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Absence of many-body mobility edges
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Localization transitions as a function of temperature require a many-body mobility edge in energy, separating

localized from ergodic states. We argue that this scenario is inconsistent because local fluctuations into the ergodic

phase within the supposedly localized phase can serve as mobile bubbles that induce global delocalization. Such

fluctuations inevitably appear with a low but finite density anywhere in any typical state. We conclude that the

only possibility for many-body localization to occur is lattice models that are localized at all energies. Building

on a close analogy with a model of assisted two-particle hopping, where interactions induce delocalization, we

argue why hot bubbles are mobile and do not localize upon diluting their energy. Numerical tests of our scenario

show that previously reported mobility edges cannot be distinguished from finite-size effects.
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I. INTRODUCTION

It is now almost mathematically proven that many-body

localization, i.e., the absence of long-range transport in a

thermodynamic many-body system, occurs in certain one-

dimensional quantum lattice models at any energy density

if sufficiently strong quenched disorder is present [1]. In

this case, many-body localization (MBL) comes along with

a complete set of conserved quasilocal quantities [2–4].

However, it remains less clear whether the originally predicted

localization transition at finite temperature [5,6] exists as a

genuine dynamical phase transition defining a sharp many-

body mobility edge in energy density. Even though several

numerical investigations in small one-dimensional (1D) sys-

tems have reported such mobility edges [7–9], studies in larger

systems did not find similar evidence [10,11] and, moreover,

linked-cluster analysis [12] of the numerical data hint that the

extent of the localized phase has been vastly overestimated.

Furthermore, recent theoretical considerations [4,13–16] have

raised doubts about nonperturbative effects which might

reduce the putative transition to a crossover. A related open

issue concerns the many-body analog of Mott’s argument,

which forbids the coexistence of localized and delocalized

states at the same energy in single-particle problems.

In this paper, we address these issues, which are fundamen-

tal for a complete understanding of localization, equilibration,

and transport in closed many-body quantum systems. We argue

that for systems with short-range interactions, many-body

mobility edges cannot exist, thus ruling out sharp transitions

from a conducting to a completely insulating phase as a

function of temperature. These considerations also imply a

strong many-body version of Mott’s argument, which rules

out the coexistence of localized and delocalized states, even at

extensively different energies. A simple generalization of our

considerations rules out mobility edges as a function of any

extensive thermodynamic parameter, such as particle number

or magnetization.

Our paper is organized as follows. We introduce all our

arguments at a nontechnical level in Sec. II, and argue that local

hot thermal spots, dubbed bubbles, constitute a mechanism

for global delocalization. Section III contains a more detailed

presentation of the argument, while Sec. IV is devoted to the

analysis and discussion of potential caveats. Our numerical

results are presented in Sec. V: By a careful analysis of

the model considered by Kjäll et al. [7], we show that

currently available system sizes are too small to host a truly

thermal bubble and, hence, that existing numerical data do

not contradict our theory. To conclude, in Sec. VI, we discuss

the physical consequences of our analysis, and point out, in

which physical systems it allows a genuine MBL phase to

exist. More detailed information and discussions are relegated

to three appendixes: Appendix A presents numerical results

demonstrating delocalization via rare events in a two-particle

model. In Appendixes B and C, we discuss why the idea of

bubbles as rare fluctuations of energy or density neither apply

to many-body systems with disorder which localizes the full

spectrum, nor to single-particle problems.

II. SUMMARY OF THE ARGUMENTS

In this section, we first discuss a simple model of assisted

two-particle hopping, which illustrates several important fea-

tures that this problem has in common with the rare events that

induce delocalization in many-body systems (see Appendix A

for numerical results). For this model, we show how rare local

fluctuations induce hybridization among putatively localized

states. Then, we turn to our main topic, general many-body

systems. We explain in nontechnical terms how those rare

events wash out mobility edges whenever there is an ergodic

state at some finite energy or particle density (or, more

generally, if there are ergodic states in any region of the

parameter space for the extensive thermodynamic quantities).

Finally, we discuss some potential caveats, and argue why they

are benign.
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A. Assisted hopping model

Consider particles in a hypercubic lattice of linear size L,

hopping with amplitude t1 between nearest-neighbor sites, and

subject to a disorder potential ϵx , i.i.d. uniformly in [−W,W ].

A particle on site x interacts with others by inducing an assisted

hopping of strength t2 along the diagonals of plaquettes that x

belongs to

H = −t1
∑

⟨x,y⟩
(c†xcy + H.c.) +

∑

x

ϵxnx

−t2
∑

x

∑

s,s ′=±1

∑

1!α<β!d

nx(c
†
x+se⃗α

cx+s ′ e⃗β
+ H.c.), (1)

where e⃗1,...,d are lattice unit vectors. This may describe the

effect of a lattice distortion brought about by the presence of

the first particle. This model is illustrated in Fig. 1.

Let us first focus on the particular case where there are

only two particles in the system. We consider parameters

t1 ≪ W , for which the single-particle problem is localized in

the whole spectrum. For t2 ≫ W , the two-particle problem has

several interesting features: In dimensions d > 2, the assisted

hopping term induces a delocalization of close pairs which

will move together diffusively as a composite light particle

and overcome Anderson localization. This effect is related

to the interaction-induced increase of the localization length

in sufficiently weakly localized systems [17,18]. A single-

particle analog of the phenomenon is the solvable case of two

coupled Bethe lattices [19]. The delocalization in (1) seems

natural since all configurations of two particles at distance

one are strongly resonant with each other. They thus form

a percolating, delocalized resonant subgraph in configuration

space, which supports delocalized wave functions with inverse

participation ratios that vanish as the inverse volume. We

have numerically confirmed this delocalization effect [see

Appendix A (see also Refs. [20,21] for similar observations)].

In a system of only two particles, the eigenstates come in

two kinds: the overwhelming number of states is strongly

concentrated on a configuration with two distant, immobile

particles. Only a vanishing fraction of order [ln(L)]d/L of all

two-particle eigenstates are delocalized as dynamically bound,

mobile pairs. As we will discuss in more detail in Sec. III, it

would be misleading to think that two particles that start off

together will always lose sight of each other after some time

and localize far from each other. Instead, we will argue that

the delocalization channel via pair configurations, and thus

delocalized eigenfunctions, are robust.

FIG. 1. Hopping processes allowed by the Hamiltonian of Eq. (1)

in d = 2. Left panel: single-particle hopping. Right panel: assisted

hopping for the left particle due to the presence of the right particle.

In this two-particle model, localized and delocalized states

coexist at the same energy. In contrast to generic single-particle

problems, this is possible here because the matrix elements that

couple the two kinds of states through a random perturbation of

the Hamiltonian are typically exponentially small in the system

size. They are thus negligible as compared to the relevant level

spacings and hence do not hybridize the two types of states.

Let us now discuss how a finite density of particles

modifies the situation. In the thermodynamic limit, there is

a finite density of close pairs in typical configurations. These

pairs diffuse through the sample. Initially well-isolated and

localized particles scatter inelastically off these pairs and thus

move as well, leading to complete delocalization. Even in

exponentially rare configurations where initially all particles

are far from each other, particles eventually tunnel together and

decay into the continuum of diffusive pair states. We thus do

not expect any localized eigenstates to survive at finite density.

B. Many-body systems: Delocalization from rare bubbles

The argument of Basko et al. [5] for a localization transition

as a function of temperature, i.e., a many-body mobility edge,

builds on the idea that conduction can set in only if the

energy density exceeds a critical level essentially everywhere

in the sample. However, this neglects the fact that local

fluctuations away from the average energy density generally

cause a breakdown of perturbation theory and may induce

delocalization. Indeed, the perturbative analysis of Ref. [5]

focuses on scattering processes where at every vertex an

additional particle-hole pair is created, which was justified

by the parametrically larger number (K) of such diagrams

as compared to diagrams that preserve or even reduce the

number of particle-hole excitations. However, going beyond

this approximation and starting from a generic initial low-

energy state, after a finite number of steps in the perturbative

expansion one couples to configurations which contain hot,

internally ergodic bubbles, for which perturbation theory is

not controllable anymore. Our arguments following suggest

that the further perturbation theory on this diagrammatic

branch diverges and cannot be resummed. We conjecture that

a parametrically small (in K) but finite conductivity results in

that case.

In physical terms, we argue that delocalization occurs

as soon as finite but mobile excitations exist, even if they

occur with very low density. These highly excited fluctuations

constitute the analogs of the diffusive pairs in the assisted

hopping model discussed above. Examples of such excitations

are large, albeit finite regions which are hotter than their

environment and thus are internally ergodic. Hereby we

assume that interactions are local, so that the internal ergodicity

is only a function of the energy contained in that region.

Let us stress already now that the bubble excitations

considered in this paper are thermal, and are not tied to

anomalous realizations of the disorder in specific locations.

Therefore, those bubbles can potentially show up in any

location in the system. We notice that, as far as thermal

bubbles are concerned, the strategy of Imbrie [1] to show the

existence of an MBL phase would fail. Indeed, it requires that

the location of all possible resonant spots can be determined

independently of the state of the system. As this is a crucial
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point, we review in Appendix B the treatment of Ref. [1]

of ergodic spots that are tied to rare disorder realizations in

specific locations. In particular, we spell out why those do not

lead to delocalization of fully MBL systems in d = 1, while

thermal bubbles do.

Let us now assume that at some temperature there is

conduction and ergodicity [22]. In typical states and in any

given place finite bubbles of sufficiently high temperature

(that ensure internal ergodicity) occur with finite probability

as spontaneous fluctuations of the energy density. Those are

not tied to a particular local disorder realization. Thus, at any

instant of time there exists a possibly very low, but finite density

of such ergodic fluctuations. Following, we argue that such

excitations are mobile and delocalize the whole system, akin

to the diffusing pairs above. From this reasoning it follows

that finite conduction at some temperature implies finite

conduction at any temperature in thermodynamic systems

with local interactions [23]. As a consequence, systems in

the continuum should exhibit finite transport at any T > 0, as

they always possess ergodic states at high enough energy (see

also the discussion in Ref. [24]).

To argue for the mobility of bubbles, we show that there

exists a resonant, delocalized subset of bubble configurations.

We consider a quantum lattice system with local interactions

and a bounded energy density, possessing a putative many-

body mobility edge at energy density ϵc, such that states below

(above) ϵc are localized (ergodic). For simplicity, we assume

the model to be one dimensional. Now, consider a rare hot

bubble of a super-critical energy density at some ϵ2 > ϵc,

surrounded by “cold” regions of energy density ϵ1 < ϵc. If

this energy fluctuation is large enough [much larger than a

correlation length ξ (ϵ2)] and decoupled from its surrounding,

it is internally ergodic by assumption.

We argue that this state can hybridize with a translate

of the bubble by some length ℓ0 > max[ξ (ϵ1),ξ (ϵ2)] when

the coupling between the hot region and its surrounding is

switched on. It suffices to show that extending (or shortening)

the hot region by a length ℓ0 (by heating up or cooling down

the neighboring regions of size ℓ0) can occur as a resonant

transition. The hybridization with the translated bubble then

follows from two successive hybridization processes, as

illustrated in Fig. 2. For the latter, it is enough to show that

changing the energy in the boundary region by a finite amount

is a resonant process. Let H1 = gOh ⊗ Oc be the interaction

term coupling a hot (h) and a cold (c) region of size ℓ0 across

their common boundary. Let &,& ′ be eigenstates in the hot

FIG. 2. Hybridization process. The state with the bubble on the

left (top) hybridizes with the state with the bubble on the right

(bottom) via an intermediate state. Equation (2) shows that the two

transitions depicted here are resonant.

region and η,η′ eigenstates in the cold region. For any hot

eigenstate & in a sufficiently large bubble we can find (many)

& ′ such that

|⟨&η|H1|&
′η′⟩|

|E(η) − E(η′) + E(&) − E(& ′)|
≫ 1, (2)

because on the one hand, by the eigenstate thermalization

hypothesis (ETH) [25], |⟨& |Oh|&
′⟩| ∼ d

−1/2

h where dh is the

dimension of an appropriate microcanonical ensemble for the

hot bubble at the energy density set by &, while the matrix

element |⟨η|Oc|η
′⟩| = O(1) is finite and independent of dh.

On the other hand, we can pick & ′ such that |E(η) − E(η′) +

E(&) − E(& ′)| ! W/dh, where W is the energy width of

the ensemble. The ratio in (2) thus scales as ∼ d
1/2

h and

grows exponentially with the length of the bubble. It may

thus become much larger than unity, indicating a resonant

process. This is not surprising: it merely expresses that a

sufficiently large ergodic bubble acts as a bath for small

systems coupled to it. It follows that configurations with

hot bubbles in different positions hybridize with each other.

We expect that the eigenfunctions of the system hybridize

essentially all configurations which are resonantly connected,

implying delocalized eigenfunctions. Since it is easy to check

that any configuration consistent with global conservation

laws can be reached via resonant processes, we expect that

eigenstates also satisfy ETH in the thermodynamic limit.

While for generic many-body systems our arguments rule out

the coexistence of localized and delocalized states, mobility

edges are instead well established for one-particle systems.

In Appendix C, we explain that this does not imply any

inconsistency since our reasonings about bubbles do not apply

to one-particle systems.

In Sec. III, we will present a more thorough discussion of

the properties of the resonant subgraph of configurations.

C. Potential caveats: Can bubbles freeze despite a

percolating resonant subgraph?

We now ask whether processes that have not been taken into

account in the previous analysis could impede the hybridiza-

tion of bubbles. Indeed, what was argued up to now can be

summarized by saying that there exists a connected subgraph

of base states, along which all transitions are resonant. This

subgraph is delocalized in the sense that most member base

states differ from each other in degrees of freedom at arbitrary

far distances in real space. These are the base states that contain

well-delimited and ergodic bubbles. What happens when we

consider the coupling to base states lying off this resonant

subgraph? However, before we go into this technical analysis

[see (b) below], let us first look at it in an intuitive fashion.

(a) Complete disappearance of bubbles. If one thinks about

the issue in a dynamical setting, rather than as an exercise in

spectral perturbation theory for eigenstates, then the following

consideration comes up: Intuitively, hot bubbles should not

survive dynamically, but should rather spread, dilute their

energy, and eventually localize, so that they could not evolve

back to their original hot configuration. If this were true, then

surely it would rule out delocalized eigenstates.

However, although such a spreading is indeed entropically

favored in real-time dynamics, the above conclusion that hot
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configurations could therefore not form again is fallacious. We

consider an ensemble of mutually orthogonal initial states of a

given energy density. When summing the projectors onto these

initial states, we recover a thermal (microcanonical) density

matrix, even if the initial states themselves are not thermal, and

hence the mean number of bubbles remains constant in time

by the time invariance of the thermal density matrix. In simple

terms: thermal fluctuations do occur, and keep occurring,

irrespective of whether the system is localized or not. The only

thing that localization could do is to pin the fluctuations at fixed

positions. However, our argument is ruling out precisely this

option.

(b) Technical analysis of off-resonant couplings.We should

convince ourselves that coupling to configurations off the

resonant subgraph does not spoil the resonance of transitions

on the graph of bubble configurations. Suppose that the

spreading mixes the original hot bubble states with states in

which the bubble has spread partially, and which thus form a

larger local Hilbert space of finite dimension d ′
h ≫ dh [26]. To

argue as much as reasonably possible against delocalization,

we suppose that the resonant coupling between hot regions

centered in different positions is restricted to the original

dh configurations (because the spread-out bubbles may have

lost their ability to translate directly). Assuming ergodicity

within the larger space of dimension Dh ≡ dh + d ′
h, the matrix

elements get reduced by a factor Dh/dh (see Sec. IV for

calculations). However, the minimal denominators decrease

by essentially the same factor to W̃/Dh, albeit with a slightly

larger energy range W̃ . The ratio W̃/W is bounded, hence it

cannot destroy the hybridization if the original bubble was

large enough. This contrasts with single-particle problems

where sufficiently strong coupling to a bath may induce

localization due to a significant increase of the effective

bandwidth, as discussed in [27].

In summary, the admixture of configurations that are not

part of the resonant network cannot prevent the resonant

hybridization along the network, but it does increase the time

scale for transitions between different positions of the bubble

by a factor Dh/dh. This is ultimately very similar as in the

assisted hopping model where the possibility of separation of

two spatially close particles cannot prevent their finding back

together and diffusing further, while it can diminish the pair

diffusion constant.

(c) Other obstructions to delocalization. There are exam-

ples of nonergodic behavior that are not straightforwardly

captured by the above analysis: (1) single-particle localization

in weak disorder in low dimension, where the proliferating

amplitude of return to the origin in d ! 2 destroys hy-

bridization at large distances; (2) the “quantum percolation”

problem, where we see generation of random self-energies

from the structural disorder along barely percolating paths

[28,29]; (3) many-body orthogonality catastrophes, as in

spin-boson systems at T = 0 and related spin problems at

finite T [30]. All these examples rely on specific mechanisms

that seem not to be present in our problem. For the case

(1), this is addressed explicitly in Sec. IV. Another issue

are rare regions with anomalously strong disorder. Those

may render transport in d = 1 subdiffusive [31,32], but

we argue in Sec. IV that they do not prevent delocalization

by bubbles.

D. Analogy with bubbles in kinetically

constrained, classical glasses

It is interesting to draw an analogy between the bub-

bles discussed here, and bubbles that mediate transport

in classical, kinetically constrained models [33]. In both

cases, mobility is ensured due to rare fluctuations in local

configurations that allow the system to move and explore

the phase space ergodically. In generic kinetically constrained

models, the diffusion constant remains finite and only vanishes

as the system becomes entirely jammed at maximal density.

Those models are dynamically very similar to disorder-free

quantum models or disordered quantum models with a high-

temperature ergodic phase, for which our arguments imply the

impossibility of genuine and robust many-body localization.

In special classical glass models, such as the Knight

model [33], certain moves are strictly disallowed. Moreover,

the possibility of moves generally depends on a set of

configurational constraints, whose number may diverge upon

tuning a parameter. In that case, a genuine dynamic glass

transition can take place. That transition is vaguely analogous

to the many-body localization transition, tuned as a function of

disorder or interaction strength. Indeed, in both cases any finite

bubble with whatever optimized properties remains ultimately

immobile. However, in contrast to the Knight model, which has

no quenched disorder, a genuine MBL transition does require

quenched disorder.

Of course, an appropriate quantum version of the Knight

model would also be many-body localized, but the correspond-

ing phase would probably not be robust with respect to local

perturbations of the Hamiltonian since those reintroduce finite

amplitudes for moves that were previously exactly suppressed.

The latter constitutes an essential ingredient for the sharp

glass transition in the kinetically constrained models. Insofar

one may consider the kinetically constrained glass phases

as fine tuned (relying on certain exactly vanishing transition

amplitudes). On the other hand, the robustness of MBL with

respect to random local perturbations of the Hamiltonian has

no classical analogy to our knowledge.

III. DETAILED ARGUMENT FOR

HYBRIDIZATION BY BUBBLES

We describe here our argument for hybridization bubble

configurations in eigenstates at a more formal and detailed

level. We consider a quantum lattice model with local

interactions, having a putative many-body mobility edge. For

concreteness, we assume that the model is one dimensional and

that states below energy density ϵc are (putatively) localized,

whereas those above ϵc are ergodic. We choose the energy

density of the bottom of the spectrum as a reference and set

it to zero. We also impose a maximal energy density ϵm > ϵc,

reflecting the fact that the Hilbert space is locally finite.

For our argument it is important to have states at disposal

that are clearly ergodic or localized in a given finite volume.

Therefore, we introduce, somewhat arbitrarily, a window of

energy densities ϵc1 < ϵc < ϵc2 that are too close to critical

to be identified clearly as localized or delocalized in nature.

Let ℓ(ϵ) be the localization length, which diverges as ϵ ↗ ϵc.

We express lengths in units of lattice spacings, and energy
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densities ϵ as energy per site. We will now coarse grain the

model and group ℓ0 adjacent sites into “grains.” The length ℓ0

is chosen such that it is (a) larger than the localization length

ℓ(ϵc1), and (b) large enough so that the interaction energy

between two neighboring grains is small compared to ℓ0ϵc1,

the maximal energy in a localized grain. The second constraint

ensures that the interaction of a low-energy grain (ϵ < ϵc1)

with its surroundings does not trivially suffice to render the

grain ergodic, and, similarly, that the interaction of a high-

energy grain with its surroundings does not trivially suffice to

localize that grain. This will be satisfied by the choice of a

large enough ℓ0 since the interactions are local.

The coarse graining provides a useful starting point, from

which to proceed with perturbation theory in the intergrain

coupling. Within each grain, we compute the eigenstates

which come in three kinds: cold (below ϵc1
), hot (above

ϵc2), or intermediate (between ϵc1 and ϵc2). If we consider

the Hamiltonian without the interaction between grains, then

obviously the eigenstates are products of grain eigenstates. Let

us focus on eigenstates at very low-energy density ϵ ≪ ϵc1.

Our aim will be to show that even those low-energy states are

delocalized. In such states, typically, noncold grains appear

only with a density ν that tends to 0 as ϵ/ϵc1 → 0. Chains of

labeled grains such as ccciccchhhiiccc serve as “mesostates,”

with c/i/h standing for cold/intermediate/hot. We can now

write our model as

H =
∑

x

[H0(x) + H1(x,x + 1)], (3)

where x labels the grains, H0(x) acts on the Hilbert space

H(x) at grain x only, and H1 describes the coupling between

neighboring grains. Mesostates are collections of eigenstates

of the term H0. We now consider switching on the coupling

terms and evaluate their effect on the unperturbed eigenstates

of H0. This procedure is similar to the one followed in Ref. [1].

First, we add the interaction terms between cold grains (see

following for what is meant precisely). Since we assumed that

ℓ(ϵc1) < ℓ0, this will not have much effect on the localized

eigenstates, which thus remain close to products. Note that by

doing this, from the point of view of a typical state at energy

density ϵ, we have already added most of the interaction terms.

What remains is a small fraction ∼2ν (which is controlled by

the overall energy density) of all interaction terms. We now

add the interaction terms between hot grains. By assumption,

sufficiently long stretches of such grains . . . hhhh . . . (which

we call “bubbles”) are ergodic and we will assume that the

resulting hot eigenstates in those bubbles satisfy the eigenstate

thermalization hypothesis (ETH). The situation at this moment

is hence that we have partitioned the Hilbert space into a big

direct sum, and the Hamiltonian H0 is block diagonal, with

the blocks labeled by mesostates. Let P r
x be the projector that

restricts the value of H0(x) so that grain x is of type r = h,i,c.

With this notation, the interaction terms that have already been

added are

P
r ′
x

x P
r ′
x+1

x+1 H1(x,x + 1)P rx

x P
rx+1

x+1 (4)

for (rx,rx+1) = (r ′
x,r

′
x+1) = (c,c) and for (rx,rx+1) =

(r ′
x,r

′
x+1) = (h,h). Some terms are obviously very

small (because the interaction is local in energy)

and seem irrelevant, namely, those corresponding to

(rx,rx+1) = (c,c),(r ′
x,r

′
x+1) = (h,h) and with primes and no

primes reversed. The main terms that we will be focusing on

are those that allow bubbles to spread and move. Those are

terms with

rx = r ′
x = h, and arbitrary rx+1,r

′
x+1, (5)

and with x and x + 1 reversed. They are at the focus of the

next section.

A. Resonant delocalization of bubbles

Let us now consider states of the following form (hot bubble

in a cold environment):

cccccccc hh . . . hh︸ ︷︷ ︸
n grains

cccccccc, (6)

where n is sufficiently large so that the eigenstates in the

bubble satisfy ETH. We now argue that this state hybridizes

with translates of the bubble when we add some of the missing

coupling terms: In particular, we want to admix the mesostates

(with x,y labeling specific grains)

. . . ccch
x
hhhc

y
cc . . . ↔ . . . cccc

x
hhhh

y
cc . . . (7)

in which the bubble has been translated by one grain. More

precisely, we mean that most microstates (i.e., eigenstates

of the Hamiltonian considered up to now) corresponding to

the left mesostate can hybridize with a lot of microstates

corresponding to the right mesostate. This in turn strongly

suggests that we should expect all eigenstates to delocalize

completely over these two mesostates. To obtain this, we have

included the relevant coupling terms (4) corresponding to two

bonds (x,x + 1) and (y − 1,y). This hybridization process can

be broken down into elementary steps, that is, transitions at first

order of perturbation theory. First, by energy exchange with

the hot region, the cold (c) grain at y is heated until it becomes

intermediate (i) and finally hot (h). Second, the h grain at x is

cooled down until it becomes c, via intermediate stages of i.

Microscopically, let us consider a state ) corresponding to the

mesostate ccchhhhccc and such that H0(y) is not far below

ϵc1. We will argue that ) hybridizes with a lot of states )′

corresponding to the mesostate ccchhhhicc where r ′(y) = i.

If instead H0(y) is far below ϵc1, then it hybridizes with a lot of

states & ′ which still corresponds to r ′(y) = c (ccchhhhccc),

but now with H0(y) a bit closer to ϵc1. (A direct step to

an intermediate state might instead require adding too much

energy in one transition. Therefore, we split the process into

several small heating steps to make sure our argument remains

valid also if the interactions are assumed to be strictly local

in energy.) Finally, we need to increase the energy stepwise

from i to h at grain y. The argument for all these transitions is

essentially the same and for the sake of simplicity, we stick to

r(y) = r ′(y) = c. The next subsection shows the flexibility of

the argument.

Obviously, it suffices to take eigenstates in ),)′ in the

region [x,y] because of the essential product structure (exact

at the left edge, approximate at the right edge around y, because

we have already included the coupling between cold regions).

They are of the form

) = & ⊗ η, )′ = & ′ ⊗ η′, (8)
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where η,η′ are the unperturbed eigenstates at grain y, while

&,& ′ are hot bubble states in the region [x,y − 1] consisting of

n = y − x grains. Consider & ′ such that its energy (evaluated

with H0) is within a range W ∼ ϵm of the energy of &. The

space spanned by such states has dimension dh ≈ exp[sℓ0n]

which grows exponentially in n, s being the corresponding

entropy density. Write H1(y − 1,y) = gOh ⊗ Oc, the first

factor acting on y − 1, the second on y. Assuming ETH, the

off-diagonal matrix elements of local operators are given by

|⟨&|Oh|&
′⟩| ∼ 1/

√
dh. (9)

In other words, the (noneigenstate) vector Oh& is essentially

a random amplitude superposition of eigenstates & ′. Take now

*E := E(η) − E(η′) sufficiently small, i.e., not exceeding W ,

then |⟨η|Oc|η
′⟩| ∼ 1. In fact, assuring the nonvanishing of

|⟨η|Oc|η
′⟩| is the main reason to choose *E sufficiently small.

We can then find many & ′ (in fact, ∼√
dh of them) such that

|⟨&η|H1|&
′η′⟩|

|*E + E(&) − E(& ′)|
≫ 1 (10)

because the energy spacings are of order W/dh and

⟨&η|H1|&
′η′⟩ ∼ g/

√
dh. Hence, the ratio in (10) is huge since

dh grows exponentially in n.

The outcome of the above calculation should not come as

a surprise: it merely expresses that an ergodic bubble can act

as a bath for a small system (here grain y) that is coupled

to it. Upon repeating the same calculation a few times, one

easily convinces oneself that states with the bubble in different

positions hybridize with each other. This in turn implies that

they should appear with comparable amplitudes in typical

eigenstates.

B. Spatial range of direct hybridizations

In the above derivation, we focused on hybridizations that

result in the translation of a bubble by one grain. One might

worry that this is too negligible a translation if the bubble

is very large, n ≫ 1. However, here we show that direct

hybridizations can take place at distances which are a finite

fraction of the bubble length.

As already pointed out, in the above derivation, we were

careful to pick states η,η′ whose energy difference was small

enough so that |⟨η,Ocη
′⟩| ∼ 1. This is, however, not crucial,

and if r ′(y) = i,h, then it cannot be assured anyhow. The

matrix element |⟨η|Oc|η
′⟩| will typically decay exponentially

in the energy difference E(η) − E(η′). Hence, it can be as

small as e−l0ϵm , but obviously this number decreases with ℓ0

but not with n, so it cannot compete with the latter, if the bubble

is sufficiently large. To determine at what distance direct

hybridizations are possible, we proceed as follows. Instead

of making the transition η → η′ at grain y, we now make a

transition η → η′ in a stretch of ℓ grains starting at y. By the

structure of localized states, we know that

|⟨η|Oc|η
′⟩| ∼ (g/ϵm)ℓℓ0 . (11)

The transition is possible as long as this small number is larger

than
√

1/dh, so that we find

ℓ ∼ s

2 ln(ϵm/g)
n. (12)

This shows that the bubble hybridizes directly with a bubble

configuration translated by a finite fraction of its size. However,

this fraction becomes parametrically small as the coupling

becomes weak g/ϵm → 0.

IV. DISCUSSION OF POTENTIAL CAVEATS

We now discuss in more detail the caveats introduced in

Sec. II C.

A. Can bubbles spread and permanently localize?

We have not yet added all coupling terms from H1. Indeed,

not only can the bubble move through the cold background, it

can also spread its energy. Entropically, this is of course much

more likely in real-time dynamics. In particular, one sees that

starting from a bubble configuration, the most likely thing to

happen dynamically is that the bubble spreads until its energy

density is intermediate or just below the putative mobility

edge. At that point we cannot expect it to spread further as

the involved states are now localized. The question arises as

to whether these further couplings may induce a localization

of bubbles, despite the above construction of an apparently

resonant, delocalized network of bubble configurations. We

address this issue in two steps. First, in Sec. IV A1, we argue

that a scenario in which bubbles disappear dynamically is

inconsistent. This is a conceptual point. Then, in Sec. IV A2,

we examine the hybridization argument on a formal level and

we exclude that bubbles get localized by quantum dynamical

effects. In Sec. IV B, we discuss how the fact that bubbles tend

to spread slows down their motion.

1. Persistence of bubbles

Let us write ⟨. . .⟩ϵ for the expectation value in a mi-

crocanonical ensemble at energy density ϵ (containing a

large but subextensive number of eigenstates). Let n be the

minimal length (in units of grains) of a well-ergodic bubble, as

considered above. The thermodynamic probability of having

such a bubble around position x is given by

px = ⟨Bx⟩ϵ, Bx ≡ χ (H[x−n/2,x+n/2] " ϵc2nℓ0), (13)

i.e., Bx is the indicator of a local fluctuation at sufficiently

high-energy density. Of course, px becomes very small as

ϵc2 − ϵ, or n, or both are taken large, but it remains finite

and independent of the total volume. By definition of the

microcanonical ensemble,

px =
∑

&

1

N
⟨&|Bx |&⟩, (14)

and this means that it is not possible that no eigenstate has any

weight on bubble configurations. One possibility consistent

with (14) is that typical eigenstates have an appreciable weight

px on bubble configurations at x. Another (extreme) possibility

is that a fraction px of eigenstates have weight nearly 1 on

bubble configurations, while the others have none. Either way,

this rules out the scenario that bubbles could be completely

absent in the eigenstates.

One can also formulate the persistence of bubble config-

urations in a dynamical way. This is more appealing if one

thinks of our arguments as pertaining also to the evolution of
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well-chosen initial states, that contain a definite bubble. Let

us show this in a special and simple case. Consider a model

where particle density is a conserved quantity and there is a

putative mobility edge as a function of density, even at infinite

temperature. Two obvious examples are the models studied

in Refs. [4,15]. In such a case, a relevant ensemble is one

which constrains the particle density N
L

∈ [ρ − δ,ρ + δ] to be

close to ρ, without any constraint on energy. The advantage of

this case is that the projector onto the equilibrium ensemble

corresponding to this constraint can be decomposed into a

basis of initial states |s⟩ which are products over grains

with a definite particle number on each grain, such that the

total density is indeed in [ρ − δ,ρ + δ]. Now, this ensemble∑
s |s⟩⟨s| is exactly invariant under the dynamics and hence

we obtain that the expectation value for seeing a bubble at

position x,

∑

s

⟨s|U ∗
t BxUt |s⟩ = px for any t, (15)

is invariant under time evolution, and remains finite at all times.

Here, Bx and px are again the indicator of a bubble around

x and the thermodynamic probability of a bubble [defined

analogously to (13)], and Ut is the Hamiltonian time evolution.

2. Robustness of hybridization

In the notation of Sec. III, the relevant type of transitions

are the following:

ccchhhhccc ↔ cccchhhhcc

↕ ↕
. . . ↔ . . . cciiiiiiiicc ccciiiiiiic . . . ↔ . . . ,

(16)

where the states on the lower line represent a multitude

of mesostates in which the bubble has partially spread its

high-energy density. Let us assume that those states do not

communicate with each other. This simplifying assumption

favors maximally the possibility that the coupling to such

states could localize the bubble and thus could invalidate

our preliminary conclusion regarding delocalization. We now

consider the two subspaces, each of dimension dh, that

correspond to the mesostates on the upper line, the eigenstates

of which are hybridized by the perturbation H1. Let us refer to

them as left and right subspaces. We then couple each of them

to a space of spread bubbles, having a dimension d ′
h ≫ dh,

and ask whether the perturbation H1 is still able to induce

hybridization between left and right subspaces. Concretely,

the subspace C
dh is now embedded in the space C

dh ⊕ C
d ′

h of

dimension Dh ≡ d ′
h + dh, and the intergrain coupling operator

Oh becomes Oh ⊕ 0. We focus on the transitions between the

ergodic states &,& ′ (notation as above), and just consider the

operator Oh which acts on the hot bubble. Let us assume

that after diagonalizing within the larger spaces of dimension

Dh, the eigenstates &̃,&̃ ′ are completely ergodic within those

spaces and well captured by random matrix theory. (In practice,

this defines the relevant space to which the bubble subspace

should be extended, and its dimension Dh.) We now have to

discuss how the ratio

|⟨&̃|Oh|&̃
′⟩|

|*E + E(&̃) − E(&̃ ′)|
(17)

differs from the original ratio

|⟨&|Oh|&
′⟩|

|*E + E(&) − E(& ′)|
∼

√
dh

W
(18)

with given |*E| ! W . We find a suppression of the numerator

because now

|⟨&̃|Oh|&̃
′⟩| ∼

√
dh

Dh

. (19)

Indeed, the simplest way to derive this is by remarking that
∑

&̃,&̃ ′

|⟨&̃|Oh|&̃
′⟩|2 = Tr(O

†
hOh) ∼ dh, (20)

as Oh acts only in the original subspace (with dimension dh)

and it is zero on the attached space with dimension d ′
h. On the

other hand, the energy spacing |*E + E(&) − E(& ′)| can

now be made as small as W̃/Dh, where W̃ is the width in

energy of all states that significantly couple to the original

bubble states. It follows that the ratio (17), and hence (10),

is reduced by a factor W/W̃ . If this effect rendered the

ratio (17) smaller than 1, the eigenstates would likely not

hybridize across the subspaces, i.e., we would find localization

induced by coupling to further degrees of freedom. However,

the maximal conceivable value of W̃ is of order ϵmℓh, with

ℓh the length of the region to which the energy spreads.

Energy conservation and localization below ϵc lead to the upper

bound ℓh(ϵc − ϵ) ! n(ϵm − ϵ) (recall that ϵ < ϵc is the typical

energy density in our system). This yields W̃/W # C with C

independent of n. This is insufficient for localization since the

ratio (10) is exponentially large in n. Thus, the hybridization

of states with large enough bubbles survives, despite their

spreading to entropically more favorable states. This contrasts

with single-particle problems where the coupling to extra

degrees of freedom was found to induce localization under

certain circumstances [19,27]. In those cases, there is no

exponentially large factor that offsets the effect of an increased

bandwidth W̃ , which renders coupling-induced localization

possible.

B. Dynamic retardation

Even though the inclusion of the states on the lower line of

(16) cannot prevent hybridization, it does of course increase

the time scale necessary for transitions between the two bubble

positions. The transition rates can be estimated from a simple

Fermi golden rule calculation as

τ−1
bef ∼ |⟨&η|H1|&

′η′⟩|2
|*E + E(&) − E(& ′)|

, (21)

τ−1
aft ∼ |⟨&̃η|H1|&̃

′η′⟩|2
|*E + E(&̃ ′) − E(&̃)|

, (22)

before and after including the extra states, respectively. The

first rate is of order g2/W , while the second is of order

(dh/Dh)g2/W̃ . Hence, by adding the new states, we have

increased the time scale by order Dh/dh (keeping only terms

exponential in n). This is very intuitive: Transitions are

now only possible from a fraction dh/Dh of all states, and

accordingly it takes longer until a transition will be attempted.

Alternatively, one can view this as follows: For a large bubble
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close to criticality (with structure cciiiiiiiiicc) the “active”

configurations of the type cccchhhhcccc manifest themselves

as large deviations, which occur with exponential rarity (in the

bubble size). Yet, as shown above, they do lead to percolating

hybridization of eigenstates, and hence to delocalization.

C. Harmlessness of rare, strongly disordered

regions in one dimension

So far we have tacitly assumed that the existence of a global

thermal phase at some energy density implies that any large

enough finite region has ergodic states at that energy density.

However, due to rare fluctuations of the disorder, it can happen

that rare, large regions still have all their states localized as long

as they are disconnected from the rest of the system. One may

think that especially in d = 1 such regions could block global

transport and thus localize the system at low temperature. Even

though this effect further increases the time scale necessary for

thermalization, we now argue that it does not prevent it.

As a preliminary, we consider a fully localized system of

length L0 in contact with an ergodic system of length L1. By an

analogous argument as used above for resonant delocalization,

we see that for L0/L1 smaller than some number [depending

on the localization length and the entropy density of the ergodic

system, see e.g. Eq. (12)] the coupled system will be ergodic:

all formerly localized states can hybridize with each other.

Now to the main argument. Let us consider ergodic bubbles

of some large size ℓ. Now, consider rare regions of exceptional

disorder that could block such bubbles since an adjacent

bubble of size ℓ would not be able to heat up this region to

ergodic states (of type h). Let δ = δ(ℓ) be the typical distance

between such rare regions. By the above preliminary remark,

such blocking regions have a length ∼ℓ. However, being rare

regions (large deviations), the typical distance between them

is much larger, δ(ℓ) ∼ ecℓ for some c > 0. Now, consider a

bubble between two blocking regions. It renders the whole

region between them ergodic. Hence, the blocking regions

are in fact next to an ergodic bath of length δ(ℓ), which

is exponentially large in ℓ. Accordingly, its level spacing is

double exponentially small in ℓ. Thus, tunneling under the

barrier of thickness ∼ℓ, which is only exponentially small in

ℓ, will easily hybridize the ergodic regions on either side and

ensure transport.

D. Bubbles and weak localization in low dimensions

As is well known, in dimension d ! 2, noninteracting

particles are weakly localized by any nonvanishing disorder

strength. Since bubbles resemble a particlelike excitation,

we should discuss whether they undergo a similar weak

localization in low dimensions.

Indeed, at zero temperature, the answer is expected to be

positive. However, since we consider a finite energy density,

it would be incorrect to picture the bubble as moving in

a low-dimensional fixed disorder potential. As the bubble

moves, it can excite or relax degrees of freedom. Thus,

the Hilbert space locally resembles a tree, rather than a

low-dimensional lattice (the number of relevant configurations

that can be reached as the bubble moves grows exponentially,

rather than polynomially with the traveled distance), and thus

weak-localization effects should become irrelevant.

More concretely, let ℓ be the localization length of the

bubble motion at zero temperature, i.e., in the ground state

(fixed environment). Obviously, ℓ increases with the bubble

size since larger bubbles have more internal states (this is

analogous to the increase of the single-particle localization

length with the number of channels in d = 1); for large bubbles

ℓ will be due to weak-localization effects. Now, consider

finite-energy density, and d = 1 for simplicity. Let s > 0 be

the entropy density in the cold background. Then, the condition

sℓ ≫ 1 is sufficient to ensure that inelastic scatterings of the

bubble occur before the weak localization manifests itself,

rendering them irrelevant for large enough bubbles. Note,

however, that this condition places an additional lower bound

on the size of mobile bubbles in low dimensions.

E. Restrictions on the type of rare events that

may lead to delocalization

The reader may wonder whether certain rare events similar

to the bubbles discussed here would not rule out the possibility

of genuine many-body localization altogether, or (erroneously)

imply the absence of mobility edges in single-particle cases as

well. However, in two appendixes we explain that this is not

so.

In Appendix B, we contrast the bubbles discussed here

(namely disorder-independent high-energy fluctuations) with

rare spots of low disorder in an otherwise fully localized

system. We show why the latter are benign and do not hamper

Imbrie’s approach [1] to demonstrate localization, whereas

high-energy fluctuations do destroy localization, if the system

is ergodic at high temperature. In Appendix C, we explain

why our considerations apply only to genuine many-body

systems, and how the bubble construction fails when applied

to a single-particle system.

V. NUMERICAL RESULTS

Our theoretical arguments contradict recent numerical data

in favor of mobility edges [7–9]. The inconsistency is, however,

only apparent. Indeed, we find that numerically accessible

system sizes are not sufficiently large to host bubbles that

are ergodic enough to be mobile. Therefore, delocalization

by bubbles could not have been seen in numerics up to

now. In other words, the numerical results do not contradict

delocalization by rare bubbles, but rather confirm that available

sizes are not large enough.

We study the disordered Ising chain with next-to-nearest-

neighbor interaction considered in Ref. [7]:

H = −
L∑

i=1

[
(J + δJi)σ

z
i σ z

i+1 + J2σ
z
i σ z

i+2 + hzσ
z
i + hxσ

x
i

]
,

where δJi ∈ [− δJ
2

, δJ
2

] are independent random variables, and

periodic boundary conditions are taken. We choose parameters

J = 1, J2 = 0.3, and hx = 0.6 as in Ref. [7], but add a finite

hz = 0.1 to remove the Ising symmetry and the associated

degeneracies. The phase diagram in Ref. [7] predicts a

mobility edge in the thermodynamic limit at disorder strength
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FIG. 3. Left: disorder averaged energy per link εi at t = 0 (red) and averaged over time (green) for L = 12. Initially, a cold region of

length Lc = L/2 is prepared. The disorder strength is δJ = 3J . Right: same protocol, but for δJ = J and very short cold intervals (Lc = 2),

at various L. The memory effects diminish with increasing L, but the hot region fails to thermalize the system well, even at the largest sizes.

Results were averaged over 5000 disorder realizations.

δJ = 3. To test our ideas, we prepare the system at δJ = 3 in a

product state of the form |ψ(0)⟩L = |φc⟩Lc
⊗ |χh⟩L−Lc

, where

|φc⟩ is the ground state of an interval of Lc sites, while |χh⟩
is an eigenstate of the complement close to the middle of the

spectrum (a hot bubble). We choose L − Lc as large as possible

but such that the resulting global energy density is below the

putative mobility edge. We then compute the time-evolving

energy density on link (i,i + 1):

εi(t) ≡ −(J + δJi)⟨ψ(t)|σ z
i σ z

i+1|ψ(t)⟩. (23)

Our theory of mobile bubbles would predict that the εi(t)

profile becomes approximately flat as t → ∞. Via exact

diagonalization, we evaluated its time average in finite-system

sizes, but almost no energy spreading from the initial state

was observed [cf. Fig. 3 (left)]. For tiny cold regions (Lc = 2)

and hot “bubbles” of almost the system size the global energy

density is supercritical. Yet, still only a very small fraction of

the bubble energy spreads to the cold region at L = 12 (not

shown), while in the thermodynamic limit, the energy profile

would obviously thermalize and become flat, as the system

would be in its ergodic regime. Therefore, these data show

unambiguously that at our system size the hot region is still

unable to act as a bath.

To document this further, we considered normalized states

σ z
1 |α⟩, with α an eigenstate, and calculated the inverse

participation ratio (IPR) of its decomposition into eigenstates

|β⟩ of the full system:

IPRα ≡
∑

β

∣∣⟨β|σ z
1 |α⟩

∣∣4
. (24)

The results are shown in Fig. 4. At strong disorder, eigenstates

are nearly eigenstates of σ z
i as well, and thus IPRα ≈ O(1),

with a distribution expected to become system-size inde-

pendent for large L. As shown in the bottom-right panel

of Fig. 4, this is indeed the case for very strong disorder

δJ = 5J , for which Ref. [7] found the whole spectrum to

be localized. Conversely, deep in the delocalized phase, one

expects eigenstate thermalization and behavior akin to random

matrix theory |⟨β|σ z
1 |α⟩| ∝ exp[−sL/2], leading to a typical

value IPRα ∼ exp[−sL], with a narrow distribution. For very

weak disorder, δJ = 0.1J , we found the exponent to be

s0.1 ≈ 0.55 which equals essentially the thermal entropy. The

standard deviation of the distribution scales with system size

in the same fashion, but is approximately 10 times smaller than

the mean value. This is seen in the data of the left-top panel

of Fig. 4, where the relatively sharp peak in the distribution of

ln(IPR) has an essentially L-independent width.

Let us now discuss close to critical disorder δJ = 3J :

the results shown in Fig. 4 confirm the absence of a truly

ergodic phase up to L = 12. In fact, the distribution of IPRs

at these parameters looks more characteristic of localization.

Nevertheless, a slight, but clear tendency towards enhanced

delocalization with increasing size is seen. This hints that in

the thermodynamic limit the system will become ergodic, in

agreement with the finite-size extrapolation in Ref. [7]. To

chart the lack of ergodicity at small sizes, we also look at

δJ = 1, where Ref. [7] suggests that most eigenstates are

delocalized, even at L = 12. Nevertheless, here, too, we find

strong deviations from fully ergodic behavior, using the same

two protocols as above. Even in the extreme case of Lc = 2

in Fig. 3 (right), despite some energy transfer, the hot and

cold regions are still clearly distinguishable after a long time

evolution. To quantify this effect, we consider the time average

of the energy imbalance between hot and cold regions *ε ≡
(L − 3)−1

∑
i /∈{c,c±1}(εi − εc), where c denotes the single link

fully in the cold region. The imbalance decays exponentially

with system size *ε ∼ exp (−L/ξ ) where ξ increases with

disorder strength. For δJ/J in the range [1,1.5] we estimate

ξ ≈ O(10) (see following), which sets a characteristic scale

required to observe genuine ergodic behavior. This suggests

strongly that at reachable sizes the hot bubble is far from being

ergodic.

Also, Fig. 4 illustrates that systems with δJ = J,L = 12

are far from the thermodynamic limit: the distribution of

ln (IPRα) is much wider (as compared to the mean) than in

a clearly ergodic sample. To be more precise, the mean value
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FIG. 4. Distribution of ln(IPR) associated with matrix elements of σ z
1 evaluated on eigenstates randomly picked from the middle of the

spectrum, for δJ/J = 0.1,1,3,5. In the ergodic phase, the typical IPR is exponentially small in the size L. In the localized phase, the distribution

is size independent. At δJ = J and the considered L, the typical IPR is exponentially small as in a truly ergodic phase, but the distribution

is broad, and shows a tail towards localized values. δJ = 3J is nearly critical: the “localized” peak at IPR = O(1) slowly decreases with

increasing L.

still scales exponentially as IPRα ∼ exp[−s1L], with s1 ≈ 0.5,

but the standard deviation is much larger than in the ergodic

phase: indeed, the ratio between the standard deviation and

the typical value is of order O(1). This means that there is

a finite probability for a bubble to find itself in a position

where the coupling to neighboring regions does not allow it to

act as a bath. A considerable fraction of eigenstates will thus

be localized. This illustrates that ETH, and hence our bubble

arguments, cannot be applied for δJ = J,L = 12.

Finally, we studied the time average of the energy imbalance

*ε as a function of system size and disorder strength δJ . We

considered an initial state with a region of length Lc = 2 in its

ground state and the remaining system in an eigenstate near

the middle of the spectrum. The results are shown in Fig. 5,

where each plot corresponds to a different disorder value. The

results were averaged over 5000 disorder realizations. The data

show that the imbalance *ε decreases only slowly with system

size. The dependence is consistent with an exponential decay.

We have fitted the associated characteristic length ξδJ , which

grows with increasing δJ . These lengths ξδJ are of the same

order as system sizes achievable in current numerical studies.

Therefore, we conjecture that in order to be able to observe

bubbles acting as good baths, one would need to study systems,

which are larger by several ξδJ ’s. Perhaps the density matrix

renormalization group (DMRG) techniques used recently in

Refs. [34,35], can shed new light on this.

In summary, the numerical analysis provided in this section

clearly shows that the available system sizes are too small for

ETH to be safely applied. Therefore, they are outside the range

of applicability of our bubble argument. The numerical data

present in the literature at the moment thus do not disprove our

considerations.

VI. CONCLUSION

We have argued that in the thermodynamic limit many-

body-localized and ergodic states cannot coexist, not even at

very different energies. This has important consequences on
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FIG. 5. Energy imbalance *ε as a function of system size, for disorder strengths J ! δJ ! 1.5J . The curves are simple fits to exponentials.

the nature of the MBL transition. On a lattice, it implies that

a transition is possible at best upon tuning the interaction

strength, but not the temperature. In the continuum, genuine

MBL is replaced by a strong crossover in the conductivity

instead, which is notoriously hard to distinguish from a genuine

transition. Nevertheless, for practical purposes, on very long

time scales, such badly conducting phases will behave as if

they were genuinely many-body localized.
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APPENDIX A: ASSISTED HOPPING MODEL

Here, we describe our numerical analysis for an assisted

hopping model. The main aim is to show that delocalization

on a resonant subgraph remains robust to adding additional

terms that connect that subgraph to localized states. We also

show coexistence of localized and delocalized states, a failure

of Mott’s argument, which is, however, a particularity of the

zero density limit of the considered model.

Description of the model. To reach the largest possible

system sizes, we consider a Hamiltonian in d = 2 with

spin-orbit coupling, which gives rise to weak anti-localization

and thus allows for a genuine delocalized phase. To the best of

our knowledge, this is the smallest system where delocalization

can be expected, and is thus best suited for a numerical

analysis. Here, “smallest” means that the dimension of the

Hilbert space grows at the slowest possible rate with growing

linear size L.

Let H be the Hamiltonian of two indistinguishable hard-

core bosons (with positions q1,2) having a single spin- 1
2

degree

of freedom s attached to them. We consider points q = (x,y)

on the lattice (Z/L)2 and we impose periodic boundary

conditions. The full Hamiltonian is

H = H0 + h1H1 + h2H2, (A1)

where H0 is the uniformly distributed onsite potential

H0 =
∑

q

ϵqa
+
q aq, − W ! ϵq ! W. (A2)

H1 is the single-particle hopping Hamiltonian

H1 =
∑

q∼q ′
(a+

q aq ′ + aqa
+
q ′ ) (A3)

(q ∼ q ′ denoting nearest neighbors) and H2 is the assisted

hopping, including a spin-orbit interaction. We describe H2 by

its matrix elements. Let

S = {q1 = (x1,y1), q2 = (x2,y2) : q1 ̸= q2,

max{|x1 − x2|,|y1 − y2|} ! 1} (A4)

be the set of pairs of spatially neighboring points. We then

define ⟨q ′
1,q

′
2,s

′|H2|q1,q2,s⟩ to be

IS (q ′
1,q

′
2)IS (q1,q2) ⟨q ′

1,q
′
2,s

′|HSO|q1,q2,s⟩, (A5)
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FIG. 6. Statistics for the ln(IPRs) of all eigenstates of H for h2 = 0.7 and different values of h1. From left to right: h1 = 0.01, h1 = 0.07,

h1 = 0.15. Averages are taken over 500 realizations.

where the characteristic functions IS ensure that the initial and

final pair configuration belong to S. Further, HSO = H 1
SO +

H 2
SO with

H 1
SO = −i

[
σ (x)Ty1

− σ (y)Tx1

]
− i

[
(σ (x) − σ (y))

2
Tx1

Ty1

− (σ (x) + σ (y))

2
Tx1

T †
y1

]
+ H.c. (A6)

Here, σ (x,y) are Pauli matrices acting on the spin degrees

of freedom, while the translation operators are defined by

Tx1
|(x1,y1),(x2,y2),s⟩ = |(x1 + 1,y1),(x2,y2),s⟩ and similarly

for Ty1
. H 2

SO is defined analogously.

The Hamiltonian H 1
SO is a lattice version of the Rashba

Hamiltonian σ (x)py1
− σ (y)px1

. We notice that restricting the

definition of H 1
SO to the first term −i{σ (x)Ty1

− σ (y)Tx1
} would

lead to a degeneracy due to the lattice structure. This would

prevent H from being a generic GSE Hamiltonian for any

value of h2.

Numerical results. In all the simulations, we take L = 9

and W = 1. The analysis is divided into two parts:

(i) Delocalization via assisted hopping. First, we take

h1 = 0 and h2 > 0 (only assisted hopping). Since the majority

of states (all configurations outside S) are now trivially

localized, we restrict ourselves to the subspace HS spanned

by all the classical states in S [see (A4)], each coming with

spin up/down. We aim at finding h2 such that H0 + h2H2 can

be considered a “typical” GSE matrix with truly delocalized

eigenstates. For this, we evaluate numerically the parameter r

defined as

r =

〈
1

dim(HS ) − 2

dim(HS )−1∑

n=2

min{*En,*En−1}

max{*En,*En−1}

〉
, (A7)

where ⟨. . .⟩ is the disorder average and *En ≡ En+1 − En,

with En being the ordered eigenenergies of the system. For the

three classical ensembles, they take the values

r(GOE) ≃ 0.53, r(GUE) ≃ 0.60, r(GSE) ≃ 0.67. (A8)

For h2 = 0.7, we find r = 0.64 ± 0.05. This value is signifi-

cantly larger than r(GUE). The discrepancy with r(GSE) pre-

sumably arises from the contributions from the more localized

edges of the spectrum. To characterize (de)localization we use

the logarithm of the inverse participation ratio

ln(IPR)(ψ) ≡ − log10

(
∑

η

|⟨ψ |η⟩|4
)

, (A9)

where the sum over η runs over the classical particle configu-

rations.

Note that dim(HS ) = 648, and thus ln(IPR)(ψ) ∼ 2.5 for

a fully delocalized state ψ . From the point of view of the

parameter r , h2 = 0.7 is rather optimal: the spectrum is

mostly delocalized, but the Hamiltonian is still genuinely GSE.

Indeed, when h2 becomes significantly larger than 0.7, the

localized tails of the spectrum are further suppressed, but the

value of r starts bending down as an effect of approaching the

integrable limit h2 → ∞.

(ii) Robustness of delocalization against addition of single-

particle hopping. Let us now fix h2 = 0.7, but vary h1 > 0.

We determine numerically the statistics for the ln(IPRs) of

the eigenstates ψ of H . The results are shown in Fig. 6. The

central message of that data is the following: Adding a finite

h1, which connects the resonant subspace S to its much larger

localized complement, does not destroy the delocalization

on the resonant subspace, as shown by the left and middle

panels of Fig. 6. In particular, for h1 = 0.07 (middle) we see

delocalized states (inside the subspace HS ) coexisting with

a majority of localized states. Obviously, a relatively large

h1 leads to delocalization of almost all states, with ln(IPRs)

that start approaching the value log10[dim(H) = 6480] ∼ 3.5

of fully delocalized wave functions (cf. the right panel). A

comparison of histograms at the same values of h1, but

with h2 = 0 (not shown) revealed that the histograms are

significantly shifted to larger ln(IPR) in the presence of the

delocalized channel of mobile pairs.

APPENDIX B: ROBUSTNESS OF FULL MBL AGAINST

THE PRESENCE OF LOCALIZED ERGODIC SPOTS

It is instructive to compare the situation of high-energy

bubbles discussed in the main text with rare spots of low

disorder in an otherwise fully localized system. In particular,

we explain here why the latter do not induce delocalization,

even though a naive adaptation of some arguments we used in

the main text might suggest so.
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For simplicity, we discuss systems in d = 1. In the above

reasoning we used the fact that, if an ergodic system of length

L1 is put in contact with a small localized system of length L0

and if L0/L1 is smaller than a certain number, then localization

does not persist: all formerly localized states hybridize with

each other by mediation of the ergodic system they couple

to. Now, one could naively think that this argument could

be iterated ad infinitum: if one assumes that all states in the

joint region of length L0 + L1 are now fully ergodic, so that

ETH holds, one could try to iterate the previous argument and

conclude that yet a larger region would become ergodic, and so

on. This would lead to the wrong conclusion that MBL systems

simply cannot exist because there is always a finite probability

of ergodic inclusions of some finite size L1. However, a more

careful analysis reveals where this reasoning is flawed, as we

now show.

Let us discuss a definite microscopic model to avoid

ambiguities. Let H =
∑

x Hx + JVx,x+1 be a Hamiltonian

of a spin- 1
2

chain, where Hx are onsite disorder terms with

bandwidth W , Vx,x+1 are hopping terms, and J is a small

coupling satisfying J/W ≪ 1 (large disorder condition).

Let B := [1, . . . ,L1] be a local, finite-size “bath,” i.e., a part

of a chain which is ergodic if isolated from the rest, and E :=

[L1,N ] a localized region (the “environment”). This can arise,

e.g., in a disorder realization where all Hx for 1 ! x ! L1 are

equal up to deviations of order J , whereas such resonances are

absent for x > L1. Now split

H = HB + HB−E + HE, (B1)

where the subscripts indicate the sets of spins on which they

act (on B only; both on B and its complement E; on E

only). Following Imbrie [1], in the localized region E we

can find a unitary rotation that brings the Hamiltonian HE into

a canonical form of a sum of commuting terms, each being a

product of “logical bit” operators. We now apply this rotation

to the full Hamiltonian. Only the rotation of the terms which

involve action on B lead to terms that can flip the logical bits.

However, their amplitude decays as (J/W )R where R is the

distance between the border of the ergodic region and the site at

which the logical bit is centered. However, those flipping terms

can induce significant hybridization between different values

of the logical bits only if their amplitude is bigger than the

level spacing in the region of diameter L1 + R, which scales

as 2−L1−R . Assuming sufficiently strong disorder J/W < 1
2
,

we define a buffer length L0 by

2−L1−L0 = (J/W )L0 . (B2)

The above reasoning implies that logical bits centered further

than L0 from the edge of the ergodic region are not hybridized

through their coupling with the ergodic region B. To state

this in a more formal fashion, we can split the chain into

B := [1, . . . ,L1 + L0] and E = [L1 + L0 + 1,N ] and write

the (rotated) Hamiltonian as

H ′ = HB + HB−E + HE, (B3)

where the terms in HB−E , acting on both B,E are either

commuting with HE (terms diagonal in the logical bits), or

have norm at most (J/W )L0 (terms originating from applying

the rotation to HB−E). Using (B2), this allows to conclude

that the eigenstates of H ′ are close to products of states in

B and eigenstates of the logical bit operators in E. In other

words, the delocalizing influence of the region B is limited to a

finite region of length at most L0 around B, while many-body

localization remains robust outside.

This shows that it is flawed to reason that the ergodic

region B can be extended to an ever enlarging neighborhood,

as the bath would melt its neighboring degrees of freedom

and incorporate them into the ergodic region. In fact, these

enlarging regions gradually lose their full ergodicity. In

particular, random matrix theory cannot be applied naively

when determining whether further degrees of freedom become

delocalized as they are coupled to the already enlarged

region.

In contrast, our bubble argument in the main text does not

require such an iterative construction of a growing ergodic

region. The basic difference is that a high-energy bubble can

exist anywhere in space and is not tied to a rare quenched

disorder configuration, which remains localized in space. We

thus only need to argue that a hot bubble is able to displace itself

in a finite series of elementary steps, thereby remaining ergodic

inside. For those stages, we do not see reasons to doubt the

applicability of random matrixlike behavior of matrix elements

and level spacings.

It is interesting to note that the above reasoning about the

robustness of MBL cannot be generalized straightforwardly to

d > 1. The influence of ergodic spots in higher-dimensional

systems thus remains an interesting open question.

APPENDIX C: FAILURE OF OUR ARGUMENTS FOR

SINGLE-PARTICLE MOBILITY EDGES

It is natural to ask why our argument for delocalization

by bubbles does not apply to single-particle models, where

we know that mobility edges do exist. In a nutshell, the

argument does not apply because a single particle cannot

borrow the energy from other particles to become hot and to

delocalize at higher energy. Hybridizations between localized

and delocalized states (as induced by some perturbation to

the Hamiltonian) would necessarily require to go off shell,

which suppresses the coupling between localized states at large

distance from each other. In contrast, the formation of a mobile

bubble in a many-body system does not require the violation of

energy conservation. Let us show that the natural analog of our

argument fails. We have now a single-particle Hamiltonian H

with localized eigenstates |η⟩ (essentially |η⟩ ≃ |x⟩) for some

x and extended eigenstates |&⟩, separated by a mobility edge at

Ec. Upon switching on a local perturbation V (say, a change in

the random potential) we evaluate the possible hybridizations.

Of course, |η⟩,|η′⟩ do not hybridize in first order. Also, |η⟩ does

typically not hybridize with extended eigenstates &. They are

separated in energy and the matrix element ⟨η|V |&⟩ ∼ L−d/2

with L the linear size of the system. Indeed, this is simply

Mott’s argument. (To be precise, one should check as well

that the sum of all contributions extended contributions to the

change in the state |η⟩ does not cause it to delocalize, but

we skip this. The argument is very similar to what follows.)

However, the more interesting situation occurs in second order.

Let us consider a typical term for the mixing of localized states
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η,η′ via extended states &:

∑

&

1

Eη − E&

1

Eη − Eη′
⟨η|V |&⟩⟨&V |η′⟩. (C1)

A naive estimate gives that this sum is of order L0, so

potentially dangerous, but a more careful analysis refutes this:

let us first change the sum over & by a sum over η. Then, we

see that the resulting expression can become of order one only

if |η⟩ and |η′⟩ are close in space and their energy difference is

comparable to the norm of V . This is obviously a case in which

we do expect |η⟩ and |η′⟩ to hybridize. Hence, we exclude this

case and we can freely add contributions of localized states

to (C1). Using functional calculus, we can recast the resulting

expression as

1

Eη − Eη′
⟨η|V

χ (H )

Eη − H
V |η′⟩ (C2)

with χ (E) a smooth cutoff function (we choose it to be a

“Schwarz function”) that vanishes for E < Eη + (Ec − Eη)/2

and becomes 1 for E " Ec. It follows that

χ (H )

Eη − H
= f (H )

for a smooth function f of compact support. Now, we see that

f (H ) is a local operator in the sense that

|⟨x|f (H )|y⟩| ! C(k)|x − y|−k for any k > 0.

This is easily proven by Fourier transforming f (H ) =∫
dt e−itH f̂ (t), remarking that the Fourier transform of a

Schwarz function is again Schwarz and using a “Combes-

Thomas” bound to get the locality of e−itH on a spatial scale

proportional to t . For details on the functional analysis that was

used in this argument, see for example [36]. The upshot is that

(C2) is given by 1
Eη−Eη′ times an expression of order ∥V ∥2 that

decays rapidly in the distance between the localization centers

of |η⟩,|η′⟩. Hence, in the one-particle theory, the inclusion of

extended states in perturbation theory does not destroy the

localized states.
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