did not differ between CORT and vehicle

treatments. Interestingly, for both CORT and vehicle

treatment groups, there was a lower level of Mkp1 mRNA

expression in PrL 3 h after injection compared with 1 h

after injection (post injection time: F(1,10)Z2.4, P!0.05),

perhaps indicating that the stress of injection produced

a transient increase in Mkp1 mRNA levels in PrL

that was evident 1 h, but less so by 3 h after injection.

A similar pattern of Mkp1 mRNA was observed in IL (data

not shown).
Discussion

In this study, we found that Mkp1 mRNA was rapidly

increased by acute psychological stress within anatomical

elements of the HPA axis (PVN and anterior pituitary) and

in a stress-responsive brain region that provides regulatory
Published by Bioscientifica Ltd.
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Acute CORT treatment did not increase PVN or prelimbic (PrL) cortex Mkp1

mRNA levels. Adrenal-intact rats received injections of CORT (2.5 mg/kg,

i.p.) or vehicle 1 3 h before they were killed. There was very low Mkp1

mRNA expression in the PVN for the four treatment groups. There was a

moderately high level of Mkp1 mRNA expression in the PrL subregion of

the mPFC 1 h after injection and lower levels 3 h after injection (P!0.05),

but the levels did not differ between CORT or vehicle-injected rats.

*Significant pretreatment-time difference effect in the PrL.
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modulation over the HPA axis (mPFC) (Diorio et al. 1993,

Radley et al. 2006, Weinberg et al. 2010). Contrary to the

predictions based on studies of glucocorticoid regulation

of Mkp1 gene expression in peripheral tissues and cell lines

(Clark et al. 2008), we found that acute CORT treatment

was not sufficient to increase Mkp1 mRNA within the brain

and endocrine tissues examined. Moreover, stress-induced

CORT secretion was not necessary for the rapid increase in

Mkp1 mRNA observed after acute stress. Instead, we found

that stress-induced Mkp1 gene expression was augmented

within the PVN and anterior pituitary of the rats that

lacked endogenous adrenal glucocorticoids. These results

suggest that Mkp1 expression is dynamically regulated in

brain and neuroendocrine tissue, and that endogenous

glucocorticoids may have a tonic suppressive role in

regulating Mkp1 gene expression in these tissues, perhaps

by indirectly constraining activity-dependent regulation

of MAP-kinase (see discussion below).

A number of studies have found that the Mkp1 gene

behaves as an activity-dependent immediate early gene

in response to a wide variety of stimuli within various

peripheral cell types and transformed cell lines (Clark

2003, Patterson et al. 2009, Caunt & Keyse 2013). Initial

indication that the Mkp1 gene may be regulated in a

similar fashion within mammalian neural tissue was

provided by studies that observed a rapid increase in

Mkp1 mRNA in striatal and hippocampal subregions of the

rodent brain after direct electrical stimulation or electro-

convulsive seizure (Sgambato et al. 1998, Davis et al. 2000,

Kodama et al. 2005). Subsequently, activity-dependent

Mkp1 gene induction in the mammalian brain has also

been observed in the suprachiasmatic nucleus in response

to a light pulse during the subjective night (Doi et al.
http://joe.endocrinology-journals.org � 2014 Society for Endocrinology
DOI: 10.1530/JOE-13-0365 Printed in Great Britain
2007). Our first experiment showed that PVN Mkp1 gene

expression was rapidly increased within 15 min of

restraint, an acute stress challenge that is predominantly

psychological in nature (Herman & Cullinan 1997, Dayas

et al. 2001). Our second experiment showed that this same

stressor produced a rapid increase in Mkp1 mRNA within

the anterior pituitary and mPFC (PrL and IL). Despite the

contrasting influence that the PrL and IL cortex have

over the PVN (inhibitory and excitatory respectively)

(Radley et al. 2006), both subregions of the medial-PFC

display stress-dependent rapid induction of other experi-

ence-dependent genes such as c-Fos and Fra2 (FOSL2)

(Weinberg et al. 2007). We observed nearly undetectable

levels of Mkp1 mRNA within the PVN and the anterior

pituitary under no-stress conditions, whereas there was

a greater degree of constitutive Mkp1 mRNA expression

within the mPFC. Moreover, our third experiment

indicates that there may be a greater sensitivity of Mkp1

mRNA induction to the mild stress of vehicle injection in

the mPFC than in the PVN. Overall, our study extends the

extent of known activity-dependent operation of the Mkp1

gene to neural and endocrine elements of the HPA axis

and to the mPFC. In addition, our results indicate that a

moderate-intensity stressor is an effective experience for

producing a rapid and substantial increase in Mkp1 mRNA

in the adult rat brain.

In this study, we explored the possibility that CORT

serves as both an intercellular and intracellular stress-

dependent signal for Mkp1 gene induction (Clark 2003,

Clark et al. 2008). We found, however, that the presence

of endogenous CORT was not necessary for the stress-

induced increase in Mkp1 mRNA within the tissue

examined. In addition, acute CORT treatment was not
Published by Bioscientifica Ltd.

Downloaded from Bioscientifica.com at 08/23/2022 05:12:28AM
via free access

http://joe.endocrinology-journals.org
http://dx.doi.org/10.1530/JOE-13-0365


Jo
u
rn
a
l
o
f
E
n
d
o
cr
in
o
lo
g
y

Research C D OSTERLUND and others Loss of glucocorticoids
augments Mkp1 mRNA

220 :1 8
sufficient to increase Mkp1 mRNA levels. An in vitro study

has also indicated that glucocorticoid treatment alone

does not increase Mkp1 gene expression, but that study

revealed that glucocorticoid treatment augmented Mkp1

gene induction in response to other cellular stimuli (Zhou

et al. 2007). In contrast to the finding of that study, we

observed an opposite effect. In the anatomical elements of

the HPA axis there was a greater stress-induced increase in

Mkp1 mRNA in rats lacking endogenous CORT. It should

be noted that the mPFC, PVN, and anterior pituitary all

express high levels of GR (Gustafsson et al. 1987, Herman

1993, Francis et al. 2006). Furthermore the levels of CORT

typically secreted in response to restraint are sufficient to

activate GR in those tissues (Reul & de Kloet 1985, Spencer

1993). Thus, we conclude that CORT-activated GR does

not contribute to a rapid induction of Mkp1 mRNA in the

PVN, mPFC, and anterior pituitary.

Several functional glucocorticoid response elements

(GREs) have recently been identified in the distal promoter

region of the human Mkp1 gene (Shipp et al. 2010, Tchen

et al. 2010). Although some of those putative GREs exhibit

high homologous nucleotide sequences at approximately

the same upstream locations as for the rat Mkp1 gene, they

fail to exhibit similar functional responsiveness to gluco-

corticoids when assessed in gene transcription reporter

assays (Tchen et al. 2010). Whether glucocorticoids

influence transcriptional processes is often dependent on

cellular function and location. For example, glucocorti-

coids provide suppressive transcriptional regulation of the

Crh gene in the PVN CRH neuroendocrine neurons

(Swanson & Simmons 1989, Ginsberg et al. 2003, Bali

et al. 2008, Sharma et al. 2013), but in other forebrain

regions, such as the amygdala and bed nucleus of the stria

terminalis, glucocorticoids either upregulate Crh gene

expression or have no effect (Makino et al. 1995, Schulkin

et al. 1998). Glucocorticoid regulation of the Mkp1 gene

may also vary with cell phenotype and cell state, and these

factors may differ across species (Tchen et al. 2010).

The profile of glucocorticoid regulation of Mkp1 gene

expression in the PVN that we observed in this study is

similar to what we have seen in previous studies for the

immediate early genes c-Fos, Zif268 and Ngfi-b (Girotti

et al. 2007, Pace et al. 2009). Whereas the absence of

endogenous glucocorticoids produced a large increase in

both basal and stimulated ACTH hormone levels, for each

of these immediate early genes only stimulated levels were

augmented in the PVN of ADX rats. This expression profile

may indicate that glucocorticoids indirectly regulate the

expression of Mkp1 and other immediate early genes

within the PVN. One possible mechanism for this indirect
http://joe.endocrinology-journals.org � 2014 Society for Endocrinology
DOI: 10.1530/JOE-13-0365 Printed in Great Britain
effect could be alteration of CRH neuron responses to

acute stress by altering CRH receptor (CRH-R1) expression

within PVN CRH neurons (Luo et al. 1995, Imaki et al.

2001). For example, ADX has been shown to increase CRH-

R1 expression in the rat PVN (Luo et al. 1995). Thus, the

long-term absence of CORT may lead to an augmented

positive CRH feedback loop onto PVN CRH neurons,

resulting in increased signaling activity (e.g., MAP-kinase

activation), transcriptional processes (e.g., Mkp1 gene

expression), and neuropeptide release (e.g., CRH) within

these neuroendocrine cells. Regardless of the mechanism,

there appears to be some process by which the tonic

presence of glucocorticoids constrains the general

reactivity of these cells to excitation (Pace et al. 2009,

Osterlund & Spencer 2011, Osterlund et al. 2011, Weiser

et al. 2011).

Although the specific process remains undetermined,

the augmented Mkp1 gene expression in the absence of

glucocorticoids may be secondary to an augmentation of

ERK1/2 activation in CRH neurons. We have previously

observed an increased number of stress-induced phospho-

ERK1/2-positive cells in the PVN of ADX rats, which was

normalized by giving ADX rats CORT in their drinking

water (Osterlund et al. 2011). MAP-kinase pathway

activation has been found to converge on Mkp1 gene

expression in a number of cell types (Brondello et al. 1997,

Camps et al. 2000, Kassel et al. 2001). This Mkp1 gene

induction may serve as a form of intracellular negative

feedback control over the pluripotent MAP-kinase intra-

cellular signaling network. There is some evidence that in

the neural tissue the activity-dependent Mkp1 gene

induction depends specifically on ERK1/2 (Sgambato

et al. 1998, Jeanneteau et al. 2012). Interestingly, in

cultured cortical neurons, ERK1/2 activation was necess-

ary for activity-dependent Mkp1 gene induction, with the

subsequent upregulated MKP1 protein responsible for

negative regulation of the phosphorylation state and

function of a different MAP-kinase (c-jun N-terminal

kinase) (Jeanneteau et al. 2012). Basal CORT levels may

not only constrain Mkp1 expression within the HPA axis,

they may also have an important modulatory influence

on Mkp1 gene expression in a variety of extrinsic

hypothalamic forebrain regions. In this study, we saw a

trend towards greater stress-induced Mkp1 mRNA in the

mPFC of ADX rats. In addition, there was a significant

increase in basal Mkp1 mRNA in the IL subregion of the

mPFC of ADX rats.

Our results, taken together with others, indicate that

the Mkp1 gene may be induced in a wide-range of brain

regions by an extensive set of experiential conditions.
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Thus, the activity dependence of Mkp1 gene expression

may resemble that of some other activity-dependent

immediate early genes, such as c-Fos, Zif268, and Arc,

which are critical for experience-dependent neuroplasti-

city (Guzowski et al. 2001, Loebrich & Nedivi 2009, Okuno

2011). Given the importance of the MAP-kinase intra-

cellular signaling network for neuroplasticity in the

developing and adult brain, it would not be surprising

that tight regulation of this molecular network is critical

for optimal function (Sweatt 2001, Waltereit & Weller

2003, Davis & Laroche 2006, Ayroldi et al. 2012). Mice

lacking the Mkp1 gene exhibit a range of heightened

inflammatory processes, presumably due to the over-

activity of MAP-kinases (Chi et al. 2006, Maier et al.

2007, Wang et al. 2008, Patterson et al. 2009, Vandevyver

et al. 2012). This anti-inflammatory role of MKP1 may

extend to brain microglia (Zhou et al. 2007). Cortical

neurons cultured from Mkp1 gene-knockout mice are

deficient in their axonal branching response to brain-

derived neurotrophic factor (Jeanneteau et al. 2012).

Support for the importance of MKP1 gene expression

levels in human brain function is provided by a study that

found increased Mkp1 mRNA levels in the postmortem

brains of individuals with major depressive disorder (Duric

et al. 2010). The dynamic interaction between MAP-

kinases and MKP1 appears to be an important element of

neural function, and may be an effective pharmacother-

apeutic target. Further study of how that interaction may

be modulated by the tonic changes in glucocorticoids

associated with chronic stress and various mental and

physical disorders is warranted.
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