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Absence of internal multidecadal and interdecadal
oscillations in climate model simulations
Michael E. Mann1*, Byron A. Steinman2 & Sonya K. Miller 1

For several decades the existence of interdecadal and multidecadal internal climate oscilla-

tions has been asserted by numerous studies based on analyses of historical observations,

paleoclimatic data and climate model simulations. Here we use a combination of observa-

tional data and state-of-the-art forced and control climate model simulations to demonstrate

the absence of consistent evidence for decadal or longer-term internal oscillatory signals that

are distinguishable from climatic noise. Only variability in the interannual range associated

with the El Niño/Southern Oscillation is found to be distinguishable from the noise back-

ground. A distinct (40–50 year timescale) spectral peak that appears in global surface

temperature observations appears to reflect the response of the climate system to both

anthropogenic and natural forcing rather than any intrinsic internal oscillation. These findings

have implications both for the validity of previous studies attributing certain long-term cli-

mate trends to internal low-frequency climate cycles and for the prospect of decadal climate

predictability.
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I
t is well known that the El Niño/Southern Oscillation (ENSO)
leads to interannual oscillatory behaviour in the climate,
providing prospects for climate predictability at seasonal1 and

perhaps even interannual timescales2. Nevertheless, there remains
considerable uncertainty about the nature of decadal and longer-
term natural, internal climate variability. Are there preferred
decadal, interdecadal, or multidecadal timescale oscillations in the
climate system that are distinct from the simple red noise back-
ground of climate variability? Is there evidence that such modes
are predictable at decadal and longer timescales? After decades of
study, these questions still lack definitive answers.

A substantial body of research has argued for the existence of
an oscillatory climate mode centred in the Pacific basin with an
interdecadal (~20 year) timescale. This mode is variously referred
to as the Interdecadal Pacific Oscillation (IPO)3–6 or Pacific
Decadal Oscillation (PDO)7, arguably two manifestations of the
same phenomenon. It exhibits an ENSO-like spatial pattern, but
with a meridionally broader signature in the tropics, and with
extratropical ocean–atmosphere interactions playing a greater
role4. Some studies have characterised the PDO and IPO by a
rather broad frequency band of decadal and interdecadal time-
scales, with possibly overlapping causal mechanisms3,8,9.
Researchers10,11 have hypothesised that such variability might
arise from coupled tropical and extratropical interactions on
decadal timescales, rather than tropical or extratropical
mechanisms alone, with a response that is strongly influenced by
ENSO. Other analyses of both observations12–14 and model
simulations15, however, argue for the existence of a more nar-
rowband (i.e. true oscillatory) signal characterised by a roughly
bidecadal (16–20 year) timescale that is distinguishable from the
continuous noise background (a review of the substantial body of
research arguing for such a signal is provided in ref. 14).

Evidence for a multidecadal (50–70 year timescale) climate
oscillation centred in the North Atlantic originated in work by
Folland et al. during the 1980s16,17. Additional support was
provided in subsequent analyses of observational climate data18.
The confident identification of any low-frequency oscillatory
climate signal, however, was hampered by the limited (roughly
one century) length of the instrumental climate record and the
potential contamination of putative low-frequency oscillations by
forced long-term climate trends. Subsequent work in the mid-
1990s attempted to address these limitations. Mann and Park12,13

and Tourre et al.19 used a multivariate signal detection approach,
the multi-taper method singular value decomposition (MTM-
SVD) method, to separate distinct long-term climate signals,
while Schlesinger and Ramankutty20 employed climate model
simulations to estimate and remove the forced trend from
observations. These analyses appeared to provide further evidence
for a multidecadal (50–70 year) timescale signal centred in the
North Atlantic with a weak projection onto hemispheric mean
temperature. Mann et al.21 presented evidence based on analyses
of paleoclimate proxy data that such a signal persists several
centuries back in time.

Meanwhile, analyses of one specific (GFDL) climate model by
Delworth et al.22,23 demonstrated an internal multidecadal
oscillation associated with the North Atlantic Meridional Over-
turning Circulation (AMOC) and coupled ocean–atmosphere
processes in the North Atlantic. Using the MTM-SVD signal
detection approach, Delworth and Mann.24 provided further
evidence for a distinct narrowband (40–60 year) multidecadal
oscillation in a long (1000 year) control simulation of the GFDL
model. This mode was subsequently termed the Atlantic Multi-
decadal Oscillation (AMO)25 (the term was coined by M. Mann
in an interview26 with Kerr; it is sometimes alternatively referred
to as Atlantic Multidecadal Variability or AMV, wherein a dis-
tinct oscillatory timescale is less clearly implied).

In most studies, the AMO surface temperature signal is found
to be concentrated in the high latitudes of the North Atlantic,
while the projection onto the tropics and onto Northern Hemi-
sphere (NH) mean temperature is modest. Knight et al.27,28

demonstrated (also using the MTM-SVD method applied to the
model global surface temperature field) the existence of an AMO
signal in a 1400 year control simulation of the Hadley Centre
(HadCM3) coupled model with peak temperature variations
approaching 0.5 °C in the high latitudes of the North Atlantic, but
with a modest amplitude of only ~0.1 °C in the tropical North
Atlantic, and a ~0.1 °C projection onto hemispheric mean tem-
perature. They also identified a teleconnection of the signal into
the extratropical North Pacific, implying that some of the mul-
tidecadal variability evident in North Pacific SSTs might be
associated with the AMO.

Many studies have attributed the observed AMO to internal
oscillatory behaviour tied to the AMOC29–35, while others have
dismissed the AMO/AMV as simply the response of North
Atlantic SST to stochastic atmospheric forcing36–38. In addition,
the AMO has been attributed largely to the response of the North
Atlantic to external radiative forcing in some studies39–43, while
yet others argue that an oscillatory internal AMO signal may exist
but has been misidentified due to statistical procedures that do
not properly account for the forced component26,44–46.

Clement et al.36 coupled a slab ocean mixed-layer model (with
prescribed heat transport) to atmospheric general circulation
models from CMIP5 and produced spatial and temporal signatures
for the AMO that are highly similar to both observations and
results from simulations using fully coupled ocean–atmosphere
models with interactive ocean dynamics. They therefore suggest
that the AMO is the low-frequency response to high-frequency
atmospheric noise. This view, however, is difficult to reconcile with
apparently successful prediction experiments designed to forecast
AMO-related climate fields at decadal lead times47, results that are
unlikely to be achievable for the multi-decadal component of
simple red noise (by which we mean an AR(1) autocorrelated
process—see Methods). Zhang35 suggests that subpolar North
Atlantic climate fields exhibit more decadal persistence and more
spectral power on multidecadal timescales than can be expected for
red noise. On the other hand, Mann et al.48 show that these
observations, including false apparent predictability, may be an
artefact of incorrect or incomplete removal of the forced compo-
nent (e.g. anthropogenic forcing and the decadal-scale recovery
from major volcanic eruptions) before assessing the persistence
and predictability of putative internal variability (by ‘predictability’,
we mean predictive skill in excess of the expectations for simple
red noise i.e. ‘damped persistence’).

Haustein et al.43 used a two-box impulse response model to
argue that most of the low-frequency variability in global and
hemispheric mean surface temperature can be explained by
external forcing, which implies little role for multidecadal
internal variability. However, previous work12,27 demonstrates a
very weak projection of any AMO signal onto large-scale mean
temperature, as the putative signal is associated primarily with a
large-scale redistribution of heat, rather than a mean change in
surface temperature. For this reason, past analyses12,20,24,27 have
sought to detect spatiotemporal signals in the surface tempera-
ture field itself rather than simply a signal in hemispheric or
global mean temperature. While additional three-dimensional
sub-surface information (e.g. measures of meridional over-
turning) is also useful, past studies have shown that signals
associated with internal model-generated AMO-like variability
are clearly detectable in surface temperature and other surface
fields22–24,27,28.

Furthermore, while methods have been proposed for removing
the forced component of temperature change from historical
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observations or simulations, they are often associated with sig-
nificant methodological biases44–46,49,50. Indeed, it appears
extremely difficult even in principle to objectively separate forced
and internal variability components from simulations or obser-
vations that contain both45,46,51. Some recent studies of the AMO
have thus instead analysed the CMIP5 multimodel control
simulations where there is no change over time in for-
cing34,36,41,52–54. In these cases, however, spectral analyses were
performed on SST means across a rigidly defined index region, a
substantial limitation given that the spatial footprint of the signal
is likely to vary from one model to the next.

The question of whether or not there is an internal AMO
oscillation in the climate system (or for that matter, a PDO
oscillation) has thus been hampered by limitations in past studies
relying either on observations and/or simulations that simulta-
neously contain both forced and internal variability components,
or control simulations that involve a single (e.g. GFDL or
HadCM3) model rather than a representative multimodel
ensemble or employ a restricted definition of the AMO (i.e. an
SST average over some pre-defined region) that might not be
flexible enough to accommodate differences in model physics
across a multimodel ensemble.

In the current study, we attempt to deal with each of these past
limitations. Our premise, first of all, is that if a truly oscillatory
AMO or PDO signal exists, there must be a coherent large-scale
pattern of variability in the climate system that may or may not
cancel in a hemispheric mean, and possesses a narrow-band
signature in the frequency domain that is statistically significant
against the null hypothesis of coloured noise (including as a
special case, the typical null hypothesis of simple red noise).
Moreover, given the level of sophistication of the current gen-
eration of climate models, as indicated, for example, by their
ability to capture the coupled ocean–atmosphere dynamics
underlying the interannual oscillatory ENSO phenomenon, we
should expect evidence for the signal across a suite of state-of-the-
art climate model simulations. We must, however, allow for the
possibility that the precise spatial patterns and timescales of
the signal might vary from model to model, while recognising the
limitations that still exist in some models when it comes to
the representation of ocean–atmosphere processes relevant to
decadal internal variability55–57. An additional caveat is that
oscillatory interdecadal signals could be intermittent, excited
episodically by stochastic forcing27,58 but otherwise quiescent
over time intervals lasting a century or more. Control simulations
should ideally therefore span ~150 years or longer for more
confident inferences regarding the nature of such variability.

Results
Methodological decisions. In order to assess whether such evi-
dence exists, we have applied, to global surface temperature fields
(following seminal past studies12,27) in both observations and
models, a signal detection tool (MTM-SVD) that is almost
uniquely suited to this task. The MTM-SVD method (see
Methods section for details) was introduced by Mann and Park12

for the problem of detecting and characterising narrowband
signals in spatiotemporal geophysical datasets14,59. MTM-SVD
has been employed in more than 50 peer-reviewed studies over
the past 25 years, to analyse everything from paleoclimate proxy
records, to observational surface temperatures, sea level pressure
and drought variables, to climate model-simulated surface,
atmospheric and oceanic sub-surface fields. It has also been
applied in other fields, such as wireless communication and
network design (see Methods for representative references).
Assessments by digital signal processing experts60 have concluded
that the method offers improved performance in detecting

narrowband spatiotemporal signals relative to competing meth-
ods, owing to its optimal frequency-domain properties.

MTM-SVD performs a spatiotemporal decomposition of data
variance locally in the frequency domain, estimating whether
there is a specific large-scale pattern within a narrow frequency
band that describes a larger fraction of variance than would be
expected for an appropriately characterised noise process (this
fractional variance as a function of frequency, termed the Local
Fractional Variance or simply LFV spectrum, is used as a
detection variable).

We chose to analyse surface temperature fields because (a) the
putative signals in question have primarily been defined and
identified based on the analysis of surface temperature data and
(b) historical surface temperature observations extend far enough
back in time (more than 150 years) to separate a potential
multidecadal oscillation from the secular timescale variations.

Control simulations. We first analysed the CMIP5 control
simulations (Fig. 1), requiring a minimum length of 158 years so
that a putative multidecadal (40–70 year) oscillation can be
resolved from a secular trend (N= 44 simulations satisfy this
requirement (Supplementary Table 1). Nearly half of the simu-
lations (21 out of 44) are 500 years or greater in length, spanning
roughly 10 putative cycles of a multidecadal ~50 year oscillation.
The CMIP5 control simulations are thus more than adequate in
length to identify a multidecadal oscillation if it exists. It should
be noted as well that while the temporal variations of the IPO are
not well represented in CMIP5 models, the spatial pattern is
generally well represented10, suggesting that the model physics
distinguishes the IPO from ENSO.

Unlike the historical observations and simulations, control
simulations do not include external forcing (beyond the annual
and diurnal changes in radiative forcing). Thus, they provide a
much simpler laboratory wherein any apparently oscillatory
behaviour must arise from internal variability. There are several
noteworthy features in the results. First of all, we see a well
pronounced tendency for signals in the 3–7 year ENSO band.
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Fig. 1 Spectra for the global surface temperature fields from control

CMIP5 simulations and historical observations. Shading with mean over all

model simulations is shown by black curve and historical result is shown by

blue curve. Dark grey region bounds 68% of the simulations while light grey

region bounds 95% of the simulations. Lower (f=0.015 cycle/year) and

upper (f=0.5 cycle/year) bound on frequencies shown correspond to edge

of secular band and Nyquist sampling frequency. Inset zooms in on the

decadal (f=0.1 cycle/year) and longer periodicities. Horizontal dashed lines

correspond to median (p=0.5) and p=0.1, 0.05 and 0.01 significance levels

relative to coloured noise null hypothesis. Local Fractional Variance (LFV).
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Indeed, even the ensemble-mean spectrum, despite the tendency
for cancellation of individual spectral peaks among ensemble
members, breaches significance at the p= 0.1 level within the
ENSO band.

There are no other robust spectral features found in the control
simulations, including neither bidecadal PDO (15–20 year) nor
multidecadal AMO (40–60 year) timescales. The ensemble upper
16% bound on the LFV spectrum remains below the p=
0.1 significance level over the multidecadal (40–70 year) interval,
indicating that the distribution of peaks over this frequency range
is essentially indistinguishable from the expectations for random
noise. It is noteworthy that neither of the two models (HadGEM2
and MPI-ESM-LR) specifically argued to exhibit an AMO signal
based on analysis of the CMIP5 historical ensemble61, show
evidence of a multidecadal spectral peak for the corresponding
control simulations (Supplementary Fig. 1).

Historical observations. These results would seem to cast doubt
on the existence of either an AMO or PDO-like climate signal.
However, analysis of historical observations seems to provide
evidence of a narrowband AMO signal. Analysis of gridded global
modern surface temperature observations (see Methods) over the
169-year period 1850–2018 (Fig. 2) reveals three spectral peaks
that are statistically significant relative to the null hypothesis of
coloured noise. These include two peaks within the interannual
3–7 year ENSO band and a multidecadal peak centred at a 50-
year period, consistent with a putative 40–60 year AMO oscilla-
tory signal (signals with periodicities less than half the record
length, i.e. 85 years in this case, can be separated from a secular
trend; see Methods). In contrast with earlier studies12,13,62, we
find no evidence for a statistically significant bi-decadal (15–20
year timescale) PDO peak using the longer, more comprehensive
surface temperature data now available. Both this peak and a
quasidecadal ~11 year peak identified by Mann and Park12,13

are seen to be statistically significant in an evolutionary MTM-
SVD spectral analysis for the 100 year window of 1890–1990
used in that work. These peaks disappear, however, using the

considerably longer instrumental dataset of this study (Supple-
mentary Fig. 2), calling into question their robustness.

Historical simulations. We next analysed the CMIP5 historical
simulations (Fig. 2; see Methods), requiring a minimum length of
158 years so that a putative multidecadal (40–70 year) oscillation
can be resolved from a secular trend (N= 118 simulations satisfy
this requirement—Supplementary Table 1). Individual spectral
peaks tend to cancel when averaging over the multimodel
ensemble, but even in the multimodel mean LFV spectrum there
is a clear interval of elevated variance within the interannual 3–7
year ENSO band where there is greatly increased incidence of
statistically significant (i.e. p < 0.05) spectral peaks. There is an
average of 2.8 statistically significant spectral peaks in the ENSO
band per simulation (which compares favourably with the two
spectral peaks observed in the actual observations). Even more
striking, however, is the multidecadal peak centred at the same
frequency (f ~ 0.02 cycle/year) as in the observational data. This
peak is highly robust, statistically significant even in the mean
(and median) over all simulations. The peak is similar in both
frequency and amplitude to the corresponding peak in the his-
torical observations.

In contrast with the previous analysis of CMIP5 control
simulations, these latter analyses of the historical period seem to
provide consistent evidence in both observations and climate
model simulations for an AMO signal. However, the interpreta-
tion of these analyses is complicated, as discussed earlier, by the
fact that both forcing (anthropogenic and natural) and internal
variability contribute to the observed variability. A parallel
analysis of anthropogenic-only (see Methods) historical simula-
tions yields a spectral peak that is also robust but centred at a
lower frequency (closer to 60 years) (Supplementary Fig. 3). If the
AMO signal in question reflects internal variability, it is curious—
and indeed worrying—that it's character would appear to depend
on the types of forcing included.

It is instructive to examine the spatiotemporal characteristics of
the putative AMO signal in observations and simulations more
closely. In the latter case, we have chosen as examples two models
—HadGEM2-ES and MPI-ESM-LR—that have previously been
argued to exhibit a strong AMO signal in analyses of CMIP5
historical simulations61. We find in each case a spatial pattern
(Fig. 3) that emphasises the North Atlantic to some degree,
consistent with an AMO signature, but the pattern is also similar
to the estimated response to anthropogenic sulphate aerosols63.
While the temporal signal (Fig. 3) is suggestive of a multidecadal
cyclicity, the phase of the signal is synchronised for all three cases
—observations and the two model simulations—during the latter
half century, with positive peaks near 1940 and 2000 and a
negative peak near 1980. If the AMO is an internal oscillation,
there is no reason that its phase should be synchronised among
three independent realisations (the observations and the two
different model simulations).

Discussion
The above results were compared (Fig. 3) to an AMO study by
Mann et al.26 that examined the performance of competing
methods of defining the AMO from observations. Mann et al.26

show that a commonly used approach for estimating the AMO
—linear detrending followed by a low-pass filter—leaves behind
residual low-frequency (anthropogenic and natural) forced
variability that masquerades as an apparent internal AMO
oscillation. The study showed that a more rigorous approach
that uses the CMIP5 multimodel ensemble mean to estimate
and then remove the forced signal yields an entirely different
and lower-amplitude AMO series. They showed that the
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Fig. 2 Spectra for the global surface temperature fields from historical

CMIP5 simulations using natural and anthropogenic forcing and

historical observations. Shading with mean over all model simulations is

shown by black curve and historical result is shown by blue curve. The
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coloured noise null hypothesis. Local Fractional Variance (LFV).

ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-019-13823-w

4 NATURE COMMUNICATIONS |           (2020) 11:49 | https://doi.org/10.1038/s41467-019-13823-w |www.nature.com/naturecommunications

www.nature.com/naturecommunications


detrended AMO approach yields an inflated apparent AMO
signal with precisely the features mentioned above: positive
peaks near 1940 and 2000 and negative peak near 1980. Those
features were shown to be largely an artifact of the substantial
1950s–1970s aerosol surface cooling trend masquerading as
part of an AMO oscillation. Mann and Emanuel44 came to a
similar conclusion.

It is worth noting that some individual models do indeed
exhibit an AMO-like multidecadal signal in the control simula-
tions. Consider for example GFDL ESM-2G, which exhibits a
distinct spectral peak centred at ~40 year period that is significant
at the p < 0.01 level, with a spatiotemporal pattern that is indi-
cative of an AMO-like signal (Fig. 4). These models are none-
theless the exception to the rule, with, as noted earlier, fewer than

7 out of 43 models breaching the p= 0.1 significance level (we
would expect at least 4 based on chance alone).

Based on the available observational and modelling evidence,
the most plausible explanation for the multidecadal peak seen in
modern climate observations is that it reflects the response to a
combination of natural and anthropogenic forcing during the
historical era. Moreover, there is no compelling evidence from
control simulations for any robust interdecadal or multidecadal
climate oscillations, with the only signals that are distinct from
coloured noise found within the interannual ENSO frequency
band. While this does not prove that physically-based inter-
decadal and multidecadal modes of variability do not exist, it does
call into question whether they can be classified as an oscillation
(i.e. a narrowband signal).
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This finding has a number of important implications. The lack
of evidence for bidecadal or multidecadal oscillations that are
distinct from red noise calls into question prospects for skilful
initial value decadal forecasts based on the assumption of pre-
dictable internal variability. Some recent work suggests that
apparent predictability in these forecasts arises mostly or entirely
from the specification of forcing (e.g. the predictable warming
following large volcanic eruptions in 1982 and 1991)48. Our
findings, moreover, call into question the past attribution to
interdecadal and multidecadal climate cycles of a variety of cli-
mate trends including recent increases in North Atlantic sea
surface temperatures and Atlantic hurricane activity44. Our
findings also motivate a re-evaluation of evidence21,24 for low-
frequency climate oscillations in paleoclimate proxy data. Such
apparent oscillations could reflect either internal or externally
forced low-frequency climate variability. Parallel analyses of
CMIP Last Millennium simulations and long-term paleoclimate
proxy data, which might shed further light on this matter, con-
stitute the subject of potential future study.

Methods
MTM-SVD. The MTM-SVD methodology has been employed in more than
50 studies over the past 25 years. Applications include the analysis of global surface

temperatures12,64, precipitation65,66, drought67,68, coupled patterns in multiple
climate fields including surface temperature, sea level pressure, winds and sea
ice13,24,64,69–85, paleoclimate proxy data69,86 and proxy-based climate field recon-
structions24,87. Applications in other fields include wireless communication and
network design60,88,89.

The MTM-SVD method is described in detail in the Mann and Park14 review
article, which includes an extensive discussion of the theoretical motivation and
underlying assumptions, applications to synthetic examples that demonstrate the
efficacy and performance of the method in detecting narrowband spatiotemporal
signals embedded in red noise, and applications to observational atmospheric,
oceanic, and paleoclimatic data sets. The method has also been summarised in
Jolliffe59.

A brief summary of the method is provided here.
MTM-SVD performs a singular value decomposition (SVD) of a multivariate

dataset in the frequency, rather than—as in e.g. standard Principal Component
Analysis (PCA)—the temporal, domain. For each time series, a decomposition is
performed at each frequency f over a bandwidth of ±pfR, where fR, the Rayleigh
frequency, is the minimum resolvable frequency, fR= 1/NΔt, for a dataset of N
samples with temporal spacing Δt and p= K− 1, where K is the number of
orthogonal (Slepian) data tapers (i.e. windowing functions) used in the Multitaper
Method (MTM) of spectral analysis. Slepian tapers are mathematically equivalent
to prolate spheroidal wavefunctions, and represent the solution to a variational
problem which minimises spectral leakage outside a central band of width ±pfR in
frequency space. The first K data tapers are optimally resistant to spectral leakage,
so that the choice of K in MTM represents a tradeoff between degrees of freedom
(and thus, the variance in the spectrum estimate) and resolution of the spectrum.
The choice K= 3 provides multiple (3) spectral degrees of freedom for only a
modest widening (factor p= 2) of frequency resolution, making it a convenient
choice for many applications. The first K= 3 data tapers can be thought of as the
three lowest-order possible temporal modulations of a carrier signal of frequency f.

The MTM-SVD decomposition of the multivariate dataset of M spatially
distributed time series (which could correspond to a single spatial field like surface
temperature, or a joint analysis of multiple spatial fields such as surface
temperature, sea level pressure, etc.) into K orthogonal modes at frequency f takes
the form:

A fð Þ ¼

w1Y
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1 w1Y
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where wi represents the relative weights on each of the M data series (e.g. a cosine
latitude factor if accounting for areal weighing of data provided on a uniform
latitude x longitude grid), and Y is the spectral estimate corresponding to the lth

data taper wn(l) for the (appropriately normalised) mth time series x,

Y
ðmÞ
l fð Þ ¼

X

N

n¼1

wðlÞ
n xðmÞ

n ei2πfnΔt ð2Þ

The eigenvalues λk describe the relative amplitudes of each of the K orthogonal
modes, while the complex left M-eigenvector uk, the spatial Empirical Orthogonal
Function (EOF), contains the spatial amplitude and phase information for that
mode, and the complex right K-eigenvector vk, the spectral EOF, describes the
relative combination of the K independent data tapers that characterises the
temporal modulation envelope of the oscillatory signal. Wn

(l) denotes the lth
data taper.

The fraction λ1(f)/Σ λ1(f), denoted the Local Fractional Variance (LFV)
spectrum, is the detection parameter in the MTM-SVD routine. It measures the
fraction of multivariate data variance locally in a bandwidth centred on frequency f
that can be described in terms of a single mode (i.e. a particular pattern of temporal
modulation of the central carrier frequency of interest). In other words, it
establishes whether there is a single spatially coherent oscillatory signal (i.e. what
we define as an oscillation) centred at frequency f that describes more variance than
expected from noise (discussed further below).

If a spatiotemporal signal centred at frequency f0 is detected, it can be
reconstructed via

~xðmÞ
n ¼ γ f0ð Þ< σ mð Þu

mð Þ
1

~A1 nΔtð Þe�i2πf0nΔt
n o

ð3Þ

where m denotes spatial grid location m, u1(m) denotes the loading of the
principal spatial EOF for that grid location, σ(m) is the standard deviation of the
grid box time series, nΔt is the discrete time value (e.g. year), and γ(f0)= 2 for
signals outside the secular band (i.e. f0 > pfR), which applies for all signals of
interest in our analyses.

~A1 nΔtð Þ ¼
X

K

l¼1

ξ�1
l λl f0ð Þ v

lð Þ
1

� ��
wðlÞ
n ð4Þ
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is the temporal envelope modulating the sinusoidal oscillation at frequency f0,
constructed as a linear combination of the K Slepian data tapers wn(l) weighted
by the eigenvalue and the corresponding components of the principal spectral
EOF v1(l). The ξl are bandwidth retention factors associated with each of the K
data tapers.

The typical null hypothesis for climate variability is simple red noise, which can
be understood (e.g. Hasselmann90) as the response of a system with thermal inertia
(e.g. the oceans) to high-frequency white noise (e.g. idealised weather noise)
forcing. It is characterised by a single decorrelation or ‘persistence’ timescale, which
is tied, in the case of a discrete time series, to the lag-one temporal autocorrelation
coefficient of a simple AR(1) autocorrelated noise process. The MTM-SVD method
invokes a null hypothesis of a coloured noise spectral background that includes, as
a special case, a simple red noise spectrum. The only additional assumption is that
the spectrum varies modestly in amplitude over the narrow bandwidth of the
analysis (i.e. it is locally white, which is to say that the spectrum varies relatively
modestly with frequency, so on the scale of the narrow spectral bandwidth of the
analysis, it looks flat, i.e. white). Mann and Park14 show that this assumption holds
extremely well for the moderately red spectra encountered in climate data. It also
holds, in fact, for more general noise spectra, including for example compound red
noise, which is characterised by not just one but two distinct persistence timescales
and has been argued to apply to some climate series91.

One can calculate significance limits based on the above null hypothesis
through a Monte Carlo approach, and peaks in the LFV spectrum of a dataset that
exceed the 95% (p= 0.05) significance level, for example, can be interpreted as
indicative of a potential oscillatory spatiotemporal signal centred at frequency f in
the dataset. The associated spatiotemporal signal can be reconstructed by
truncating the sum in Eq. (1) at k= 1.

The MTM-SVD analysis was performed using K= 3 data tapers and a time-
frequency bandwidth product of NW= 2. The LFV spectra and significance levels
have been renormalised so they are comparable to those for the observations,
despite differing spatial degrees of freedom (the observations cover a more
restricted portion of the globe).

Observational surface temperatures. We analysed annualised global monthly
average surface temperature field (Surface Air Temperature over land and Sea
Surface Temperature over oceans) using the Cowtan & Way (1850–2018)
surface temperature dataset92, which infills the missing data in HadCRUT4 via
kriging of the HadCRUT4 land and ocean surface temperature dataset,
allowing for more direct comparisons in terms of spatial sampling with the
model simulation surface temperature fields, but with additional caveats
involving the interpolation schemes used. An evolutionary MTM-SVD analysis
with a 100 year moving window (Supplementary Information) produces nearly
indistinguishable spectral features (e.g. a statistically significant 16–18 year and
10–11 year spectral peak) to those obtained by the Mann and Park12 earlier
analysis of a considerably sparser grid consisting only of continuous tem-
perature data for the 100 year window that corresponds to the interval
(1891–1990). This confirms that similar conclusions are reached for the same
time period for two very different versions (sparse grid with only nearly
continuous gridbox series vs. nearly global grid based on interpolation of
missing data) of the instrumental dataset.

CMIP5 control simulations. We analysed the global gridded surface temperature
fields from the Coupled Model Intercomparison Project Phase 5 (CMIP5)93 pre-
industrial control multimodel simulations (N= 48 realisations; M= 46 models; a
subset N= 44 realisations have the required minimum length of 158 years, as
discussed in main text). These simulations used prescribed pre-industrial condi-
tions of atmospheric concentrations or non-evolving emissions of gases, aerosols or
their precursors, as well as static land use.

CMIP5 historical simulations. We also analysed the global gridded surface tem-
perature fields from the CMIP5 historical experiment multimodel ensemble
simulations, including both the anthropogenic+ natural forced simulations (N=
164 realisations; M= 48 models) and anthropogenic-only forced simulations (N=
40 realisations;M= 8 models) spanning 1850–2005 (Supplementary Table 1). Each
physics version of a model was considered a separate model.

Data availability
All raw data and results are available at the supplementary website: http://www.meteo.

psu.edu/~mann/supplements/Mann_MTMSVD_2019/Data.

Code availability
All ©Matlab code is available at the supplementary website: http://www.meteo.psu.edu/

~mann/supplements/Mann_MTMSVD_2019/Code.
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